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Motivation

HMM
• generative model

• specifies P(X,Y)

• can be used to compute P(X), P(Y|X), P(X|Y), etc.

What do we typically do with HMM (e.g., 
speech recognition)?

What independence assumptions does it 
make?

• Given Y3, what can we say about X3 and X2?

• Is this assumption sensible?

X1 X2 X3

Y3Y2Y1



Relationships Among Models

factor graph



Lafferty, McCallum, & Pereira:
Classic Paper Organization

1. existing approaches: HMM, MEMM

2. existing approaches have deficiencies

assumption of independence of observations

label bias problem

3. technique that overcomes the deficiencies: CRF

general case

special case (sequential structure)

4. algorithms for training CRF

5. simulations to show superiority of CRF over HMM,  MEMM

label bias

mixed-order Markov model

part-of-speech tagging



Markov Random Fields

E.g., Image segmentation

Undirected graphical model

Set of random variables, {Y i}

Contextual constraints (spatial, temporal) connect neighbors

Neighborhood relations define cliques

subsets of RVs in which every pair of distinct RVs are neighbors



Directed Vs. Undirected Graphical Model

Joint probability in directed graphical model:

P(Y) = Πi P(Yi | PAi)

i: index over nodes

Joint probability in undirected graphical model:

P(Y) ~ Πc Vc(Yc) = exp( Σc ln Vc(Yc) )

c: index over cliques Yc: elements of Y in clique c (article uses Y|c)

Vc: potential function that depends on configuration of clique

For discrete RVs, Vc(Yc) = Σyc λc,yc fyc(Yc)

binary ‘feature’
(is Yc = yc?)

‘goodness’ of
configuration



Conditional Random Field

MRF specifies joint distribution on Y

For any probability distribution, you can condition  it on some 
other variables X

CRF = MRF conditioned on X

MRF: P(Yi | Yj for all j≠i) = P(Yi | Ni) where Ni are the neighbors of i

CRF: P(Yi | X, Yj for all j≠i) = P(Yi | X, Ni) where Ni are the neighbors of i

P Y X( ) exp λc yc, fyc
X Y,{ }c( )

c yc,
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CRF For Sequential Data

Framework

sequence of observations X = {Xi for i = 1...n}

sequence of labels Y = {Yi for i = 1...n}

goal: infer Y given X

Applications

speech recognition

part of speech tagging

pretty much anything we use an HMM for, because it is typical to be given 
observation sequence X



Relation To Other Sequential Models

HMM
• generative model

• assumes cond. independence of X’s

• does generality matter for recognition problems?

MEMM (Maximum Entropy Markov Model)
• specifies P(Y|X)

• does not require independence of X’s

• many free parameters

• label bias problem

CRF
• specifies P(Y|X)

• does not require independence of X’s

• fewer free parameters

• not subject to label bias problem

X1 X2 X3

Y3Y2Y1

X1 X2 X3

Y3Y2Y1

X1 X2 X3

Y3Y2Y1



Label Bias Problem

Consider P(Y i+1 | Xi, Yi) in MEMM: 

ΣΣΣΣj P(Yi+1=j | Xi, Yi) = 1.

If only one possible value of Y i+1 is given 
Yi, evidence is ignored.

Claim

Less robust to inaccurate modeling assumptions than CRF

X1 X2 X3

Y3Y2Y1



Training Objective

HMM

Given observation sequence {X1, X2, ..., XN}

Search for model parameters that maximize the likelihood of the observations.

CRF

Given an observation sequence {(X1,Y1),(X2,Y2),...(XN,YN)}

Search for model parameters that maximize the likelihood the conditional 
sequence

L θ X( ) P X θ( )
i 1=

N

∏=

L θ X Y,( ) P Y θ X,( )
i 1=

N

∏=



Training Procedure

Algorithm exactly analogous to training procedure f or HMM

1. Run forward-backward algorithm to obtain P(Y i|X,θθθθ)

2. Adjust θθθθ such that the inferred Y i better match the training 
states



Simulation Studies

Label bias problem

CRF error 4.6%, MEMM error is 42%

how do they measure accuracy?

Synthetic data

from mixture of first- and second-order 
models



Part-of-speech tagging

label each word in English sentence with one of 45 syntactic tags

results for first-order HMM, MEMM, CRF in first 3 rows

addition of orthographic features: begins with a number or upper case letter, 
contains a hyphen, whether it ends in specific suffix (-ing, -ogy, -ed, -s, -ly, etc.)

additional features rely on conditional nonindependence, vs. HMM

wordsuffix



Decontaminating Human 
Judgments by Removing 
Sequential Dependencies

Michael C. Mozer
University of Colorado

Hal Pashler
UCSD

Matt Wilder, Rob Lindsey, Matt Jones
University of Colorado

Mike Jones
Indiana University



Sequential Effects In Judgment



Sequential Effects In Judgment

On a 1-10 scale, make a moral judgment about the fo llowing 
actions, with 1 indicating ‘not particularly bad or  wrong’, and 10 
indicating ‘extremely evil’:

(1) Stealing a towel from a hotel

(2) Keeping a dime you found on the ground

(3) Poisoning a barking dog



Sequential Effects In Judgment

On a 1-10 scale, make a moral judgment about the fo llowing 
actions, with 1 indicating ‘not particularly bad or  wrong’, and 10 
indicating ‘extremely evil’:

(1) Stealing a towel from a hotel

(2) Keeping a dime you found on the ground

(3) Poisoning a barking dog

Suppose instead the sequence had been:

(1’) Testifying falsely for pay

(2’) Using guns on striking workers

(3’) Poisoning a barking dog

Rating of action (3) is reliably higher than rating  of action (3’) 
(Parducci, 1968)



Sequential Effects In Judgment

Rate these movies on a 1-5 scale

Netflix competition

anchoring effects (early vs. late in rating session)

slow drift

If ratings are contaminated by trial-to-trial seque nce, can we 
decontaminate ratings to get scores that are more meaningfully 
related to an individual’s internal sensation/impre ssion/
evaluation?



Strategy

1. Collect data on a simple judgment task for which  we have 
ground truth knowledge of the subjects’ internal se nsations

2. Use half of the subjects ( training subjects) to build statistical/
probabilistic models of decontamination

3. Evaluate abilility of models to decontaminate on the other 
half of subjects ( test subjects)



Sequential Effects:
Cognitive Models Vs. Decontamination Models

Cognitive model

Given past sequence of stimuli and responses, and current stimulus, predict 
current response (or response latency)

S(1), S(2), ... S(t), R(1), R(2), ...R(t-1) ⇒    R(t)

Decontamination model

Given complete sequence of responses, predict complete sequence of sensations

R(1), R(2), ..., R(T) ⇒    S(1), S(2), ..., S(T)



Gap Detection Task

On a 1-10 scale, judge how big the gap is between t hese two 
dots:
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Gap Detection Task

On a 1-10 scale, judge how big the gap is between t hese two 
dots:



Gap Detection Task

On a 1-10 scale, judge how big the gap is between t hese two 
dots:

Absolute identification task (10 stimuli, 10 respon ses)

10 initial trials where subject is shown all 10 sti muli and is told 
the correct response

No further feedback

Like 1000’s of similar studies in the literature, e xcept without 
any feedback to make it more like Netflix rating ta sk.



Experiments

Experiment 1

180 trials, 2 blocks of 90 trials

Within each block, all pairs of {gap(t-1), gap(t)} presented once, excluding 
repetitions

Within each 10 trials of block, all gaps presented once

gap = .08 K (K = 1, ..., 10)

Experiment 2

200 trials, 2 blocks of 100 trials

Within each block, all pairs of {gap(t-1), gap(t)} presented once, including 
repetitions

No subblock structure

gap = .06 + .08 K (K = 1, ..., 10)



Results
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Decontamination Models

1. Regression

2. Look up table

3. Regression + look up table

4. Conditional random field regression

Inference via forward-backward algorithm

5. Conditional random field look up table

6. Conditional random field regression + look up ta ble

Ŝ t( ) β0 β1R t( ) β2R t 1–( )+ +=

Ŝ t( ) Table R t( ) R t 1–( ),( )( )=

Ŝ t( ) β0 β1R t( ) β2R t 1–( ) Table R t( ) R t 1–( ),( )( )+ + +=

Ŝ t( ) β0 β1R t( ) β2R t 1–( ) β3Ŝ t 1–( )+ + +=

Ŝ t( ) Table R t( ) R t 1–( ),( ) Ŝ t 1–( ),( )( )=

Ŝ t( ) β0 β1Rr t( ) β2R t 1–( ) β3Ŝ t 1–( ) Table R t( ) R t 1–( ),( ) Ŝ t 1–( ),( )( )+ + + +=



Conditional Random Fields

R1

S1 S2 S3

R2 R3

sensation

response

...



Conditional Random Fields

R1

S1 S2 S3

R2 R3

sensation

response

...

for regression: 

terms: S t, RtSt, St
2, RtSt-1, Rt-1St, StSt-1

β0 β1R t( ) β2R t 1–( ) β3Ŝ t 1–( )+ + +



Decontamination Results
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Decontamination Results

Bottom line: 20% reduction in error over using subj ect’s 
response vs. decontaminated estimate
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