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ABSTRACT
Students learning socially is a critical aspect of scaling up instruc-
tion in online education. In many cases, such as in massive open
online courses (MOOCs), social learning is facilitated through dis-
cussion forums hosted by course providers. In this paper, we pro-
pose a probabilistic model for the process of learners posting on
such forums, using point processes. Different from existing works,
our method integrates topic modeling of the post text, timescale
modeling of the decay in post excitation over time, and learner topic
interest modeling into a single model, and infers this information
from user data. Our method also varies the excitation levels induced
by posts according to the thread structure, to reflect typical notifi-
cation settings in discussion forums. We experimentally validate
the proposed model on three real-world MOOC datasets, with the
largest one containing up to 6,000 learners making 40,000 posts in
5,000 threads. Results show that our model excels at thread recom-
mendation, achieving significant improvement over a number of
baselines, thus showing promise of being able to direct learners to
threads that they are interested in more efficiently. Moreover, we
demonstrate analytics that our model parameters can provide, such
as the timescales of different topic categories in a course.
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1 INTRODUCTION
Online discussion forums have gained substantial traction over the
past decade, and are now a significant avenue of knowledge shar-
ing on the Internet. Attracting learners with diverse interests and
backgrounds, some platforms (e.g., Stack Overflow, MathOverflow)
target specific technical subjects, while others (e.g., Quora, Reddit)
cover a wide range of topics from politics to entertainment.

More recently, discussion forums have become a significant com-
ponent of online education, enabling students in online courses
to learn socially as a supplement to their studying of the course
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content individually [2]; social interactions between learners have
been seen to improve learning outcomes [4]. In particular, mas-
sive open online courses (MOOCs) often have tens of thousands
of learners within single sessions, making the social interactions
via these forums critical to scaling up instruction [3]. In addition to
serving as a versatile complement to self-regulated learning [23],
research has shown that learner participation on forums can be
predictive of learning outcomes [25].

In this paper, we ask: How can we model the activity of individ-
ual learners in MOOC discussion forums? Such a model, designed
correctly, presents several opportunities to optimize the learning
process, including personalized news feeds to help learners sort
through forum content efficiently, and analytics on factors driving
participation.

1.1 Prior work on discussion forums
Generic online discussion sites. There is vast literature on ana-

lyzing user interactions in online social networks (e.g., on Face-
book, Google+, and Twitter). Researchers have developed methods
for tasks including link prediction [10, 16], tweet cascade analy-
sis [7, 22], post topic analysis [20], and latent network structure
estimation [13, 14]. These methods are not directly applicable to
modeling MOOC discussion forums since MOOCs do not support
an inherent social structure; learners cannot become “friends” or
“follow” one another.

Generic online discussion forums (e.g., Stack Overflow, Quora)
have also generated substantial research. Researchers have devel-
oped methods for tasks including question-answer pair extraction
[5], topic dynamics analysis [26], post structure analysis [24], and
user grouping [21]. While these types of forums also lack explicit
social structure, MOOC discussion forums exhibit several unique
characteristics that need to be accounted for. First, topics in MOOC
discussion forums are mostly centered around course content, as-
signments, and course logistics [3], making them far more struc-
tured than generic forums; thus, topic modeling can be used to
organize threads and predict future activity. Second, there are no
sub-forums in MOOCs: learners all post in the same venue even
though their interests in the course vary. Modeling individual in-
terest levels on each topic can thus assist learners in navigating
through posts.

MOOC forums. A few studies on MOOC discussion forums have
emerged recently. The works in [18, 19] extracted forum structure
and post sentiment information by combining unsupervised topic
models with sets of expert-specified course keywords. In this work,
our objective is to model learners’ forum behavior, which requires
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analyzing not only the content of posts but also individual learner
interests and temporal dynamics of the posts.

In terms of learner modeling, the work in [8] employed Bayesian
nonnegative matrix factorization to group learners into communi-
ties according to their posting behavior. This work relies on topic
labels of each discussion post, though, which are either not avail-
able or not reliable in most MOOC forums. The work in [2] inferred
learners’ topic-specific seeking and disseminating tendencies on
forums to quantify the efficiency of social learning networks. How-
ever, this work relies on separate models for learners and topics,
whereas we propose a unified model. The work in [9] couples social
network analysis and association rule mining for thread recommen-
dation; while their approach considers social interactions among
learners, they ignore the content and timing of posts.

As for modeling temporal dynamics, the work in [3] proposed a
method that classifies threads into different categories (e.g., small-
talk, course-specific) and ranks thread relevance for learners over
time. This model falls short of making recommendations, though,
since it does not consider learners individually. The work in [27]
employed matrix factorization for thread recommendation and
studied the effect of window size, i.e., recommending only threads
with posts in a recent time window. However, this model uses
temporal information only in post-processing, which limits the
insights it offers. Thework in [15] focuses on learner thread viewing
rather than posting behavior, which is different from our study of
social interactions since learners view threads independently.

The model proposed in [17] is perhaps most similar to ours,
as it uses point processes to analyze discussion forum posts and
associates different timescales with different types of posts to reflect
recurring user behavior. With the task of predicting which Reddit
sub-forum a user will post in next, the authors base their point
processes model on self-excitations, as such behavior is mostly
driven by a user’s own posting history. Our task, on the contrary, is
to recommend threads to learners taking a particular online course:
here, excitations induced by other learners (e.g., explicit replies)
can significantly affect a learner’s posting behavior. As a result, the
model we develop incorporates mutual excitation. Moreover, [17]
labels each post based on the Reddit sub-forum it belongs to; no
such sub-forums exist in MOOCs.

1.2 Our model and contributions
In this paper, we propose and experimentally validate a probabilistic
model for learners posting on MOOC discussion forums. Our main
contributions are as follows.

First, through point processes, our model captures several impor-
tant factors that influence a learner’s decision to post. In particular,
it models the probability that a learner makes a post in a thread at
a particular point in time based on four key factors: (i) the interest
level of the learner on the topic of the thread, (ii) the timescale
of the thread topic (which corresponds to how fast the excitation
induced by new posts on the topic decay over time), (iii) the timing
of the previous posts in the thread, and (iv) the nature of the previ-
ous posts regarding this learner (e.g., whether they explicitly reply
to the learner). Through evaluation on three real-world datasets—
the largest having more than 6,000 learners making more than
40,000 posts in more than 5,000 threads—we show that our model

significantly outperforms several baselines in terms of thread rec-
ommendation, thus showing promise of being able to direct learners
to threads they are interested in.

Second, we derive a Gibbs sampling parameter inference algo-
rithm for our model. While existing work has relied on thread labels
to identify forum topics, such metadata is usually not available for
MOOC forum threads. As a result, we jointly analyze the post times-
tamp information and the text of the thread by coupling the point
process model with a topic model, enabling us to learn the topics
and other latent variables through a single procedure.

Third, we demonstrate several types of analytics that our model
parameters can provide, using our datasets as examples. These
include: (i) identifying the timescales (measured as half-lives) of
different topics, from which we find that course logistics-related
topics have the longest-lasting excitations, (ii) showing that learners
are much (20-30 times) more likely to post again in threads they
have already posted in, and (iii) showing that learners receiving
explicit replies in threads are much (300-500 times) more likely to
post again in these threads to respond to these replies.

2 POINT PROCESSES FORUMMODEL
An online course discussion forum is generally comprised of a
series of threads, with each thread containing a sequence of posts
and comments on posts. Each post/comment contains a body of
text, written by a particular learner at a particular point in time.
A thread can further be associated with a topic, based on analysis
of the text written in the thread. Figure 1 (top) shows an example
of a thread in a MOOC consisting of eight posts and comments.
Moving forward, the terminology “posting in a thread” will refer
to a learner writing either a post or a comment.

We postulate that a learner’s decision to post in a thread at a
certain point in time is driven by four main factors: (i) the learner’s
interest in the thread’s topic, (ii) the timescale of the thread’s topic,
(iii) the number and timing of previous posts in the thread, and
(iv) the learner’s prior activity in the thread (e.g., whether there
are posts that explicitly reply to the learner). The first factor is
consistent with the fact that MOOC forums generally have no
sub-forums: in the presence of diverse threads, learners are most
likely to post in those covering topics they are interested in. The
second factor reflects the observation that different topics exhibit
different patterns of temporal dynamics. The third factor captures
the common options for thread-ranking that online forums provide
to users, e.g., by popularity or recency; learners are more likely to
visit those at the top of these rankings. The fourth factor captures
the common setup of notifications in discussion forums: learners are
typically subscribed to threads automatically once they post in them,
and notified of any new posts (especially those that explicitly reply
to them) in these threads. To capture these dynamics, we model
learners’ posts in threads as events in temporal point processes [6],
which will be described next.

Point processes. A point process, the discretization of a Poisson
process, is characterized by a rate function λ(t) that models the
probability that an event will happen in an infinitesimal time win-
dow dt [6]. Formally, the rate function at time t is given by

λ(t) = P (event in [t , t + dt)) = lim
dt→0

N (t + dt) − N (t)

dt
, (1)
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whereN (t) denotes the number of events up to time t [6]. Assuming
the time period of interest is [0,T ), the likelihood of a series of
events at times t1, . . . , tN < T is given by:

L({ti }
N
i=1) =

( N∏
i=1

λ(ti )

)
e−

∫ T
0 λ(τ )dτ . (2)

In this paper, we are interested in rate functions that are affected
by excitations of past events (e.g., forum posts in the same thread).
Thus, we resort to Hawkes processes [17], which characterize the
rate function at time t given a series of past events at t1, t2, . . . , tN ′ <

t as

λ(t) = µ + a
N ′∑
i=1

κ(t − ti ),

where µ ≥ 0 denotes the constant background rate, a ≥ 0 denotes
the amount of excitation each event induces, i.e., the increase in the
rate function after an event,1 and κ(·) : R+ → [0, 1] denotes a non-
increasing decay kernel that controls the decay in the excitation of
past events over time. In this paper, we use the standard exponential
decay kernel κ(t) = e−γ t , where γ denotes the decay rate. Through
our model, different decay rates can be associated with different
topics [17]; as we will see, this model choice enables us to categorize
posts into groups (e.g., course content-related, small talk, or course
logistics) based on their timescales, which leads to better model
analytics.

Rate function for new posts. Let U , K , and R denote the number
of learners, topics, and threads in a discussion forum, indexed by
u, k , and r , respectively. We assume that each thread r functions
independently, and that each learner’s activities in each thread and
on each topic are independent. Further, let zr denote the topic of
thread r , and let Pr denote the total number of posts in the thread,
indexed by p; for each post p, we useurp and trp to denote the learner
index and time of the post, and we use pri (u) to denote the ith post
of learner u in thread r . Note that posts in a thread are indexed in
chronological order, i.e., p < p′ if and only if trp < trp′ . Finally, let
γk ≥ 0 denote the decay rate of each topic and let au,k denote the
interest level of learner u on topic k . We model the rate function
that characterizes learner u posting in thread r (on topic zr = k) at
time t given all previous posts in the thread (i.e., posts with trp < t )
as

λru,k (t)=



au,k
∑
p e

−γk (t−t rp ) if t < trpr1 (u)

au,k
∑
p :p<pr1 (u) e

−γk (t−t rp )

+α au,k
∑
p :p≥pr1 (u),u<d

r
p
e−γk (t−t

r
p )

+βα au,k
∑
p :u ∈drp e

−γk (t−t rp ) if t ≥ trpr1 (u)
.

(3)

In our model, au,k characterizes the base level of excitation that
learner u receives from posts in threads on topic k , which captures
the different interest levels of learners on different topics. The
exponential decay kernel models a topic-specific decay in excitation
of rate γk from the time of the post.

Before trpr1 (u)
(the timestamp of the first post learner u makes in

thread r ), learneru’s rate is given solely by the number and recency

1a is sometimes referred to in literature as the impulse response [13].

Post	1

Get	started	on	machine	learning!!!

Bob Aug	21,	2017 10:55am

How	can	I	prepare	for	this	course?	I	have	ZERO	background	:P

Post	2 Anne Aug	21,	2017 11:00am

You	can	start	on	the	math,	like	basic	statistics	and	linear	algebra.

Comment	1 John Aug	21,	2017 11:03am

I’d	say	trying	out	the	programming	tools	is	more	urgent.

Comment	2 Anonymous Aug	21,	2017 11:05am

Ditto!

Comment	3 Anne Aug	21,	2017 11:10am

@John	Yes,	but	math	is	key	too.	Without	it	you	won’t	understand	
a	single	thing	in	this	course.

Comment	4 John Aug	21,	2017 11:12am

@Anne	Right,	you	do	need	both.

Post	3 Lily Aug	21,	2017 11:20am

I	know	all	these.	Can’t	wait	to	get	started	on	the	course!

Post	4 Bob Aug	21,	2017 11:25am

Thanks,	everyone!	I’ll	get	started	ASAP.	Good	luck	to	y’all

Initial	excitation

Notification	excitation

Explicit	reply	excitation

Figure 1: An example of how threads are structured in
MOOC discussion forums (top) and an illustration of cor-
responding rate functions (bottom) for two learners in this
thread. Different posts induce different amounts of exci-
tation depending on whether and how they refer to the
learner.

of posts in r (trpr1 (u)
= ∞ if the learner never posts in this thread),

while all posts occurring after trpr1 (u)
induce additional excitation

characterized by the scalar variable α . This model choice captures
the common setup in MOOC forums that learners are automati-
cally subscribed to threads after they post in them. Therefore, we
postulate that α > 1, since new post notifications that come with
thread subscriptions tend to increase a learner’s chance of viewing
these new posts, in turn increasing their likelihood of posting again
in these threads. The observation of users posting immediately
after receiving notifications is sometimes referred to as the “bursty”
nature of posts on social media [7].

We further separate posts made after trpr1 (u)
by whether or not

they constitute explicit replies to learner u. A post p′ is considered
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to be an explicit reply to a post p in the same thread r if trp′ > trp and
one of the following conditions is met: (i) p′ makes direct reference
(e.g., through name or the @ symbol) to the learner who made post
p, or (ii) p′ is the first comment under p.2 drp in (3) denotes the set
of explicit recipients of p, i.e., if p is an explicit reply to learner u,
then u ∈ drp , while if p is not an explicit reply to any learners then
drp = ∅. This setup captures the common case of learners being
notified of posts that explicitly reply to them in a thread. The scalar
β characterizes the additional excitation these replies induce; we
postulate that β > 1, i.e., the personal nature of explicit replies
to learners’ posts tends to further increase the likelihood of them
posting again in the thread (e.g., to address these explicit replies).

Rate function for initial posts. We must also model the process
of generating the initial posts in threads. We characterize the rate
function of these posts as time-invariant:

λru,k (t) = µu,k , (4)

where µu,k denotes the background posting rate of learner u on
topic k . Separating the initial posts in threads from future posts
in this way enables us to model learners’ knowledge seeking (i.e.,
starting threads) and knowledge disseminating (i.e., posting re-
sponses in threads) behavior [2], through the background (µu,k )
and excitation levels (au,k ), respectively.

Post text modeling. Finally, we must also model the text of each
thread. Given the topic zr = k of thread r , we model Wr—the bag-
of-words representation of the text in r across all posts—as being
generated from the standard latent Dirichlet allocation (LDA) model
[1], with topic-word distributions parameterized by ϕk . Details on
the LDAmodel and the posterior inference step forϕk via collapsed
Gibbs sampling in our parameter inference algorithm are omitted
for simplicity of exposition.

Model intuition. Intuitively, a learner will browse existing threads
in the discussion forum when they are interested in a particular
topic. If a relevant thread exists, they may make their first post
there (e.g., Comment 1 by John under Post 2, in Figure 1), with the
rate at which this occurs being governed by the previous activity in
the thread (posts at times trp < t ) and the learner’s interest level in
the topic of the thread (au,k ). Together with the exponential decay
kernel, this model setting reflects the observation that discussion
forum threads are often sorted by recency (the time of last post) and
popularity (typically quantified by the number of replies). Addition-
ally or alternatively, if no such thread exists, the learner may decide
to start a new thread on the topic (e.g., Post 1 by Bob), depending
on their background rate (µu,k ). Once the learner has posted in a
thread, they will receive notifications of new posts there (e.g., Lily
will be notified of Post 4), which induces higher levels of excitation
(α > 1); the personal nature of explicit replies to their posts (e.g.,
Anne’s mention of John in Comment 3 under Post 2) will induce
even higher levels of excitation (β > 1).

3 PARAMETER INFERENCE
Wenow derive the parameter inference algorithm for ourmodel.We
perform inference using Gibbs sampling, i.e., iteratively sampling
2In this work, we restrict ourselves to these two concrete types of explicit replies;
analyzing other, more ambiguous types is left for future work.

from the posterior distributions of each latent variable, conditioned
on the other latent variables. The detailed steps are as follows:
1. Sample zr . To sample from the posterior distribution of the topic

of each thread, zr , we put a uniform prior over each topic
and arrive at the posterior

P(zr = k | . . .) ∝ P(Wr |zr )

·
∏
k ′

P({tr
′

1 }r ′:zr ′=k ′,ur1 =u
r ′
1
| µur1 ,k

′)

·
∏
u

P({trp }p :urp=u |au,k ,α , β ,γk ),

where . . . denotes all variables except zr . P(Wr |zr ) denotes
the likelihood of observing the text of thread r given its
topic. P({tr

′

1 }r ′:zr ′=k ′,ur1 =u
r ′
1
| µur1 ,k

′) denotes the likelihood
of observing the sequence of initial thread posts on topic k ′
made by the learner who also made the initial post in thread
r ;3 this is given by substituting (4) into (2) as

P({tr
′

1 }r ′:zr ′=k ′,ur1 =u
r ′
1
| µur1 ,k

′)

= µ

∑
r ′ 1ur1 =u

r ′
1 ,zr ′=k

′

ur1 ,k
′ e

−µur1 ,k′
T
∝ µur1 ,k

′ , (5)

where 1x denotes the indicator function that takes the value
1 when condition x holds and 0 otherwise. P({trp }p :urp=u |

au,k ,α , β,γk ) denotes the likelihood of observing the se-
quence of posts made by learner u in thread r ,4 given by

P({trp }p :urp=u |au,k ,α , β ,γk )

=
©«

∏
p :urp=u

λru,zr (t
r
p )

ª®®¬
(
e−

∫ T
0 λru,zr (t )dt

)
, (6)

where the rate function λru,k (t) for learneru in thread r (with
topic k) is given by (3).

2. Sample γk . There is no conjugate prior distribution for the ex-
citation decay rate variable γk . Therefore, we resort to a
pre-defined set of decay rates γk ∈ {γs }

S
s=1. We put a uni-

form prior on γk over values in this set, and arrive at the
posterior given by

P(γk = γs | . . .) ∝
∏

r :zr=k

∏
u

P({trp }p :urp=u |au,k ,α , β ,γs ).

3. Sample µu,k . The conjugate prior of the learner background
topic interest level variable µu,k is the Gamma distribution.
Therefore, we put a prior on µu,k as µu,k ∼ Gam(αµ , βµ )
and arrive at the posterior distribution

P(µu,k | . . .) ∝ Gam(α ′
µ , β

′
µ )

where

α ′
µ = αµ +

∑
r

1ur1 =u,zr=k , β ′µ = βµ +T .

4. Sample au,k , α , and β . The latent variables α and β have no con-
jugate priors. As a result, we introduce an auxiliary latent
variable [13, 22] erp for each post p, where erp′ = p means that
post p is the “parent” of post p′ in thread r , i.e., post p′ was

3If µr1 is not the initial poster in any thread r ′ with zr ′ = k ′, then {t r
′

1 } = ∅.
4If u has not posted in r , then {t rp } = ∅.
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caused by the excitation that the previous post p induced.
We first sample the parent variable for each post p according
to

P(erp′ = p) ∝ ar (p,p′)e
−γzr (t

r
p′−t

r
p ),

where ar (p,p′) ∈ {aurp′,zr
,αaurp′,zr

, βαaurp′,zr
} depending

on the relationship between posts p and p′ from our model,
i.e., whether p′ is the first post of up′ in the thread, and if
not, whether p is an explicit reply to up′ . In general, the set
of possible parents of p is all prior posts 1, ...,p − 1 in r , but
in practice, we make use of the structure of each thread to
narrow down the set of possible parents for some posts.5
With these parent variables, we can writeL({trp }p :urp=u ), the
likelihood of the series of posts learner u makes in thread r
as

L =
∏
r

L({trp }
Pr
p=1) =

∏
r

∏
u

L({trp }p :urp=u ),

where L({trp }p :urp=u ) denotes the likelihood of the series of
posts learner u makes in thread r . We can then expand the
likelihood using the parent variables as

L({trp }urp=u ) =
∏

p :p<pr1 (u)
e
−
au,zr
γzr

(1−e−γzr (T−trp )
)

©«
∏

p′:urp′=u,e
r
p′=p

au,zr e
−γzr (t

r
p′−t

r
p )

ª®®¬
·

∏
p :p≥pr1 (u),u<d

r
p

e
−
αau,zr
γzr

(1−e−γzr (T−trp )
)

©«
∏

p′:urp′=u,e
r
p′=p

αau,zr e
−γzr (t

r
p′−t

r
p )

ª®®¬
·

∏
p :u ∈drp

e
−
βαau,zr

γzr
(1−e−γzr (T−trp )

)

©«
∏

p′:urp′=u,e
r
p′=p

βαau,zr e
−γzr (t

r
p′−t

r
p )

ª®®¬ .
We now see that Gamma distributions are conjugate priors
for au,k , α , and β . Specifically, if au,k ∼ Gam(αa , βa ), its
posterior is given by P(au,k | . . .) ∼ Gam(α ′

a , β
′
a ) where

α ′
a = αa +

∑
r :zr=k

∑
p

1urp=u ,

β ′a = βa +
∑

r :zr=k

( ∑
p :p<pr1 (u)

1
γk

(1 − e−γk (T−t
r
p ))

+
∑

p :p≥pr1 (u),u<d
r
p

α

γk
(1 − e−γk (T−t

r
p ))

5For example, in Fig. 1, Post 2 is the only possible parent post of Comment 1 below, as
Comment 1 is an explicit reply to Post 2. We omit the details of this step for simplicity
of exposition.

Dataset Threads Posts Learners Weeks
ml 5,310 40,050 6,604 15
algo 1,323 9,274 1,833 9
comp 4,860 17,562 3,060 14
Table 1: Basic statistics on the datasets.

+
∑

p :u ∈drp

βα

γk
(1 − e−γk (T−t

r
p ))

)
.

Similarly, if α ∼ Gam(αα , βα ), the posterior is P(α | . . .) ∼
Gam(α ′

α , β
′
α ) where

α ′
α = αα +

∑
r

∑
p

∑
p′

1erp′=p,p≥p
r
1 (u

r
p′ )
,

β ′α = βα +
∑
r

∑
u

( ∑
p :p≥pr1 (u),u<d

r
p

au,zr
γzr

(1 − e−γzr (T−t
r
p ))

+
∑

p :u ∈drp

βau,zr
γzr

(1 − e−γzr (T−t
r
p ))

)
.

Finally, if β ∼ Gam(αβ , ββ ), the posterior is P(β | . . .) ∼

Gam(α ′
β , β

′
β ) where

α ′
β = αβ +

∑
r

∑
p

∑
p′

1erp′=p,u
r
p′ ∈d

r
p
,

β ′β = ββ +
∑
r

∑
u

∑
p :u ∈drp

αau,zr
γzr

(1 − e−γzr (T−t
r
p )).

We iterate the sampling steps 1-4 above after randomly initializ-
ing the latent variables according to their prior distributions. After
a burn-in period, we take samples from the posterior distribution
of each variable over multiple iterations, and use the average of
these samples as its estimate.

4 EXPERIMENTS
In this section, we experimentally validate our proposed model
using three real-world MOOC discussion forum datasets. In par-
ticular, we first show that our model obtains substantial gains in
thread recommendation performance over several baselines. Subse-
quently, we demonstrate the analytics on forum content and learner
behavior that our model offers.

4.1 Datasets
We obtained three discussion forum datasets from 2012 offerings
of MOOCs on Coursera: Machine Learning (ml), Algorithms, Part I
(algo), and English Composition I (comp). The number of threads,
posts and learners appearing in the forums, and the duration (the
number of weeks with non-zero discussion forum activity) of the
courses are given in Table 1.

Prior to experimentation, we perform a series of pre-processing
steps. First, we prepare the text for topic modeling by (i) removing
non-ascii characters, url links, punctuations and words that contain
digits, (ii) converting nouns and verbs to base forms, (iii) removing
stopwords,6 and (iv) removing words that appear fewer than 10
6We use the stopword list in the Python natural language toolkit (http://www.nltk.org/)
that covers 15 languages.

http://www.nltk.org/
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(a) ml (b) algo (c) comp

Figure 2: Plot of recommendation performance over different lengths of the training time window T1 on all datasets. Our
model significantly outperforms every baseline.

Figure 3: Recommendation performance of the algorithms
for varying testing window length ∆T on the algo dataset.
The point process-based algorithms have highest perfor-
mance and are more robust to ∆T .

times or in more than 10% of threads. Second, we extract the follow-
ing information for each post: (i) the ID of the learner who made
the post (urp ), (ii) the timestamp of the post (trp ), and (iii) the set
of learners it explicitly replies to as defined in the model (drp ). For
posts made anonymously, we do not include rates for them (λru,k (t))
when computing the likelihood of a thread, but we do include them
as sources of excitation for non-anonymous learners in the thread.

4.2 Thread recommendation
Experimental setup. We now test the performance of our model

on personalized thread recommendation. We run three different
experiments, splitting the dataset based on the time of each post.
The training set includes only threads initiated during the time
interval [0,T1), i.e., {r : tr1 ∈ [0,T1)}, and only posts on those
threads made before T1, i.e., {p : trp ≤ T1}. The test set contains
posts made in time interval [T1,T2), i.e., {p : trp ∈ [T1,T2)}, but
excludes new threads initiated during the test interval.

In the first experiment, we hold the length of the testing interval
fixed to 1 day, i.e., ∆T = T2 − T1 = 1 day, and vary the length of
the training interval as T1 ∈ {1week, . . . ,W − 1weeks}, where
W denotes the number of weeks that the discussion forum stays

active. We setW to 10, 8, and 8 for ml, comp, and algo, respectively,
to ensure the number of posts in the testing set is large enough.
These numbers are less than those in Table 1 since learners drop
out during the course, which leads to decreasing forum activity. In
the second experiment, we hold the length of the training interval
fixed atW − 1 weeks and vary the length of the testing interval as
∆T ∈ {1 day, . . . , 7 days}. In the first two experiments, we fixK = 5,
while in the third experiment, we fix the length of the training and
testing intervals to 7 weeks and 1 week, respectively, and vary the
number of latent topics as K ∈ {2, 3, . . . , 10, 12, 15, 20}.

For training, we set the values of the hyperparameters to αa =
αµ = 10−4, and βa = βµ = αα = βα = αβ = ββ = 1. We set the
pre-defined decay rates {γs }Ss=1 to correspond to half-lives (i.e., the
time for the excitation of a post to decay to half of its original value)
ranging from minutes to weeks. We run the inference algorithm for
a total of 200 iterations, with 100 of these being burn-in iterations.7

Baselines. We compare the performance of our point process
model (PPS) against four baselines: (i) Popularity (PPL), which ranks
threads from most to least popular based on the total number of
posts in each thread during the training time interval; (ii) Recency
(REC), which ranks threads from newest to oldest based on the
timestamp of their most recent post; (iii) Social influence (SOC), a
variant of our PPS model that replaces learner topic interest levels
with learner social influences (the “Hwk” baseline in [7]); and (iv)
Adaptive matrix factorization (AMF), our implementation of the
matrix factorization-based algorithm proposed in [27].

To rank threads in our model for each learner, we calculate the
probability that learner u will reply to thread r during the testing
time interval as

P(u posts in r ) =
∑
k

P(u posts in r |zr = k) P(zr = k)

=
∑
k

(
1 − e

−
∫ T2
T1

λru,k (t )dt
)
P(zr = k).

The rate function λru,k (t) is given (3). P(zr = k) is given by

P(zr = k) ∝ P(zr = k |u
r
1 ) P(Wr |zr = k)

7We observe that the Markov chain achieves reasonable mixing after about 50
iterations.
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Figure 4: Plot of recommendation performance of ourmodel
over the number of topics K on the ml dataset. The best per-
formance is obtained at K ≈ 5, though performance is stable
for K ≤ 10.

·
∏
u

P({trp }p :urp=u,t rp <T1 |zr = k),

where the likelihoods of the initial post and other posts are given by
(2) and (5), and the thread text likelihood P(Wr |zr = k) is given by
the standard LDA model. The threads are then ranked from highest
to lowest posting probability.

Evaluation metric. We evaluate recommendation performance
using the standard mean average precision for top-N recommenda-
tion (MAP@N) metric. This metric is defined by taking the mean
(over all learners who posted during the testing time interval) of
the average precision

APu@N =
N∑
n=1

Pu@n · 1u posted in thread ru (n)

min{|Ru |,N }
,

where Ru denotes the set of threads learner u posted in during
the testing time interval [T1,T2), ru (n) denotes the nth thread rec-
ommended to the learner, Pu@n denotes the precision at n, i.e.,
the fraction of threads among the top n recommendations that the
learner actually posted in, and 1 denotes the indicator function. We
use N = 5 in the first two experiments, and vary N ∈ {3, 5, 10} in
the third experiment.

Results and discussion. Fig. 2 plots the recommendation perfor-
mance of our model and the baselines over different lengths of the
training time window T1 for each dataset. Overall, we see that our
model significantly outperforms the baselines in each case, achiev-
ing 15%-400% improvement over the strongest baseline.8 The fact
that PPS outperforms the SOC baseline confirms our hypothesis
that in MOOC forums, learner topic preference is a stronger dri-
ver of posting behavior than social influence, consistent with the
fact that most forums do not have an explicit social network (e.g.,
of friends or followers). The fact that PPS outperforms the AMF
baseline emphasizes the benefit of the temporal element of point
processes in capturing the dynamics in thread activities over time,
compared to the (mostly) static matrix factorization-based algo-
rithms. Note also that as the amount of training data increases in
the first several weeks, the recommendation performance tends to
8Note that these findings are consistent across each dataset. Moving forward, we
present one dataset in each experiment unless differences are noteworthy.

Figure 5: Direct comparison of our model against the AMF
and PPL baselines using the experimental setup in [27] on
the comp dataset. Ourmodel again significantly outperforms
both baselines.

increase for the point processes-based algorithms while decreasing
for PPL and REC. The observed fluctuations can be explained by the
decreasing numbers of learners in the test sets as courses progress,
since they tend to drop out before the end (see also Fig. 6).

Fig. 3 plots the recommendation performance over different
lengths of the testing time window ∆T for the algo dataset. As
in Fig. 2, our model significantly outperforms every baseline. We
also see that recommendation performance tends to decrease as the
length of the testing time window increases, but while the perfor-
mance of point process-based algorithms decay only slightly, the
performance of the PPL and AMF baselines decrease significantly
(by around 50%). This observation suggests that our model excels
at modeling long-term learner posting behavior.

Finally, Fig. 4 plots the recommendation performance of the PPS
model over different numbers of topics K for the ml dataset, for
different choices of N , T1 and ∆T . In each case, the performance
rises slightly up to K ≈ 5 and then drops for larger values (when
overfitting occurs). Overall, the performance is relatively robust to
K , for K ≤ 10.

4.3 Direct comparison with AMF
The MAP@5 values we obtained for both the AMF and PPL base-
lines are significantly less than those reported in [27], where AMF
is proposed. To investigate this, we also perform a direct, head-to-
head comparison between our model and these baselines under our
closest possible replication of the experimental setting in [27]. In
particular, we train on threads that have non-zero activity between
weeksW − 1 andW , fix the testing time window to ∆T = 1 week,
and set K = 6. Since the exact procedures used in [27] to select the
latent dimension in the “content level model,” to select the number
of close peers in the “social peer connections”, and to aggregate
these two into a single model for matrix factorization in AMF are
not clear, we sweep over a range of values for these parameters and
choose the values that maximize the performance of AMF.

Fig. 5 compares the MAP@5 performance of our model against
that of the PPL and AMF baselines for a range of values ofW on
the comp dataset (as in previous experiments, results on the other
two datasets are similar). We see again that our model significantly
outperforms both AMF and PPL in each case. Moreover, while AMF
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Topic Half-life Top words

1 4 hours gradient, row, element, iteration, return, transpose, logistic, multiply, initial, regularization

2 4 hours layer, classification, probability, neuron, unit, hidden, digit, nn, sigmoid, weight

3 1 day interest, group, computer, Coursera, study, hello, everyone, student, learning, software

4 1 day Coursera, deadline, professor, hard, score, certificate, review, experience, forum, material

5 1 week screenshot, speed, player, subtitle, chrome, firefox, summary, reproduce, open, graph

Table 2: Estimated half-lives and highest constituent words (obtained by sorting the estimated topic-word distribution param-
eter vectors ϕk ) for selected topics in the ml dataset with at least 100 threads. Different types of topics (course content-related,
small-talk, or course logistics) exhibit different half-lives.

Figure 6: Plot of the total number of posts on each topic
week-by-week in the ml dataset. The week-to-week activity
levels vary significantly across topics.

Dataset ml algo comp

α̂ 29.0 23.3 33.6
β̂ 19.2 12.2 10.6

Table 3: Estimated levels of additional excitation brought by
new activity notifications and explicit replies.

consistently outperforms PPL in agreement with the results in [27],
the MAP@5 values of both baselines are significantly less than the
values of 0.3 reported in [27]. We also emphasize that setting the
length of the testing window to 1 week is too coarse of a timescale
for thread recommendation in the MOOC discussion forum setting,
where new discussions may emerge on a daily basis due to the
release of new learning content, homework assignments, or exams.

4.4 Model analytics
Beyond thread recommendation, we also explore a few types of
analytics that our trained model parameters can provide. For this
experiment, we set K = 10 in order to achieve finer granularity in
the topics; we found that this leads to more useful analytics.

Topic timescales and thread categories. Table 2 shows the esti-
mated half-lives γk and most representative words for five selected
topics in the ml dataset that are associated with at least 100 threads.

Fig. 6 plots the total number of posts made on these topics each
week during the course.

We observe topics with half-lives ranging from hours to weeks.
We can use these timescales to categorize threads: course content-
related topics (Topics 1 and 2) mostly have short half-lives of hours,
small-talk topics (Topics 3 and 4) stay active for longer with half-
lives of around one day, and course logistics topics (Topic 5) have
much longer half-lives of around one week. Activities in threads on
course content-related topics develop and decay rapidly, since they
are most likely spurred by specific course materials or assignments.
For example, posts on Topic 1 are about implementing gradient
descent, which is covered in the second and third weeks of the
course, and posts on Topic 2 are about neural networks, which is
covered in the fourth and fifth weeks. Small-talk discussions are
extremely common at the beginning and the end of the course,
while course logistics discussions (e.g., concerning technical issues)
are less frequent but steady in volume throughout the course.

Excitation from notifications. Table 3 shows the estimated ad-
ditional excitation induced by new activity notifications (α̂ ) and
explicit replies (β̂). In each course, we see that notifications increase
the likelihood of participation significantly; for example, in ml, a
learner’s likelihood of posting after an explicit reply is 473 times
higher than without any notification. Notice also that β̂ is lowest
while α̂ is highest in comp. This observation is consistent with the
fact that in humanities courses like comp the discussions in each
thread will tend to be longer [2], leading to more new activity noti-
fications, while in engineering courses like ml and algo we would
expect learners to more directly answer each other’s questions,
leading to more explicit replies.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a point processed-based probabilistic
model for MOOC discussion forum posts, and demonstrated its
performance in thread recommendation and analytics using real-
world datasets. Possible avenues of future work include (i) jointly
analyzing discussion forum data and time-varying learner grades
[11, 12] to better quantify the “flow of knowledge” between learners,
(ii) incorporating up-votes and down-votes on the posts into the
model, and (iii) leveraging the course syllabus to better model the
emergence of new threads.
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