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Quick overview of climate and weather models

• Weather models use current conditions 
to try to simulate what the weather will 
be like for the next 7-10 days


• Climate models estimate what average 
climate conditions will be like over the 
next several decades, centuries, or 
millennia


• Weather models are run at high 
resolutions, for local regions, for short 
periods of time.


• Climate models are run at lower 
resolution, for the entire globe, for very 
long periods of time


• Both solve fluid dynamics equations to 
model the motion of the ocean, 
atmosphere, ice, etc.


• Both have to use approximations for 
things that are too small to model (ice-
crystals, trubulence, etc.)



Quick overview of climate and weather models
• It is impossible to get an exact forecast for either problem, because geophysical fluid systems are 

chaotic. (sensitive to initial conditions) 


• Small uncertainties in our measurements of the initial conditions grow exponentially larger over 
time. That’s why we can’t predict the weather months in advance


• Can predict averaged quantities and statistics over much longer time periods. (climate)


• An ensemble of weather forecasts is used to predict which outcomes are mostly likely


• An ensemble of climate models is used to estimate the uncertainty in the projections

Lorenz Attractor: Sensitivity to initial conditions



Accelerate Weather and Climate Models 
Through Process Emulation

Improve model performance by replacing expensive 
calculations with neural-network emulations of those 

calculations

Process Emulation



• NN emulation can be used to speed up very expense calculations


• Replace the original function with a neural network that gives the same answers. 


• Its like a lookup table of pre-computed values, but generalizes to new inputs.


• Has been used to achieve speedups of 250x in climate simulations


• Increased speed enables higher resolution, more ensemble members, longer runs


• Need to quantify how well the emulation reproduces the original function


• Sometimes a second network is trained to detect anomalous output from the emulator


• Data source: RRTMG or Dynamics model output generated by colleagues at ORNL


• Inputs X: climate variables in a column (Temperature, wind speeds, moisture, pressure, etc)


• Outputs Y: Amount of heat gained/lost at at each point in the column

optimizer with Nesterov momentum with a batch size of 256. 15 [47]. At each epoch, we set aside
10% of the data for validation. The inputs were normalized by the maximum absolute value for each
vertical level and variable. Regularization was not required.

We tested six different architectures with 1, 2, 4, 8, 16, and 32 neurons in the hidden layer to
measure the error as a function of the number of neurons. The relative absolute validation error
upon convergence for each auto-encoder is reported in the table of Figure 4. Notice that reducing
the error by 10⇥ increased relative error by only 1%, and a 100⇥ reduction incurred only 5% addi-
tional error. This demonstrates the potential for using an auto-encoder to compress the information
needed to encode the CRM persistent state.

4. Task A: Accelerating Physics
540 V.M. Krasnopolsky et al. / Neural Networks 21 (2008) 535–543

Fig. 4. Scatter plot for HRs (heating rates) calculated using the SWR NN emulation NN55 (the left panel) vs. the original SWR parameterization (left and right
horizontal axes) and for HRs calculated using the SWR compound parameterization (the right panel) vs. the original SWR parameterization. Gray crosses (the left
panel) show outliers that are eliminated by the compound parameterization (the right panel).

Fig. 5. Compound parameterization design for the NNIA algorithms described
in the text. Due to the use of the EOF decomposition and composition
procedures the inverse NN (iNN) and QC block is implemented for composition
coefficients X and X 0. ATS denotes the auxiliary training set that is updated
each time when QC requires using the original parameterization and is used for
the follow-up dynamical adjustment of the NN emulation.

to map the decomposition coefficients of the input, X , onto the
decomposition coefficients of the output, Y . The inverse NN
maps vector Y onto vector X 0. The difference between X and
X 0 that supposed to be small is used as the QC criterion in this
case. Fig. 5 illustrates this CP design.

Fig. 6 shows a very strong correlation (asterisks) between
the errors (relative errors in %) of the inverse NN (iNN) and of
the NN emulation calculated vs. the original parameterization
on an independent test data set. It means that this QC
design provides an effective tool for identification of larger
NN emulation errors. There are only few errors exceeding
10%–12%. Also, the maximum errors (triangles) show a high
degree of correlation with the iNN errors, which makes this
design an effective tool for removing extreme outliers as well.

2.3. Validation of CP in NCAR CAM and WAVEWATCH III

2.3.1. CAM
The second CP design outlined above has been implemented

into NCAR CAM using the SWR NN55 emulation. A number
of 50-year model simulations have been performed with the QC
procedure using different thresholds. An appropriate threshold
of 0.5 K/day has been determined experimentally. In this
context, choosing an appropriate threshold means that the
selected threshold (which is approximately equal to µ + 2� )
does not allow for even limited accumulation of errors (see the
light gray line in Fig. 7) during the CAM simulation and, at
the same time, does not practically reduce the computational
speed-up gained by using the fast NN emulation. Thus, at
each integration time step and at each grid point of the model
with CP, the error NN, that predicts the error of the NN
emulation, was estimated, and if the predicted error did not
exceed 0.5 K/day, the NN emulation outputs were calculated
and used in the model; otherwise the original parameterization
was calculated and its outputs were used in the model.

The example shown in Fig. 7 illustrates the effectiveness of
CP in eliminating any accumulation of errors in the course of
the model integration. When the model is integrated without
QC, the SWR NN emulation NN55 produces moderately
increased errors (errors increase from ⇠0.07 K/day to
⇠0.14 K/day) during the period between 24th and 25th years of
the integration (the gray curve in Fig. 7). The error NN predicts
this increase of the errors very well (the black curve in Fig. 7).
After the QC was turned on, that is the model was integrated
with the CP, the level of errors dropped significantly in general
and, what is even more important, the bump between 24th

Figure 5: Quantifying emulation accuracy: An ideal deterministic emulation would give the same output
as the routine it replaces, forming a straight line on a plot such as this one. Here, the heating rate produced
by a NN emulation of short wave radiation in [40] is plotted as a function of the heating rate of the original
model. Emulation accuracy is compared without quality control (left) and with quality control (right). (Image
credit: [40])

The ACME atmosphere model’s physical parametrizations have grown substantially more expen-
sive in recent years, relative to the CAM-4 physics package. New MG2 microphysics and CLUBB
convection parametrizations are particularly expensive, and it is likely that additional complexity will
be required to account for unresolved physical phenomena important to ACME science targets.
Historically, atmospheric physics consumed 5-10% of the atmosphere model’s runtime, but now its
consumes 50-75%, depending upon parallel strong scaling.

Individual physics parametrizations make ideal first candidates for DNN emulation, (see Fig. 5).
Each parametrization operates on a single atmospheric column at a time, mapping the model state
(e.g., density, momenta, CO2 mixing ratio) to forcing tendencies, which are time rates of change
for the state vector due to physical processes. These emulations are verified by comparison with
the original simulations. In [39] it was demonstrated that an emulation of long-wave radiation with a
shallow neural network on CPUs was 50-80 times as fast as the original. As mentioned earlier, the
greater the cost of the routine, the greater the potential speed-up from DNN emulation.

15 https://keras.io/optimizers/nadam
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Forecast Next Year’s  
Arctic Ice Cover

Use early season conditions to determine ice coverage in September. 
Figure out whether the Arctic will be passable to ships this year.



• Each year, the Arctic sea ice peaks in March and reaches a minimum in September


• It is very hard to forecast in the spring how much ice will be left in the fall


• Sea-Ice Outlook website collects predictions in May for Sept of that same year.


• https://www.arcus.org/sipn/sea-ice-outlook


• So far the predictions have not been very skillful.


• Measure success relative to the persistence model (using last year’s September value)


• More challenging: Predict where the ice will be in the arctic


• Will the arctic be passable to ships next year?


• Data source: NCAR’s CESM large ensemble data from Earth System Model Grid 

• https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM_CAM5_BGC_LE.html 

• Inputs X: current ice concentration, ice thickness, sea-surface temperature, surface winds, precipitation


• Outputs Y: total sea-ice extent in September; sea-ice thickness field

https://www.arcus.org/sipn/sea-ice-outlook
https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM_CAM5_BGC_LE.html


Predict California’s 
 Next Drought or Flood

Use fall conditions to predict whether total winter 

rainfall will be above or below normal



• California has been experiencing large oscillations in its climate recently. 


• Most of the rainfall in CA is delivered by a few large storms in the winter


• Planners need to know wether to empty the reservoirs to avoid flooding, or to keep them 
full to avoid drought.


• Q: can you predict how much rain CA will get by looking at early season conditions?


• This problem was given as a 1 day hackathon challenge at this year’s climate informatics 
conference at NCAR


• Competition to see who can make the best predictions


• Data: NCAR Last Millennium Ensemble Climate Model data 

• https://github.com/ramp-kits/california_rainfall/blob/master/
california_rainfall_starting_kit.ipynb 


• Input X: November climate fields (T, p, u, v, moisture)


• Output Y: classification as a high rain or low rain year

https://github.com/ramp-kits/california_rainfall/blob/master/california_rainfall_starting_kit.ipynb
https://github.com/ramp-kits/california_rainfall/blob/master/california_rainfall_starting_kit.ipynb


Detect Extreme Weather 
In Satellite Imagery

Automatically process satellite images to locate extreme events such as 
hurricanes, atmospheric rivers, storm fronts, and extra-tropical cyclones



• Large amounts of data produced by satellites each year


• Most of it goes un-analyzed, since it takes many man-hours to examine it


• NN image analysis can be used to automatically detect important features/anomolies


• Easiest targets are hurricanes: classify them, detect their position and extent


• Somewhat harder: locate atmospheric rivers, extra-tropical cyclones, and storm fronts.


• Data source: satellite images from NOAA 

• Input X: radar or visible images


• Output Y: locations and number of extreme events

Infrared global satellite, oct 10 2017

 https://www.nnvl.noaa.gov/view/globaldata.html



Forecast Next Year’s ENSO Oscillation 
(El Niño / La Niña)

Determine as far in advance as possible whether next year’s oscillation will 
be in a hot or cold phase, with important impacts to global weather

https://www.kaggle.com/uciml/el-nino-dataset



• Each year, the Earth’s has a seasonal oscillation: winter, spring, summer, fall


• Second largest oscillation is ENSO: the El Niño Southern Oscillation


• Pattern of winds and sea-surface temperatures over the tropical easter Pacific


• Surface temps can be neutral, hot (El Nino), or cold (La Nina)


• Has a large impact on global weather. 


• Each phase lasts typically 6-18 months, but it is very difficult to predict.


• Try to predict the El Nino phase each year using either climate model data, or satellite 
observations


• Data source: CESM large ensemble data, or satellite images


• Input X: climate data from the previous year


• Output Y: oscillation category: hot, neutral, or cold

ENSO region

Sea surface temperatures Oct, 2017



Predict The Next Hurricane Season
Use the current climate state to predict how many 

hurricanes we will have and their intensities



• Each season weather forecasters attempt to predict the hurricane season


• How many hurricanes will there be? 


• How strong will they be?


• What tracks will the hurricanes take?


• The skill of these forecasts is very low


• Try to predict these numbers by looking at early season satellite data


• https://www.esrl.noaa.gov/psd/data/timeseries/monthly/Hurricane/


• Data source: Satellite and NOAA data


• Input X: sea-surface temperatures, El Nino phase, winds, etc


• Output Y: number of hurricanes, strength of hurricanes

https://www.esrl.noaa.gov/psd/data/timeseries/monthly/Hurricane/


• Some other ideas


• Downscaling (super-resolution): use coarse climate model data to try to 
infer higher resolutions versions. 


• method: auto-encoders, semantic hashing. Use latent vector to find 
climate states most similar to current state, to forecast (hurricanes, 
ENSO, rapid ice loss etc.)


• Other Kaggle datasets related to tornados, hailstorms, etc. Search for 
the keywords climate or weather


