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Summary

I Flavor of Statistical Physics

I Universality / Critical Exponents

I Ising Model

I Renormalization Group

I Connection to Neural Networks
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Punchline

I The Renormalization Group builds up relevant long distance
physics by course graining short distance fluctuations.

I Deep Neural Networks seem to do the same thing for tasks
like image recognition.
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Section 1

Crash Course Statistical Mechanics
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What is Statistical Mechanics?

I Study of systems with many degrees of freedom

I No longer concerned with deterministic behavior of the system
at a microscopic level

I Interested in probabilistic properties of ensemble constituents

I System best described by macroscopic properties
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Some Important Ideas

I Microstate: a state of the system where all the parameters of
the constituents are specified (position, momentum)

I Macrostate: a state of the system where the distribution of
particles over the energy levels is specified (pressure, volume,
temperature)

I The equilibrium macrostate contains the overwhelming
majority of microstates available to the system (nature
maximises entropy)

I Probability distribution of a state with energy, E, at
temperature, T, follows the Boltzmann Distribution
P(E ) ∝ exp(−E/kbT )
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Phase Transitions

0http://d32ogoqmya1dw8.cloudfront.net/images/researcheducation/equilibria/h2ophased iagram−color .v2.jpg
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Critical Points

At critical points:

I the correlation length of the system diverges

I system becomes scale invariant

I the properties of the system are characterized by critical
exponents

Many disparate physical systems have the same critical exponents,
this is known as universality.
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Definitions

I Boltzmann Constant: kb = 1.3806488× 10−23 J
K

I Boltzmann Factor: exp( −EkbT
)

I Partition Function: Z (T ) =
∑
s

exp(−Es
kbT

)

I Probability of state with energy Es : P(Es) =
exp(−Es

kbT
)

Z

I Average Energy: 〈E 〉 =

∑
s
Es exp(Es/kbT )

Z = kbT
2 ∂ logZ

∂T
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Section 2

Interlude: The Ising Model
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The Ising Model

I Simple model of a
ferromagnet

I Spins on a lattice (either up
or down)

I Nearest neighbor
interactions only

I H = −1
2J

∑
〈ij〉

si sj − B
∑
i
si

0http://www.thebrokendesk.com/post/monte-carlo-simulation-of-the-ising-
model-using-python/
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Phase Diagram

Consider B = 0

T = 0

I spins are completely aligned

I 2 degenerate ground states

I average magnetization is
unitary

T =∞

I spins are random

I a large number of
equilibrium states

I average magnetization is
zero

0http://www.kineticallyconstrained.com/20120401archive.html
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Critical Temperature

I At the critical temperature T = Tc the correlation length
diverges

I Scale invariance (video)

I Correlation is measured by the two point correlation function
Gc(i , j)

I Gc(i , j) = 〈si sj〉 − 〈si 〉 〈sj〉
I This is a measure of long range interactions that were not

part of the local Hamiltonian!
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https://www.youtube.com/watch?v=MxRddFrEnPc


Section 3

Renormalization Group
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Real Space Renormalization Group

I We want to integrate out the short distance fluctuations to
expose long distance properties.

I Accomplish this by iteratively blocking by a scale factor s

I lattice spacing: a→ a′ ≡ sa

I degrees of freedom: D → D ′ ≡ D
sd

I correlation length: ξ → ξ′ ≡ ξ
s
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Blocking

2 dimensional lattice with a scale factor of s = 3

Original Group Vote

0http://www.kineticallyconstrained.com/20120401archive.html
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Renormalization Group Flow

I Blocked lattice is Ising model with effective Hamiltonian H ′ at
temperature T ′

I For RG transformation R: H(n) = R(H(n−1))

I At fixed point H = R(H)

I Flow in phase space
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Calculating The Critical Temperature for the Ising Model

I At critical point correlation length ξ =∞ on both lattices

I At critical point both effective Hamiltonians are identical

I At critical point all observables are identical

0Monte Carlo Methods in Statistical Physics, Newman & Barkema
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Section 4

Connection To Neural Networks
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Vague Similarities

I Renormalization group transformation course grains short
distance scales

I Neural network for image recognition built up features of an
object
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Paper

An exact mapping between the Variational Renormalization Group
and Deep Learning: http://arxiv.org/pdf/1410.3831.pdf

I Derive a mapping from the Renormalization Group to
Restricted Boltzmann Machines

I Give an example for the 1-D Ising Model

I Give an example for the 2-D Ising Model

I Authors’ neural network appears to have learned how to
perform block transformations on its own
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Just Wondering Out loud

I Is there a deep connection here?

I Can this improve neural net design?

I Maybe images of cats are in a universality class?

I Can neural nets contribute to physics?

17 / 17


	Crash Course Statistical Mechanics
	Interlude: The Ising Model
	Renormalization Group
	Connection To Neural Networks

