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Flavor of Statistical Physics
Universality / Critical Exponents
Ising Model

Renormalization Group

Connection to Neural Networks
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» The Renormalization Group builds up relevant long distance
physics by course graining short distance fluctuations.

» Deep Neural Networks seem to do the same thing for tasks
like image recognition.

2/17



Section 1

Crash Course Statistical Mechanics
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Study of systems with many degrees of freedom

No longer concerned with deterministic behavior of the system
at a microscopic level

Interested in probabilistic properties of ensemble constituents

System best described by macroscopic properties
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Microstate: a state of the system where all the parameters of
the constituents are specified (position, momentum)
Macrostate: a state of the system where the distribution of
particles over the energy levels is specified (pressure, volume,
temperature)

The equilibrium macrostate contains the overwhelming
majority of microstates available to the system (nature
maximises entropy)

Probability distribution of a state with energy, E, at
temperature, T, follows the Boltzmann Distribution

P(E) o exp(—E/kpT)
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At critical points:
» the correlation length of the system diverges
> system becomes scale invariant

> the properties of the system are characterized by critical
exponents

Many disparate physical systems have the same critical exponents,
this is known as universality.
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Boltzmann Constant: k, = 1.3806488 x 10_23%

Boltzmann Factor: exp(g)—?)

Partition Function: Z(T) = Zexp(fEs)
S

kT
exp(5)
Probability of state with energy Es: P(Es) = —5&
Z Es exP(Es/ka) dlog Z
Average Energy: (E) = =————— = k, T?558%
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Section 2

Interlude: The Ising Model
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» Simple model of a
ferromagnet

» Spins on a lattice (either up

or down)

» Nearest neighbor
interactions only

» H= —%JZS;SJ— BZS,'
i i
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%http://www.thebrokendesk.com/post/monte-carlo-simulation-of-the-ising-
model-using-python/
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Phase Diagram

Consider B=10
T=0 T =00
> spins are completely aligned > spins are random
> 2 degenerate ground states > a large number of
> average magnetization is equilibrium states
unitary > average magnetization is
zero

TR,G =0 TRG = TC TRG — OQ
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At the critical temperature T = T, the correlation length
diverges

Scale invariance (video)

Correlation is measured by the two point correlation function
Ge(i,J)

Ge(i,)) = (sisj) — (si) (s;)

This is a measure of long range interactions that were not
part of the local Hamiltonian!
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https://www.youtube.com/watch?v=MxRddFrEnPc

Section 3

Renormalization Group
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We want to integrate out the short distance fluctuations to
expose long distance properties.

Accomplish this by iteratively blocking by a scale factor s

lattice spacing: a — a’ = sa

degrees of freedom: D — D' = 2
S

H . ;&
correlation length: £ — ' =3
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Blocking

2 dimensional lattice with a scale factor of s = 3

Original Group
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Blocked lattice is Ising model with effective Hamiltonian H' at
temperature T’

For RG transformation R: H(") = R(H("—1))
At fixed point H = R(H)

Flow in phase space
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Calculating The Critical Temperature for the Ising Model

» At critical point correlation length & = oo on both lattices
> At critical point both effective Hamiltonians are identical

» At critical point all observables are identical

internal energy per spin &

-16 L= L !
220 225 2.30

temperature 7'

FIGURE 8.10 The internal energy per spin u as a function of temper-
ature for a 32 x 32 Ising model (solid line) and for the same system
rescaled to 16 x 16 (dotted line). The two lines cross at 2.265.J which
gives us an estimate of the critical temperature of the model.

®Monte Carlo Methods in Statistical Physics, Newman & Barkema
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Section 4

Connection To Neural Networks
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» Renormalization group transformation course grains short
distance scales

» Neural network for image recognition built up features of an
object
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An exact mapping between the Variational Renormalization Group
and Deep Learning: http://arxiv.org/pdf/1410.3831.pdf

» Derive a mapping from the Renormalization Group to
Restricted Boltzmann Machines

> Give an example for the 1-D Ising Model
» Give an example for the 2-D Ising Model

» Authors’ neural network appears to have learned how to
perform block transformations on its own
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Is there a deep connection here?
Can this improve neural net design?
Maybe images of cats are in a universality class?

Can neural nets contribute to physics?
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