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Pruning Algorithms—A Survey

Russell Reed, Student Member, IEEE

Abstract—A rule of thumb for obtaining good generalization in
systems trained by examples is that one should use the smallest
system that will fit the data. Unfortunately, it usually is not
obvious what size is best; a system that is too small will not be
able to learn the data while one that is just big enough may learn
very slowly and be very sensitive to initial conditions and learning
parameters. This paper is a survey of neural network pruning
algorithms. The approach taken by the methods described here is
to train a network that is larger than necessary and then remove
the parts that are not needed.

I. INTRODUCTION

hen a system is trained by examples, an important

issue is how well it generalizes to patterns outside the
training set. For continuous domains, or large discrete ones,
it is usually impossible to provide examples of every possible
input. If the system simply memorizes the training patterns,
it may do quite well during training but fail miserably when
presented with similar but slightly different inputs. One would
like the system to generalize from the training samples to
the underlying function and give reasonable answers to novel
inputs.

A rule of thumb for obtaining good generalization is to use
the smallest system that will fit the data. Unfortunately, it
usually isn’t obvious what size is best so a common approach
is to train successively smaller networks until the smallest one
is found that will learn the data. This can be time consuming,
however, since a number of networks must be trained and
the smallest feasible networks may be sensitive to initial
conditions and learning parameters and be more likely to
become trapped in local minima.

The approach taken by the algorithms described in this
paper is to train a network that is larger than necessary
and then remove parts that are not needed. The large initial
size allows the network to learn reasonably quickly with less
sensitivity to initial conditions while the reduced complexity
of the trimmed system favors improved generalization. The
focus of the paper is on algorithms for feedforward networks
such as the multilayer perceptron, but the idea can also be
applied to other systems such as associative networks [33] or
tree structures [24].

II. OVERTRAINING AND GENERALIZATION

When a neural network is trained, the weights are modified
in order to decrease the error on the training patterns. If the
network is tested on a slightly different set of examples of the
same task, the error on the test set tends to decrease in step with
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Fig. 1. In the early stages of training, the error on both the training and test
sets tends to decrease with time as the network generalizes from the examples
to the underlying function. At some point, however, the error on the test set
reaches a minimum and begins to increase again as the network starts to
adapt to artifacts in the training data.

the training error as the network generalizes from the training
data to the underlying function. Fig. 1 illustrates the situation
schematically. If the training data is incomplete, however,
it may contain spurious and misleading regularities due to
sampling. At some point, usually in the later stages of learning,
the network starts to take advantage of these idiosyncrasies in
the training data and the test error starts to increase again
even though the training error continues to decrease. Chauvin
describes an example of this type of overtraining in [6].

One approach to avoid overfitting is to estimate the gen-
eralization ability during training and stop when it begins to
decrease. The simplest method is to divide the data into a
training set and a validation set, as above. The training set
is used to modify the weights, the validation set is used to
estimate the generalization ability, and training is stopped
when the error on the validation set begins to rise. This
technique, however, may not be practical when only a small
amount of data is available, since the validation data cannot be
used for training. In some recent work, based on a theoretical
study of generalization [18], [31], [25], the generalization
ability of the network is estimated based on its pre— and
posttraining performance on previously unseen training data.

Another way of avoiding overtraining is to limit the ability
of the network to take advantage of spurious correlations in
the data. Overfitting is thought to happen when the network
has more degrees of freedom (the number of weights, roughly)
than the number of the training samples—when there are not
enough examples to constrain the network. Even though it may
give exactly the right output at the training points, it may be
very inaccurate at other points. An example is a high—order
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polynomial fitted through a small number of points. As with
polynomial approximations, a rule of thumb is to use the
smallest system that will fit the data. If the system has only a
limited number of degrees of freedom, it will use them to adapt
to the largest regularities in the data and ignore the smaller
(possibly spurious) ones.

Small networks have other advantages besides better ex-
pected generalization; they are also usually faster and cheaper
to build. Their operation may also be easier to understand
since there is less opportunity for the network to spread
functions over many nodes. This may be important in critical
applications where the user needs to know how the system
works.

Formal learning theory [32], [3], [8] has been used to esti-
mate the necessary size of a system. It relates the complexity
of a learning system and the number of examples required to
learn a particular function from a given class of functions. If
the number of examples is small relative to the complexity of
the system, the generalization error is expected to be high. The
theory has been used to put bounds on the appropriate size of
networks of linear threshold elements [1], [2]. These bounds,
however, do not apply to networks with multiple continuous
outputs and they do not say how to choose a suitable network
given a particular set of examples to be learned, so choosing
an appropriate network architecture is still something of an art.

Not knowing the optimum size, one can train a number of
networks of various sizes and choose the smallest one that
will learn the data. This approach, although straightforward, is
rather inefficient since many networks may have to be trained
before an acceptable one is found. Even if the optimum size
is known, the smallest networks just complex enough to fit
the data may be sensitive to initial conditions and learning
parameters. It may be hard to tell if the network is too small
to learn the data, if it is simply learning very slowly, or if it
is stuck in a local minima due to an unfortunate set of initial
conditions.

The approach taken by the algorithms described in this
paper is to train a network that is larger than necessary and
then remove the parts that are not needed. The large initial
size allows the network to learn reasonably quickly with less
sensitivity to initial conditions and local minima while the
reduced complexity of the trimmed system favors improved
generalization.

Example: Figs. 2 and 3 illustrate the effect of pruning.
Fig. 2 shows the boundary formed by an intentionally over-
trained network with 2 inputs, two layers of 50 and 10 hidden
units, and a single ouput. There are 671 weights in the network,
but only 31 data points, so the network is very undercon-
strained. Although the data is nearly linearly separable (with
some overlap near the boundary), the network classification
boundary is very nonlinear and will probably not generalize
well on additional data from the same function. Fig. 3 shows
the same network after pruning. The size of the network is
reduced to 2/2/2/1 with 12 weights and the boundary is much
smoother. A simple algorithm was used which had no way
to remove hidden layers. A more sophisticated method could
reduce the network to a one-dimensional solution with just 2
weights.
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Fig. 2. Effect of overtraining. A 2/50/10/1 network with 671 weights trained
on 31 points is very underconstrained. Although the points are nearly linearly
separable, with some overlap, the decision surface is very nonlinear and is
unlikely to generalize well. Xand Y are the inputs to the network. + represent
positive targets and o represent negative targets. The solid line shows the
network decision surface, the 0.5 contour; the dotted lines show the 0.1 and
0.9 contours.
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Fig. 3. Effect of pruning. The network of Fig. 2 was pruned to obtain a
2/2/2/1 network with 12 weights and this response. The boundary is much
smoother and better generalization can be expected. X and Y are the inputs
to the network. 4 represent positive targets and o represent negative targets.
The solid line shows the network decision surface, the 0.5 contour; the dotted
lines show other contours on 0.1 intervals.

The example also illustrates the point that pruning might
be used as a method of feature selection. If certain inputs
are irrelevant to the problem, the algorithm will remove their
connections to the network.

III. PRUNING ALGORITHMS

A brute-force pruning method for every weight is, set the
weight to zero and evaluate the change in the error. If it
increases too much then restore the weight, otherwise remove
it. On a serial computer, each forward propagation takes O(W)
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time, where W is the number of weights, and this is repeated
for each of the weights and each of M training patterns
resulting in O( MW?) time for each pruning pass. A number
of passes are usually required. An even more conservative
method would evaluate the change in error for all weights
and patterns and then just delete the one weight with the least
effect. This would be repeated until the least change in error
reaches some threshold and could take O(MW?3) time. Since
this can be very slow for large networks, most of the methods
described below take a less direct approach.

Many of the algorithms can be put into two broad groups.
One group estimates the sensitivity of the error function to
removal of an element; the elements with the least effect can
then be removed. The other group adds terms to the objective
function that reward the network for choosing efficient solu-
tions. A term proportional to the sum of all weight magnitudes,
for example, favors solutions with small weights; those that are
nearly zero are not likely to influence the output much and so
can be eliminated. There is some overlap in these groups since
the objective function could include sensitvity terms.

In general, the sensitivity methods modify a trained network,
i.e., the network is trained, sensitivities are estimated, and then
weights or nodes are removed. The penalty-term methods,
on the other hand, modify the cost function so that back-
propagation based on the function drives unnecessary weights
to zero and, in effect, removes them during training. Even if
the weights are not actually removed, the network acts like a
smaller system.

IV. SENSITIVITY CALCULATION METHODS

A. Sensitivity Calculations 1

Mozer and Smolensky [19] describe a method which esti-
mates which units are least important and deletes them during
training.

A measure of the relevance p of a unit is the error when
the unit is removed minus the error when it is left in place.
Instead of calculating this directly for each and every unit, p
is approximated by introducing a gating term o for each unit
such that

0j = f(Z W;; 050;) ¢y

where o; is the activity of unit j, wy; is the weight from unit
i to unit j, and f is the sigmoid function. If a = 0, the unit
has no influence on the network; if & = 1, the unit behaves
normally. The importance of a unit is then approximated by
the derivative

Ao >
pi o @
which can be computed by back-propagation. Since this is
evaluated at o = 1, a is merely a notational convenience rather
than a parameter that must be implement in the net. When p;
falls below a certain threshold, the unit can be deleted.

[~ R

The usual sum of squared errors is used for training. The
error used to measure relevance is

B = Sl - o ®

rather than the sum of squared errors, because this provides
a better estimate of relevance when the error is small. An
exponentially decaying average is used to suppress fluctuations
. . AE(t)
pi(t+1) = 8p;(t) + .2 o
Segee and Carter [26] study the effect of this pruning
method on the fault tolerance of the system. Interestingly, they
found that the pruned system is not significantly more sensitive
to damage even though it has fewer parameters. When the
increase in error is plotted as a function of the magnitude of
a weighted deleted by a fault, the plots for the pruned and
unpruned networks are essentially the same. They also found
that the variance of the weights into a node is a good predictor
of the node’s relevance and that the relevance of a node is a
good predictor of the increase in rms error expected when the
node’s largest weight is deleted.

*)

B. Sensitivity Calculations I1

Karnin [13] measures the sensitivity of the error function
with respect to the removal of each connection and prunes the
weights with low sensitivity. The sensitivity of weight w;; is
given as

_Bw!)-EQ)

Sij = wf -0

®)
where w/ is the final value of the weight after training, 0 is its
value upon removal, and E(0) is the error when it is removed.

Rather than actually removing the weight and calculating
E(0) directly, they approximate S by monitoring the sum of
all the changes experienced by the weight during training. The
estimated sensitivity is

N-1
A OF
Sij =- nzzo aw”

where N is the number of training epochs and w* is the initial
weight. All of these terms are available during training so
the expression is easy to calculate and does away with the
need for a separate sensitivity-calculation phase. When Aw is
calculated by back-propagation, this becomes

A'U),‘]‘ (n) T‘:

Wi, — Wi

©®

N-1 f

Si = Y [Awi;(m))? i

n=0 n(w{j - “’f j)

@)

If momentum is used, the general expression in (6) should be
used.

After training, each weight has an estimated sensitivity and
the lowest sensitivity weights can be deleted. Of course, if all
output connections from a node are deleted, the node itself can
be removed. If all input weights to a node are deleted, it will
have a constant output and can be deleted after adjusting for
it’s effect on the bias of following nodes.
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C. Sensitivity Calculations 111

Le Cun et al. [7] measure the “saliency” of a weight by
estimating the second derivative of the error with respect to
the weight. They also reduce the network complexity by a
large factor by constraining certain weights to be equal.

When the weight vector W is perturbed, the change in the
error is approximately

6F = Z giéwi + % z huéwf

1
+3 ; hijéwiw; + O(||8W]|*)
i#7

®)

where the 6w;’s are the components of 6W, g, are the
components of the gradient of ' with respect to W, and the
h;; are elements of the Hessian matrix H

_0E
9i = D
8*E
hij = ——.
7 6‘wi8w]-

Since pruning is done on a well-trained network the first term
in (8) will be zero because E is at a minimum. When the
perturbations are small, the last term will be negligible. Since
H is a very large matrix, they make the simplifying assumption
that the off-diagonal terms are zero. This leaves
1 2

SE~ 5 Z hiibw?. )

It turns out that the second derivatives A can be calculated

by a modified back-propagation rule. The saliency of weight
wy, is then

Sk = hksz/l (10)

Pruning is done iteratively: i.e., train to a reasonable error
level, compute saliencies, delete low saliency weights, and
resume training.

V. PENALTY-TERM METHODS

The methods described so far attempt to identify nonessen-
tial elements by calculating the sensitivity of the error to their
removal. The methods below modify the error function so that
normal back-propagation effectively prunes the network by
driving weights to zero during training. The weights may be
removed when they decrease below a certain threshold; even
if they are not, the network still acts somewhat like a smaller
system.

A. Penalty Terms 1

In [4], Chauvin uses the cost function

P O P H
C=tery _(dij = 0ip)? + fren E Z e(of;) (D)
i 3 i

J
where e is a positive monotonic function. The sums are over
the set of output units O, the set of hidden units H, and the set
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of patterns P. The first term is the normal back-propagation
error term, the second term measures the average “energy”
expended by the hidden units. The parameters pie, and flen
balance the two terms. The “energy” expended by a unit—how
much its activity varies over the training patterns—is an
indication of its importance. If the unit changes a lot, it
probably encodes significant information; if it does not change
much, it probably does not carry much information.
Qualitatively different behaviors are seen depending on form
of e. Various functions are examined which have the derivative

o= de(0?) 1

80? T (1+0%)n

where n is an integer. For n = 0, e is linear and high and
low energy units receive equal penalties. For n = 1, e is
logarithmic and low energy units are penalized more than high
energy units. For n = 2, the penalty approaches an asymptote
as the energy increases so high energy units are not penalized
much more than medium energy units. Other effects of the
form of the function are discussed in [9].

A magnitude-of-weights term may also be added to the cost
function, giving

P O P H
C = fer Z Z(dij —0ip)* + Hen Z Z e(03;)
j i i ot

w
+ fw Z wfj.
ij

Since the derivative of the third term with respect to w;;
is 2p,,w;;, this effectively introduces a weight-decay term
into the back-propagation equations. Weights which are not
essential to the solution decay to zero and can be removed.

Simulations are described in [5], [6] which use the cost
function

12)

opP HP 2 w2,
0} 1,
O:p,e,, Z(tzp—o,,p)z‘*‘lienz 1+;(J12 +/“wz 1+Z02
ip ip P i “
(13)

No overtraining effect was observed despite long training times
(tter = 0.1, pren = 0.1, pyy = 0.001) and analysis showed that
the network was reduced to an optimal number of hidden units
independently of the starting size.

B. Penalty Terms Il

Weigend et al. [34]-[36] minimize the following cost func-
tion:

E(t’“ — o0p)? +,\Z MZ_

1+ w?/w?

(14)

where T is the set of training patterns and C' is the set of all
connections. The second term represents the complexity of the
network as a function of the weight magnitudes relative to the
constant w,. For |w;| > w,, the cost of a weight approaches
A. For |w;| <« w,, the cost is nearly zero.

When X is large, this is similar to weight-decay methods.
The value of A requires some tuning and depends on the
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problem. If it is too small, it won’t have any significant
effect; if it is too large, all the weights will be driven to zero.
Heuristics for modifying A dynamically are given.

C. Penalty Terms IIl

Ji et al. [12] modify the error function to minimize the
number of hidden nodes and the magnitudes of the weights.
They consider a single-hidden-layer network with one input
and one linear output node. Beginning with a network having
more hidden units than necessary, the output is computed

N
g(ziw,8) =Y vif(wiz = 6:) (15)
i=1
where u; and v; are, respectively, the input and output weights
of hidden unit i, 8; is the threshold, and f is the sigmoid
function.

The significance of a hidden unit is computed by a function

of its input and output weights

S; = o(ui)o(v;)

where o(w) = w?/(1 + w?). This is similar to terms in the
methods above.

The error is defined as the sum of &,, the normal sum of
squared errors, and &1, a term measuring node significances.

(16)

E(w, 0) =n&,(w,0) + A& (w) a7
M N -1

=n Y lg(a™w,0) =y P+ 1D D SiS;  (18)
T=1 i=1 j=1

where 7 indexes the training patterns and =™ and y™ are the
input and desired output for pattern 7, and 1 and X are learning
rate parameters. The £ (w) term makes the algorithm favor
solutions with fewer significant hidden units.

Conflict between the two error terms may cause local
minima, so it is suggested the second term be added only
after the network has learned the training set sufficiently well.
Alternatively, A can be made a function of £, such as

A= doe P (19)

When &, is large, A will be small and vice versa.
A second modification to the weight update rule explicity
favors small weights

o€ o0&
n+l _ n _ o/ n gny_ (Y1, n
— ptanh(w]) (20)
grtt = o7 ng’ii (w™,8™) — ptanh(47). (21)
The new tanh(-) term is modulated by pu:
b= ol Eaw™, 0% — £, (w17 (22)

This reduces p gradually and makes it go to zero when the
target—value component &, of the error function ceases to
change.

Once an acceptable level of performance is achieved, small
magnitude weights can be removed and training resumed. They
note that the modified error functions increase the training
time.
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D. Weight Decay

Many of the penalty-term methods include terms which
effectively introduce weight decay into the learning process,
although the weights do not always decay at a constant rate.
The third term in (12), for example, adds a —2pu,,w;; term
to the update rule for w;;. This is a simple way to obtain
some of the benefits of pruning without complicating the
learning algorithm much. A weight decay rule of this form
was proposed by Plaut et al. [22].

Ishikawa [11] proposed another simple cost function

C= Z(tk - Ok)2 + /\Z |u1,-j|.

keT ¥

(23)

The second term adds —\ sgn(w;;) to the weight update rule.
If w;; > 0, the weight is decremented by A, otherwise, if
w;; < 0, then it is incremented by A.

A drawback of the 3", w? penalty term is that it tends to
favor weight vectors with many small components over ones
with a single large component, even when this is an effective
choice. Nowlan and Hinton [20] describe a more complex
penalty term that models the probability distribution of the
weights as a mixture of Gaussians. Unlikely sets of weights un-
der this distribution have a higher cost, so the weights tend to
conform to the distribution during training. If the distribution
consists of two Gaussians, for example, one narrow and one
broad, both centered at zero with approximately equal mixing
proportions, then the narrow Gaussian exerts a strong force
attracting the small weights to zero. Larger weights, however,
are less influenced by the narrow Gaussian and so only feel
the weaker force of the wider Gaussian. In practice, more than
two Gaussians are used and their centers and spreads are also
adapted to minimize the cost function [20].

VI. OTHER METHODS

A. Interactive Pruning

Sietsma and Dow [27], [28] describe an interactive method
in which the designer inspects a trained network and decides
which nodes to remove. Several heuristics are used to identify
units which don’t contribute to the solution. A network of
linear threshold elements is considered.

e If a unit has a constant output over all the training
patterns, then it is not participating in the solution and
can be removed. It may contribute to the bias of units in
following layers, so their thresholds should be adjusted.

e If a number of units have highly correlated responses
(e.g., identical or opposite) over all patterns, then they
are redundant and can be combined into a single unit.
All their output weights should be added together so the
combined unit has the same effect on following units.

Units are unlikely to be exactly correlated (or have exactly
constant output if sigmoid nodes are used), so application of
the heuristics calls for some judgement.

A second stage of pruning removes nodes that are linearly
independent from other nodes in the same layer, but which
aren’t strictly necessary. They describe an example with four
training patterns and a layer of three binary units. Since two
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units are sufficient to encode the four patterns, one of the
three can be eliminated. It is possible for this to introduce
linear inseparability (by requiring the following layer to do an
XOR of the two units, for example), so a provision for adding
hidden layers is included. This tends to convert short, wide
networks to longer, narrower ones.

In a demonstration problem, they were able to find relatively
small networks that solved the problem and generalized well.
For comparison, they attempted training random networks of
the same size and found that they were unable to learn the
problem reliably.

B. Local Bottlenecks

Kruschke [15] describes a method in which the hidden units
“compete” to survive. The degree to which a unit participates
in the function computed by the network is measured by the
magnitude of its weight vector. This is treated as a separate
parameter, the gain, and the weight vector is normalized to
unit length. A unit with zero gain has a constant output; it
contributes only a bias term to following units and does not
back-propagate any error to preceeding layers.

Units are redundant when their weight vectors are nearly
parallel or antiparallel and they compete with others that have
similar directions. The gains g are adjusted according to

Agi = —v z:cos2 L(w],w;) - g; (24)
J#i

=~y ) (0}, 5)° - g5, (25)
i

where v is a small positive constant, W is the unit vector
in the direction w?, (-,-) denotes the inner product, and the
superscript s indexes the pattern presentations. If node ¢ has
weights parallel to those of node j, then the gain of each will
decrease in proportion to the gain of the other and the one
with the smaller gain will be driven to zero faster. Since the
gains are always positive, this rule can only decrease them. (If
(25) results in negative gains, they are set to 0.) Once a gain
becomes zero, it remains zero so the unit can be removed.

The gain competition is interleaved with back—propagation.
Since back-propagation modifies the weights, the gains are
updated and the weights renormalized after each back-
propagation cycle.

This method effectively prunes nodes by driving their gains
to zero. The parameter - sets the relative importance of the
gain competition and back-propagation. As in other methods,
some tuning may be needed since, if -y is large, competition
will dominate error reduction and too many nodes may be
removed.

C. Distributed Bottlenecks

Kruschke proposes another solution that puts constraints on
the weights rather than pruning them [15], [16]. For example,
a network can start with a large hidden layer with random
weights and then reduce the dimensionality of the weight
space during training by introducing constraints. The number
of nodes and weights remains the same, but the dimension
of the space spanned by the weight vectors is reduced so
the network behaves somewhat like a smaller network. The
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dimensionality reduction has an effect similar to pruning, but
preserves redundancy and fault tolerance.

The method operates by making vectors that are farther
apart than average even farther apart, and making vectors
that are closer together than average even closer together. Let
di; = ||lwi — wj]| be the distance between vectors w; and w;.
The process starts with H vectors with a mean of zero and an
initial mean separation of D. At each step, the mean distance is

- 2
d= =) Z dij. (26)
1<7
This calculation is nonlocal. The same paper describes a local
method which works for the encoder problem, but which may
not work for other problems.
After each back-propagation cycle, the weights are modified
by

Aw; =8 (dij — d)(wi — w;)-
i

@7

If di; > d, then w; is shifted away from w;. If di; < d, then
w; is shifted toward w;. The vectors are then recentered and
renormalized so that their mean is again zero and their mean
separation is D, the initial mean distance. This is equivalent
to doing gradient descent of the error function on the given
constraint surface.

In (27), B is a small positive constant that controls the
relative importance of back-propagation and dimensional com-
pression. If 3 is too large, all the vectors collapse into two
antiparallel bundles—a single dimension—and effectively act
like one node.

D. Pruning by the Genetic Algorithm

In a different approach, Whitley and Bogart [37] describe
the use of the genetic algorithm to prune a trained network.
Each individual in the population represents a pruned version
of the original network. A binary representation can be used,
with bits set to 0 or 1 depending if a weight in the reference
network is pruned or not. After mating, the offspring (proba-
bly) represent differently pruned networks. They are retrained
for a small number of cycles to allow them to fix any damage
that may have occurred. As a reward for using fewer weights,
heavily pruned networks are given more training cycles than
lightly pruned networks. The networks are then evaluated on
the error achieved after training. This favors small networks,
but not if they reduce size at the cost of increasing error.

As described, each pruned net begins retraining with weights
from the original unpruned network. They suggest that it might
be better to inherit the weights from the parents so that more
drastically pruned networks don’t have to adapt to such a large
step in a single generation.

They also allow direct connections from input to out-
put—something perfectly valid for back-propagation, but often
not allowed by experimenters—and suggest that this speeds up
learning and makes it less likely to be trapped in local minima.
This also allows hidden layers to be removed if they are not
needed and could be applied to most of the other methods
described. The simple example in Section II, for instance,
would benefit from this.
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VII. DISCUSSION

Pruning algorithms have been proposed as a way of taking
advantage of the learning advantages of larger systems while
avoiding their overfitting problems. Many of the methods
either calculate the sensitivity of the error to the removal
of elements, or add terms to the error function which favor
smaller networks.

One disadvantage of most of the sensitivity methods is
that they do not detect correlated elements. The sensitivities
are estimated under the assumption that w;; is the only
weight to be deleted (or node 7 is the only node to be
deleted). After the first element is removed, the remaining
sensitivities are not necessarily valid for the smaller network.
An extreme example is two nodes which cancel each other
out at the output. As a pair, they have no effect on the output,
but individually each has a large effect so neither will be
removed. Partially correlated nodes are a less extreme, but
more common, example.

In the original problem, there is the question of when to
stop training. With the pruning algorithms, there is the similar
question of when to stop pruning. If separate training and
validation sets are available, the choice may be clear; if not, it
may be somewhat arbitrary. The sensitivity methods delete the
elements with the smallest sensitivities first and there may be
a natural stopping point where the sensitivity jumps suddenly.
The penalty-term methods control the amount of pruning by
balancing the scaling factors of the error terms. This choice
may be tricky, however, if it must be made before training
begins, so some of the methods control these parameters
dynamically. A compensating advantage of the penalty-term
methods is that training and pruning are effectively done in
parallel so the network can adapt to minimize errors introduced
by pruning.
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