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Background noise is the irregular variation across repeated measurements of human performance.
Background noise remains after task and treatment effects are minimized. Background noise refers to
intrinsic sources of variability, the intrinsic dynamics of mind and body, and the internal workings of a
living being. Two experiments demonstrate 1/f scaling (pink noise) in simple reaction times and speeded
word naming times, which round out a catalog of laboratory task demonstrations that background noise
is pink noise. Ubiquitous pink noise suggests processes of mind and body that change each other’s
dynamics. Such interaction-dominant dynamics are found in systems that self-organize their behavior.
Self-organization provides an unconventional perspective on cognition, but this perspective closely
parallels a contemporary interdisciplinary view of living systems.

Psychological science usually ignores the background noise in
behavioral data. Background noise is what is left over when task
demands, experimental manipulations, and other external sources
of variability have been eliminated or minimized. What we call
background noise is treated as random variability in most research,
the nuisance factor in factorial experiments. We argue, to the
contrary, that background noise reveals the kind of dynamics that
coordinate the mind and the body. Background noise contains the
dynamical signature of purposive behavior.

Two new experiments examined background noise in the trial-
by-trial variation of response times. The pattern of background

noise motivates a plausible story about purposeful behavior and
intentional contents. These ideas come out of a cross-disciplinary
perspective that departs fundamentally from the dominant view in
psychology. We introduce this perspective to make our case,
which prompts this friendly notice: The present introduction is
much longer than those for most articles in this journal and goes
substantially beyond the empirical issue of noise in response-time
data. To better communicate our ideas, we describe physical
metaphors for self-control and choice and explain the scaling
relations found in background noise and what they could mean.
The organizing theme is how scaling relations are anticipated from
conjecture about purposive behavior and intentional contents.

Intentional Contents

Occasionally, someone participates in our experiments with no
intention to cooperate. Maybe they resent the required participa-
tion for course credit, or maybe they are put off by the experi-
menter. In any case, usually, we judge their intention from a
pattern of responding. Wayward intentions may be inferred from
nonsense patterns, as though the person pressed keys or filled out
forms oblivious to instructions. Admittedly, it would be tricky to
sort out who is willfully derelict and who is merely incompetent,
but that is beside the point. For now, it is enough that uncooper-
ative behavior happens. That obvious fact makes salient the inten-
tions of cooperative participants.

Cooperative participation in a laboratory task requires a coop-
erative intention to perform the task. Cooperative participants take
on a directed set of laboratory goals as their own, and these
intentional contents must figure in the facts of observed perfor-
mances (Vollmer, 2001). Perhaps, then, explanations of laboratory
performances should begin with a story of how purposeful behav-
ior can happen. Such explanations are partly anticipated by theory
in applied psychology. To properly design airplanes or an airplane
factory, one first considers the purpose of the larger system along
with the embedded actors’ goals—one first specifies a hierarchy of
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intentional contents (Rasmussen, Pejtersen, & Goodstein, 1994;
Vicente, 1999). However, such explanations are not common in
the dominant streams of basic research.

The dominant research program views intentional contents as
representations. Representations function as internal causes of
behavior (Markman & Dietrich, 2000; Wegner & Wheatley, 1999).
Speaking metaphorically, behavior is the end result of chains of
billiard-ball-type interactions among representations. In this way
of thinking, Newtonian efficient cause serves as a theory-
constitutive metaphor that largely defines the content and limits of
discussion. Intentions are representations that set in motion a
causal chain. To have the intention to act is to cause the act to
happen.

The metaphor of efficient cause dictates the designs of experi-
ments and the conventional use of statistics, as well as the range of
theoretical possibilities. The metaphor strictly limits discoveries to
cause-and-effect relations (Van Orden & Holden, 2002). However,
more inclusive metaphors are needed to understand purposive
behavior. Otherwise, intentional acts remain forever groundless,
open ended, mysterious, or magical. How do intentions come into
existence? What is the cause of the cause of purposive behavior?
Purposive behavior requires metaphors closer to the complex
behavior of living systems, systems with a capacity for self-control
and choice.

Self-Control

Simple physical systems exhibit self-control as spontaneous
changes in the pattern of their behavior. The systems organize
themselves by themselves. Self-organizing phenomena cannot be
reduced to a lower level of cause and effect. Fluid convection
illustrates these facts. Convection depends on how interactions
among molecules are situated within a larger system, not simply on
the causal properties of molecules. This example concerns nonliv-
ing systems, but it introduces a different way of thinking about
living systems (cf. Depew & Weber, 1995; Kelso, 1995; Kugler &
Turvey, 1987; Shaw 2001; Ulanowicz, 1997).

Picture yourself holding a large, deep, flat-bottom pan. Add
some cooking oil to form a shallow pool, enough to submerge a
french fry, and set the pan on a cooker. As the pan heats up, it also
heats the oil. In the beginning, haphazard collisions among mol-
ecules transport heat from the pan up through the oil. Later,
currents of hot oil that move oil molecules in a rotation from
bottom to top to bottom emerge. These convection rolls transport
heat more efficiently than diffusion. Spontaneous convection di-
vides the oil into a honeycomb of cells. Convection rolls circulate
within the cells.

One control parameter summarizes the status of the heated oil.
Control parameters are second cousins to the independent vari-
ables of conventional analyses. They are distant cousins because
they have different causal entailments. An independent variable is
usually investigated to decide whether it picks out a causal factor.
In contrast, a control parameter refers to an arrangement of causal
factors that yield emergent properties. The pattern of fluid motion
in convection is an emergent property. The control parameter of
convection combines the amount of heat entering and leaving the
oil, friction between the oil molecules, and so on in a ratio. The
most prominent factor is the difference between the amount of heat
entering the oil versus the amount that leaves. Just before convec-
tion rolls appear, the parameter sits near a critical value. At the

critical value, the amount of heat leaving the oil is critically less
than the amount coming in. This critical value marks the boundary
between diffusion and convection, the critical state. To one or the
other side of the critical value, the model system exhibits one or
the other kind of behavior—haphazard collisions versus convec-
tion rolls.

Convection rolls cohere out of interdependent movements of
molecules—molecules change each other’s dynamics as they in-
teract. Near the critical state, interactions among molecules coor-
dinate the behavior of the selfsame molecules and greatly reduce
their freedom of motion. Once convection rolls emerge, they
subsequently control the flow of molecules and thereby become
self-perpetuating. Movements of molecules both cause and are
caused by convection rolls, an instance of circular causality. Most
important, the system organizes itself by itself without an external
coordinator. It is in this sense that self-organizing systems exhibit
self-control, and self-control is one aspect of purposive behavior
that relates to intentional contents.

Choice

A metaphor for self-control takes us part of the way, but we also
require a metaphor for choice. The transition from random colli-
sions to the rotating currents of convection includes an outcome
akin to choice. The system chooses its unique pattern of rotations.
In the critical state, each molecule could move either clockwise or
counterclockwise; both rotations are possible for every molecule in
the system. Competing rotations exist as balanced propensities at
the same time everywhere in the system. Across the critical state,
molecules move in the same rotation inside the same convection
roll.

A critical state is a global state that is acutely context sensitive.
Criticality refers to a precise balance among constraints; that is
what it means to be in a critical state. A difference in circum-
stances that favors one option over another, no matter how slight,
breaks the symmetry of equally poised options. A small flux in
heat can change the entire pattern of interactions among molecules
and choose a specific pattern of rotation. Choice of rotation hap-
pens simultaneously everywhere in the system. If one convection
roll turns clockwise, then adjacent rolls turn counterclockwise.

Near the critical state, nearest neighbor interactions become
correlated. This coordinates the choice across the entire system.
The sudden collapse of the critical state (multiple potential rota-
tions) chooses the molecule trajectories that are observed. The
collapse of the critical state captures something essential to choice
in human behavior. The details of changing circumstances choose
movements that are expressed, and local movements conform to a
larger global configuration of movements, a product of global
emergence.

In convection, changing circumstances choose a global pattern
of movement. Each molecule’s trajectory is uniquely situated in
these circumstances of the larger system (Prigogine, 1997). Every
movement of the human body is also uniquely situated. Even
scratching an itch or swinging a hammer follows a unique trajec-
tory in each repetition (Berkinblit, Feldman, & Fukson, 1986;
Bernstein, 1967). The following example of catching soap taken
from Gibbs and Van Orden (in press) illustrates human movements
uniquely situated in circumstances that define their intentional
content.
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Picture yourself in the shower grasping a bar of soap. Somehow,
your hold on the slick bar propels the bar up and out of your hand.
You react immediately, and, although you may bobble a bit, quick
inexpert juggling brings the soap under control. You catch the soap
before it gets away. The situated constraints that bring into exis-
tence the catching of the soap can be described on many different
timescales. These include relatively slow timescales of cultural
change in hygiene. However, they also include intermediate time-
scales of goal-like intentions to shower, to wash your arm, to
control the soap, and so on, as well as the multiple fast timescales
of the limb movements that catch the soap—a hierarchy of con-
straints on a hierarchy of timescales.

Notice that an explicit goal to retrieve the soap could not have
existed before your juggling began. The intentional contents of
grasping the soap entail controlling the soap, but the precise
movements that brought the soap back under your control could
not have been anticipated before they were enacted. Juggling
emerges because the situation in which the soap is to be controlled
changes. There is a sense in which unique details of a rapidly
changing soap-bobbling situation create the intention to recover
the soap as they choose unique juggling movements to recover the
soap. Special circumstances choose unique movements, and all
circumstances are special.

Juarrero’s Conjecture

Convection supplies physical metaphors for self-control and
choice, salient aspects of purposive behavior. Yet the metaphors
come from simple physical systems in which a single process is at
work and laboratory models that must be carefully tuned to yield
criticality. In living systems, criticality itself emerges spontane-
ously, self-organized criticality (Bak, 1996). Living systems self-
organize to stay near critical states. The benefits may be obvious.
Criticality allows an attractive mix of creativity and constraint. It
creates new options for behavior and allows the choice of behavior
to fit the circumstances of behavior. Why nature is creative in this
way remains a mystery, but the mystery is bounded on all sides by
natural phenomena. Natural purposive behavior originates in self-
organized criticality—call this claim Juarrero’s conjecture. Our
experiments are tests of Juarrero’s conjecture.

Juarrero (1999) proposed that intentional contents poise human
beings near critical states (see also Riley & Turvey, 2001; Shaw &
Turvey, 1999; Van Orden & Holden, 2002). Intentional contents
themselves are emergent dynamical structures. Intentional con-
tents, as emergent structures, are perpetuated in time by circular
causality. They are sources of constraints that persist over time.
Constraints limit the degrees of freedom for interactions among the
processes of the human body (Amazeen, Amazeen, & Beek, 2001;
Amazeen, Amazeen, & Turvey, 1998). Intentional contents persist
over time whereas bodily movements are changing on faster time-
scales. Slowly or infrequently changing constraints limit the pos-
sibilities for movement on faster timescales.

Like critical states, intentional contents balance the constraints
that would yield one or another course of action. As in the collapse
of critical states, intentional contents enfold changes in circum-
stance to choose among potential courses of action. Changes in
oncoming immediate circumstances break the symmetry of poised
options. Changing circumstances collapse the hierarchy of inten-
tional contents (propensities for action) into purposive behavior
(enacted movement). Notably, subtle changes in circumstance may

select subtly, or largely, or entirely different courses of action. In
turn, action has consequences for perception and the configuration
of intentional contents.

Action changes the circumstances of the mind and body, which
change the opportunities for perception. Changing propensities for
action seamlessly intertwine with changing opportunities for per-
ception, like the intertwined side of a Möbius band (Turvey, 2002).
Changing propensities for action introduce new opportunities for
perception. New opportunities for perception entail new propen-
sities for action and reconfigure intentional contents. This interplay
among self-organizing intentional contents and perpetually chang-
ing circumstances uniquely situates ordinary purposive behavior.
Remember, every swing of a hammer follows a unique trajectory.

Juarrero (1999) did not present evidence in favor of self-
organized criticality—thus, the term Juarrero’s conjecture. She
constructed a philosophical argument against intentional contents
as representations and representations as efficient causes. Her
argument draws its strength from the indeterminacies of represen-
tation that she demonstrated (Adams, 2001). However self-
organizing systems, including living systems, appear to have uni-
versal properties. Self-organizing systems can be very different in
their structural details but behave the same way near critical points
(Nicolis, 1989). Universal properties present opportunities to test
Juarrero’s conjecture.

Criticality predicts scaling relations, which likely refer to a
universal property (Bak, 1996; Bar-Yam, 1997; Jensen, 1998).
Measured behavior of model systems from physics and other
disciplines exhibits particular scaling relations near critical states.
The same scaling relations appear in measurements of human
performance. Scaling relations supply evidence that intentional
contents poise participants’ bodies near critical states, evidence for
Juarrero’s conjecture. Our experiments tested for scaling relations,
and it is important for our argument to supply a clear sense of what
scaling relations are. We describe an often-used example in the
next section. The example concerns measurement of length, but it
illustrates a general point. It explains why some ordinary measure-
ments of behavior are not reliable. After that, we discuss response
times and then complete our introduction of technical terms.

Scaling Relations and Fractal Patterns

Colorado has a nice rectangular shape. Were one to measure the
length of its border, the outcome would be essentially the same
whether the measurement was taken with a kilometer scale, a
meter scale, or a centimeter scale. Not so for the irregular coastal
border of Britain. Measured length increases proportionally as the
measuring stick is shortened. Length grows because irregular
contours of bays and peninsulas not captured by a longer scale add
length on shorter measurement scales. Bays and peninsulas of the
coastline are composed of small and smaller subbays and subpen-
insulas. Shorter scales resolve smaller features, which add to the
overall length. There is no reliable fixed length for the coastline of
Britain that is independent of the measuring device (Mandelbrot,
1982, pp. 25–33).

Large features of the irregular coastline nest within themselves
smaller features that nest within themselves yet smaller features
and so on—a fractal pattern. Fractal patterns are self-similar. They
repeat similar features across nested scales of space or time.
Fractal patterns are identified by scaling relations. For the coastline
of Britain, the scaling relation is between the measured lengths and
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the scales of measurement. It is a proportional relation between
measurement scale and the results of the measurement process.
The proportional relation characterizes how larger features of the
coastline are related to smaller features.

In mathematical fractals, the same patterns can appear across an
infinite range of scales, a precise form of self-similarity. Yet
natural fractals are not pristine mathematical objects. Natural frac-
tals display a rougher, more irregular form of self-similarity,
statistical self-similarity, across a limited range of scales. We
claim that the variation in response times forms a natural fractal in
which larger scale deviations nest within themselves smaller scale
deviations. Fractal structure would imply that no reliable estimate
of variability exists, in the same way that the length of a coastline
has no single value (see also Bassingthwaighte, Liebovitch, &
West, 1994, pp. 33–41). The experiments described below tested
for scaling relations (statistical self-similarity, fractal variation) in
the measured variance of response times.

Whether variations in behavioral data form natural fractals is
profoundly important. The crux of conventional statistics is
whether a parameter such as variance can be reliably estimated.
Experimenters trust that their samples of data have reliable means
and characteristic amounts of variance. Yet suppose that the range
of variability grows as more data are collected (cf. Mandelbrot &
Wallis, 1969). Larger samples of the same data yield larger vari-
ance estimates up to the limits of the system. This possibility runs
against the grain of all conventional analyses.

Conventional descriptive statistics are based on the assumption
that a stable quantity of variability exists, a characteristic amount
that is not overly sensitive to sample size. Conventional inferential
statistics extend this assumption further. Inferential statistics are
based on the assumption of homogeneous variance, namely, that
all treatment conditions have equal amounts of variance. However,
for many natural systems, these assumptions do not apply. Among
these are physiological processes of living beings (Bassing-
thwaighte et al., 1994). When researchers take measurements of a
person’s behavior, they should scrutinize how variability stacks up
against sample size, just in case.

Variation in Response Times

The mathematical ideas of scaling relations and fractals can
shed new light on response-time behavior, a classic laboratory
performance. A response time is the elapsed time in a laboratory
trial between a signal to respond and an action that stops the clock.
Response time is among the oldest and most widely used mea-
surements of human performance, and a vast response-time liter-
ature exists. So, what exactly remains to be revealed? We claim
that conventional studies have made the wrong assumptions about
background noise in response times. Sobering discoveries in non-
linear science have demonstrated that scientists must test assump-
tions about background noise (Riley & Turvey, 2002). We next
discuss conventional response-time models and how their assump-
tions are affected by scaling relations and fractal variation.

The response-time literature has almost always concerned at-
tempts to reduce response times to elementary causal components
of mind or brain (Luce, 1986). Presently, diffusion models show
the most promise as candidate components. Diffusion models
simulate the time to a decision in situations where there are two
alternatives to decide between. For example, a participant might
quickly discriminate red color patches from green color patches, or

bright lights from dim lights, or many donuts from few donuts. In
a diffusion model, information that favors one choice or the other
accumulates over time. Eventually, the accumulated evidence
clearly favors one of the choices, at which time the model responds
and its response time is noted. Many simulated decision times can
be collected to compare with participants’ decision times. Diffu-
sion models correctly mimic participants’ average decision times
and also mimic the shapes of response-time distributions for both
correct and incorrect decision times (Ratcliff, Van Zandt, & Mc-
Koon, 1999).

The diffusion framework makes two specific theoretical claims:
First, information about which choice to make accrues over time.
Second, choices themselves can be portrayed as opposite ends of
a one-dimensional continuum, as decision poles. Other aspects of
the decision process remain to be specified. A diffusion model is
one part of a largely unspecified system. Consider that each
instantiation of diffusion uses different task-specific information
about color, numerosity, brightness, and so on. In fact, a diffusion
model could work with very different kinds of information. Infor-
mation could refer to the qualities or identities of stimuli or could
refer directly to abstract decision poles or concrete response op-
tions. How responses are made is also left open. Presumably, a
disembodied diffusion process would be the same whether a per-
son said yes or no, threw a red lever or a green lever, or pedaled
a bicycle faster to signal more donuts or slower to signal fewer
donuts. So, how are diffusion models situated with respect to the
larger reality of mind, body, and world?

To situate a model, a scientist must connect the model with other
mental components, connect the mind with the brain and body, and
connect the body to the world. How things are to be connected,
how components are to interact, is stipulated in shared fundamen-
tal assumptions. Conventional assumptions derive from the New-
tonian metaphor; all interactions take the form of cause and effect.
The metaphor requires the exclusive pursuit of effects to individ-
uate component causes. To use response time in this pursuit, it
would be essential that isolable component effects occur within the
time between a stimulus and response (A. Newell, 1990). Each
component may work at its own rate, but operations must be
initiated by the stimulus and must finish together with the
response.

Background noise provides a test of whether the conventional
enterprise is justified, whether it is possible to work piecemeal,
effect by effect, component by component. Scaling relations and
fractal variation call into question the conventional metaphor.
Scaling relations imply processes that extend beyond the time
boundaries of laboratory trials. These processes causally interpen-
etrate processes inside a trial. Interdependent processes live in a
tangle of causation across the body’s hierarchy of timescales. If
variability in response times scales with sample size, then that fact
would speak to fundamental assumptions. It would not be ap-
peased by ad hoc changes to conventional theories. It would
motivate changing the assumptions at the heart of behavioral
science (Liebovitch, 1998; Van Orden & Holden, 2002; West &
Deering, 1995).

Next, we continue to explain the technical terms fractal dimen-
sion, uncorrelated noise, and correlated noise and then contrast
component-dominant dynamics with interaction-dominant dynam-
ics to spell out Juarrero’s conjecture. We hope that the immediate
implications of these jargon terms are made clear by the end of this
introduction. The following statements sum up what remains to be
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explained: Self-organized criticality requires interaction-dominant
dynamics; interaction-dominant dynamics produce statistically
self-similar, positively correlated, background noise; and the frac-
tal dimension of noise indicates whether it is self-similar.

Fractal Dimension

Fractal dimension can be used to evaluate variation across
response-time trials. To get an intuition for fractal dimension,
imagine a graph of response times. The graph’s x-axis is the trial
order in which response times were collected (Trial 1, Trial 2,
Trial 3, and so on). The y-axis is response time itself. The graph
appears as points connected by a jagged line, a trial series. Figure
1A presents a normalized trial series of simple reaction times. If
this line were straight, it would have a Euclidean dimension of one.
However, the jags away from the one-dimensional line begin to
occupy area on a two-dimensional plane. In this sense, variation
across response-time trials partly occupies or leaks into the second
Euclidean dimension. The graph has a fractal dimension some-
where between an ideal one-dimensional line and an ideal two-
dimensional plane.

Homogeneous unsystematic variability has a fractal dimension
of 1.5. This is the fractal dimension of white noise. White noise is
illustrated in Figure 1D. The data in Figure 1D are a randomly
ordered version of the trial series in Figure 1A. The fractal dimen-
sion 1.5 indicates the extent to which white noise occupies two-
dimensional space. White noise is uncorrelated noise. Uncorre-
lated noise implies that each trial measurement is independent of
every other trial measurement. The conventional use of descriptive
and inferential statistics assumes that background noise is uncor-
related noise. This assumption shapes much of what researchers
think about laboratory experiments.

Uncorrelated Noise

One pearl of laboratory wisdom concerns the power of an
inferential statistic to detect an effect. A marginal outcome of an
experiment may become statistically reliable if the size of the data
sample is increased. This idea is encoded in Equation 1.

Equation 1 portrays the familiar scaling relation between the
variance statistic SE and the ratio of a population SD and sample
size N. This is the equation for the standard error of the mean:

SE � SDPop/�N. (1)

When N gets very large, SE gets close to zero. Thus, SE scales
as a function of sample size N. A standardized SDPop equals one,
which yields

SE � 1/�N. (2)

Taking the logarithm of both sides of Equation 2 yields Equa-
tion 3:

log�SE) � �1⁄2 � log(N�. (3)

Equation 3 suggests what a plot of this scaling relation looks
like on log/log coordinates: a straight line with a slope of �1⁄2.
Figure 2 portrays this line. Fractal dimension is calculated by
subtracting its negative slope (�1⁄2) from 1, the Euclidean dimen-
sion of a line, which equals 11⁄2 or 1.5, the fractal dimension of
white noise.

Correlated Noise

Self-organized criticality produces positively correlated noise as
background noise. Self-organization coordinates the processes of
the body across their hierarchy of timescales. Correlated activity
across timescales produces correlated variation across time. Vari-
ation in activity takes the shape of a nested structure of positive
correlations. Consequently, variation in response times appears as
a natural fractal in which larger scale deviations nest within
themselves smaller scale deviations.

Positively correlated noise appears less jagged than white noise
(compare Figure 1A with Figure 1D). Correlated noise leaks less
into the second Euclidean dimension than white noise. A disper-
sion analysis estimates fractal dimension and tests for correlated
noise. A dispersion analysis repeatedly resamples the same data
using different sample Ns (bin sizes). A variance or dispersion
statistic is calculated for each bin size. The resulting pairs of
dispersion statistics and bin sizes (sample Ns) can be graphed as a
line on log/log coordinates. The slope of the line is used to
calculate fractal dimension. The slope of the line for correlated
noise is reliably less steep than �1⁄2, the slope of uncorrelated
noise in Figure 2. Consequently, when one subtracts the less steep
slope from 1, one gets a fractal dimension less than 1.5.

Interdependence among components explains correlated noise. Re-
call how oil molecules change each other’s dynamics in convection
and nearest neighbor interactions correlate changes across the entire
collection of molecules. Likewise, changes in one of the body’s
processes are tied to changes in other processes. Loosely speaking,
whatever happens to one component happens to all components. All
that is left for our introduction is an explicit contrast between
component-dominant and interaction-dominant dynamics.

Component-Dominant Dynamics

By convention, cognitive acts are believed to originate in
loosely coupled dynamics that can be treated as component-
dominant dynamics (Simon, 1973). This hypothesis about system
dynamics is the core assumption of modular approaches to cogni-
tion. As the term component-dominant suggests, the dynamics
inside of a component dominate interactions with other compo-
nents. Component-dominant dynamics protect the integrity of
component effects. They encapsulate component effects such that
they can be recovered in the measured behavior of the whole.

To recover the effect of one component, say a memory compo-
nent, an analysis must distinguish the memory effect from effects
of other components plus internal noise—all of which accumulate
in the value of a measurement. If the memory component is
encapsulated, one may possibly find its effect all the way out in a
measurement of human behavior. If so, then the memory effect can
be attributed (reduced) to causal properties of the encapsulated
memory component. In this way, measurements taken of human
behavior could refer directly to causal properties of specialized
components of mind or brain.

If the mind and brain are collections of specialized devices,
measured behavior can be partitioned among these devices. This
kind of enterprise, a program of morphological reduction, reduces
behavior to combinations of devices, something like a table for
addition (Pachella, 1974; Sternberg, 1969). If Component Effect
A � Component Effect B � Behavior C, then Behavior C reduces
to Component Causes A and B. The empirical cornerstones of
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black-box reductions are always additive effects consistent with
the superposition principle (Lewontin, 1974), but additivity does
not adequately describe cognitive performances.

Either additivity so far is too shy to show itself and remains to
be teased out of data or it is simply the wrong assumption. We
claim it is the wrong assumption. There are no encapsulated
components. Ordinary things that people do—perceiving, remem-
bering, discussing, imagining, touching, walking—have been mis-
construed as components of which they are composed (Van Orden

& Kloos, 2003). History finds psychology courting once again the
psychologists’ fallacy—the products of psychological processes
have been mistaken for the processes themselves (Fitch & Turvey,
1978; James, 1890/1950; Turvey et al., 1980).

Interaction-Dominant Dynamics

Self-organization coordinates the body’s perpetually changing
processes. As the term interaction-dominant implies, neighboring

Figure 1 (opposite). Figures A–C (A: Simple Reaction-Time Trial Series; B: Simple Reaction-Time Power
Spectrum; C: Power Spectrum on Log-Log Scales) step through a spectral analysis of an actual participant’s trial
series of simple reaction times. Figure A portrays the trial series after it has been trimmed, detrended, and
normalized. Figure B displays an intermediate step in which the results of the spectral decomposition are plotted
on linear axes. Frequency (x) is plotted against power (y), or amplitude squared, on linear scales. Frequency and
amplitude range from low (near the origin) to high (away from the origin). Low frequency is associated with high
amplitude and high frequency with low amplitude. Figure C displays the same spectral results after the frequency
(x) and power (y) axes have been transformed to logarithm Base-10 scales. Again, lower frequencies have higher
amplitude in the form of a scaling relation between frequency and amplitude. Figures D–F (D: Surrogate Trial
Series; E: Surrogate Power Spectrum; F: Power Spectrum on Log-Log Scales) step through another spectral
analysis, this time using surrogate data (a random arrangement of the data series in Figure A). The power
spectrum portrayed in Figure F is the power spectrum of white noise—different frequencies all have roughly
equivalent power.

Figure 2. Standardized dispersion as a function of sample size. The figure portrays the results of a dispersion
analysis on the trial series of simple reactions depicted in Figure 1A. The x-axis indicates the Base-10 logarithm
of the number of data points in each adjacent sample (bin). The y-axis indicates the logarithm of the standardized
dispersion at each bin size. The solid line is a least squares regression line for the six points represented by solid
dots. The slope of the line is �.29. The three unfilled dots were excluded due to standard issues of detrending.
The dashed line with a slope of �.5 indicates the slope of white noise.
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processes change each other’s dynamics in their interaction. Each
local interaction among neighboring processes takes into account the
special circumstances of the neighbors. Nearest neighbor interactions
extend to the periphery of the body, to systems at the causal interface
with the world at large. Consequently, the flow of circumstances in
which the body is situated constrains behavior directly.

Interaction-dominant dynamics are described mathematically as in
a multiplication table of interactions (Abraham, 1987). Multiplicative
interactions among interdependent processes yield emergent behav-
ior. Component processes are inextricably combined in emergent
behavior. Thus, for complex systems, the object of study is interaction
itself, not necessarily the details of interacting components.

Interaction-dominant dynamics coordinate the processes of the
body. Coordination across the timescales of the body is the source of
correlated noise. Interdependence allows the behavior of each process
to reflect something of the behavior of the whole. This is a recipe for
fractal properties. The variation of the whole is present, in some sense,
in each of its parts. Consequently, variation across measurements of a
person’s behavior takes the form of a natural fractal.

To characterize the variation in background noise is to discover the
signature of purposive behavior. A cooperative participant in a labo-
ratory experiment takes on a set of directed intentions consistent with
a laboratory protocol. The model system in this case is a person
constrained by laboratory goals, a laboratory preparation of inten-
tional behavior. Thus, the signature of variation in the laboratory
performance is the dynamical signature of intentional behavior.

Measurement of Intrinsic Dynamics

Many demonstrations of positively correlated noise already ex-
ist. We introduce the experiments below in terms of previous
response-time demonstrations, and we later list other demonstra-
tions. What remains to be settled is how to interpret all these
demonstrations. The first experiment is a simple reaction-time
task, and the second experiment is a word-naming task. These
particular tasks speak to particular questions of interpretation.
They close gaps in the existing inventory of demonstrations and
narrow the field of possible interpretations. The tasks may also
help illuminate methodological concerns for measurement of in-
trinsic dynamics. One concern is how perspective of observation
limits what can be observed. We discuss perspective of observa-
tion and then introduce the term pink noise and the issues that
surround pink noise and simple reaction-time data.

Perspective of Observation

In a simple reaction-time task, the official task demands are
identical from trial to trial. The same signal to respond is presented
on every trial, and it always signals the same response category.
However, there are always sources of external variability, even
variation in the machine that presents the signal. The simple
reaction protocol merely minimizes these sources. As a conse-
quence, observed variability is to a large degree background noise.
Measurement provides an objective picture of background noise in
simple reaction times, but from a particular vantage point.

Dimension is partly determined by vantage point. Consider a
tautly stretched piece of thread; it closely resembles a one-
dimensional Euclidean object, a line. Tightly weaving the thread
back and forth results in a two-dimensional object, a piece of
fabric. A line can be rearranged so that it begins to occupy area.
Rolling the thread onto a spool yields an object that occupies

volume in three-dimensional space. If the spool of thread is viewed
from a great distance, its dimension appears to collapse to zero, a
point. There is no privileged place of observation. The example
comes from Mandelbrot (1982). Solé and Goodwin (2001) dis-
cussed why the perspective of observation can be crucial in anal-
yses of complex biological systems.

The process by which one measures a biological system partly
determines what one discovers. The intrinsic processes of biolog-
ical systems are stacked on hierarchies of timescales (Soodak &
Iberall, 1987). Systematic repeated measurements of response time
also define a timescale, the loosely rhythmic trial-by-trial pace of
data collection. This pace sets an entry level into the body’s
temporal hierarchy. The pace of measurement taking divides the
timescales of the body into timescales slower and faster than the
pace of data collection. From this perspective, variation on the
faster timescales contributes unsystematic noise that partly or
wholly decorrelates the measured signal (cf. Simon, 1973).

Correlated noise on timescales slower than the trial pace of data
collection contributes measurable systematic variation. Yet one
cannot resolve systematic variation on timescales faster than the
pace of measurement. The timescale of data collection is too
sparsely paced to accurately gauge variation on faster timescales.
Furthermore, response times vary from trial to trial, which con-
tributes to a more or less irregular pace of data collection through-
out. This irregular pace tracks a signal of background noise that is
also irregular by nature (cf. the coastline of Britain). All these
sources decorrelate the measured signal. Every vantage point in-
evitably yields a picture of more or less decorrelated noise.

Pink Noise

We report two experiments that examined background noise
across response times. In each experiment, we observed empirical
signatures of pink noise, the specific form of correlated noise
predicted by self-organized criticality. Pink noise is a fractal pat-
tern in time and is sometimes called fractal time.

Background noise is analyzed using two analyses, spectral analysis
and relative dispersion analysis. In a graph of simple reaction times,
connected data points trace a complex irregular waveform (Figure 1A).
A spectral analysis approximates the complex waveform as a composite
of simple regular waves spanning a range of frequencies, similar to
Fourier analysis. Pink noise appears as an inverse relation between the
frequency of the composite waves and their amplitude (power) on log
scales. Slowly meandering lower frequencies are associated with greater
amplitudes, intermediate frequencies are associated with intermediate
amplitudes, and jittery high frequencies are associated with smaller
amplitudes in a statistically self-similar fractal pattern.

Pink noise has been observed previously in cognitive perfor-
mance (see Gilden, 2001, for a review). Early reports found the
pattern in residual variance. Residual variance is the variability
that remains after factor means are subtracted out trial by trial—as
though component-dominant dynamics separate factorial effects
from background noise. However, this procedure itself decorre-
lates the signal of pink noise. A treatment mean is usually a poor
summary of a response-time effect compared with a distribution of
response times (see, e.g., Andrews & Heathcote, 2001; Balota &
Spieler, 1999; Heathcote, Popiel, & Mewhort, 1991; Holden, 2002).
In any case, the actual effect in each trial differs unsystematically
from the mean. If factor means are nevertheless subtracted out trial by
trial, then another unsystematic contribution to variability is intro-
duced. This source combines with other sources of irregular variation
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that decorrelate the measured signal. This nicely illustrates how ana-
lytic practices based on assuming component-dominant dynamics can
distort or obscure a strongly nonlinear phenomenon.

Below, we describe experiments that revealed pink noise in
simple reaction times and word-naming times. Both experiments
are important insofar as pink noise may imply self-organization in
human performance. The word-naming experiment is important in
its own right because it generalized pink noise to a cognitive task
that is widely assumed to elicit automatic cognitive processing.
Previous demonstrations of pink noise in cognitive performance
used tasks that required judgments and decisions, controlled cog-
nitive processing. The simple reaction-time study is important for
resolving a discrepancy in the literature that we discuss next.

Correlated Noise in Simple Reaction Times

Gilden (2001) has proposed that pink noise originates in an
encapsulated memory process, “mechanisms of thought that lead
to discrimination and choice” (p. 33). Inside the memory capsule
are interaction-dominant dynamics. Encapsulated interaction-
dominant dynamics are the source of pink noise. Yet the capsule
itself interacts with the rest of the body in component-dominant
dynamics. A single subtractive contrast supports the memory cap-
sule hypothesis: Background noise in simple reaction times has
been subtracted from background noise in discrimination and
choice tasks to isolate the memory capsule (Gilden, Thornton, &
Mallon, 1995). Since Donders (1868/1969), it has been widely
assumed that subtractive contrasts can isolate central decision
processes. Bub (2000), Pachella (1974), Sternberg (1969), Uttal
(2001), Van Orden and Paap (1997), Van Orden, Pennington, and
Stone (2001), and others have explained why subtractive methods
cannot be trusted to isolate component processes.

In the tradition of Donders (1868/1969), residual variability in
the decision times (pink noise � white noise) minus variability in
simple reaction times (white noise) equals pink noise. Both tasks
required motor coordination, and both produced white noise, but
only the discrimination and choice tasks produced pink noise. Pink
noise concerns the formation of mental representations, and white
noise concerns motor components. The mental representations
control the motor components. Loosely speaking, pink noise refers
to the puppeteer, and white noise refers to the puppet. However,
this characterization of motor components and motor noise has
been contradicted (see K. M. Newell & Slifkin, 1998; Riley &
Turvey, 2002). Tapping studies and other motor studies have also
found pink noise in background noise (see, e.g., Chen, Ding, &
Kelso, 1997, 2001). Motor-coordination tasks like tapping would
seem to provide the more detailed and reliable picture of motor
noise, which warrants a critical look at the reaction-time protocol.

The method of Gilden et al.’s (1995) reaction-time study built in
an unintentional external source of white noise. The term external
is defined with respect to the measurement procedure, from con-
sidering how a laboratory protocol may function as a gauge of
intrinsic dynamics. Factors that can be manipulated or randomized
by an experimenter are external sources of variability. The design
of the simple reaction-time study inserted random intervals of time
between each response and the next signal to respond. There was
a special concern with the simple reaction-time task that partici-
pants should not anticipate the signal to respond. Random intervals
made the signal to respond unpredictable.

Random intervals exaggerate irregularity in the pace of data
collection and contribute random perturbations to the coordination

of simple reactions. Random intertrial intervals decorrelate a trial
series and obscure the pink-noise signal. It is crucial to minimize
external sources of noise (Bassingthwaighte et al., 1994). If they
predominate, then the possibility of observing intrinsic dynamics
may be lost. It is also important specifically whether pink noise is
found in simple reaction times. The memory capsule hypothesis
depends on its absence.

Our reaction-time experiment included fixed intervals and pre-
dictable signals to respond and produced scaling relations consis-
tent with pink noise. Fixed intervals reduce the degree to which
measurement decorrelates the pink noise signal.

Method

Participants. Ten introductory psychology students received course
credit in exchange for participation.

Procedure. Each participant completed 1,100 simple reaction-time tri-
als. On each trial, a fixation signal (���), visible for 172 ms (12 raster
refresh cycles), was followed, after 200 ms, by a signal to respond
(#######). Each signal appeared in the center of a computer monitor
controlled by a PC running DMASTR software (Forster & Forster, 1996).
The signal to respond remained visible for 200 ms past when a response
was recorded (up to a maximum of 972 ms). Participants responded by
saying /ta/ quickly into a microphone (similar patterns of response-time
variability occur with other response modes). Responses were detected using
a voice key and were reliable to within 1 ms. Each response was followed by
a fixed 415-ms intertrial interval. If a response was not detected, trials timed
out after 4 s. Every participant completed a block of 45 practice trials and then
the 1,100 experimental trials, which required about 30 min.

Details of the Spectral Analysis

Each participant’s trial series of reaction times was kept in the
order in which it was collected for spectral analysis. A power-
spectral density was computed for each trial series—a particular
kind of spectral analysis that outputs the squared amplitude of the
component oscillations. We used standard techniques such as the
analyses described in Gilden et al. (1995) and Chen et al. (1997).

The theory behind fractal time would lead one to expect extreme
times up to the natural limits of the system. Yet a few extreme times,
or simple long-term trends, could distort the outcome of the analysis.
Trimming and detrending procedures brought the series of simple
reaction times (the finite irregular natural object) in line with the
idealized mathematics of spectral analysis. The contortion is neces-
sary because the mathematics ultimately assume an ideal, stationary,
strictly periodic process of infinite duration.

We removed simple reaction times greater than 1,000 ms, then
computed the series mean and standard deviation, and removed times
that fell beyond �3 standard deviations from the trial-series mean.
The trimming criteria eliminated an average of 19.20 (1.75%) simple
reaction times from each trial series (Mdn � 18, SD � 10.05,
minimum � 6, maximum � 42). The trimming criteria also elimi-
nated trials in which the voice key failed to detect the /ta/ pronunci-
ation (Mdn � 6). The number of eliminated trials was unrelated to the
spectral slopes or fractal dimensions of the series by either parametric
or nonparametric correlation analyses or by visual inspection of
scatter plots. In every case, more than 1,024 measurements remained
after trimming. Subsequently, we truncated the beginning trials of the
experiment until 1,024 observations remained. Trends up to a qua-
dratic were removed, and then the series was normalized.

Figures 1A–1C step through a spectral analysis of a single
participant’s trial series. Figure 1A shows the trial series of reac-
tion times after they have been trimmed, detrended, and normal-
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ized. Figure 1B displays an intermediate step in which the results
of the spectral decomposition are plotted on linear axes. Frequency
(x) is plotted against power (y), or amplitude squared, on linear
scales. Figure 1C displays the same spectral results after frequency
(x) and power (y) are transformed to Base-10 logarithmic scales.
Figures 1D–1F show the same steps in an analysis of a randomly
ordered version of the same trial series, the surrogate trial series
that approximates white noise.

Results of the Spectral Analysis

The spectral analysis estimates the slope of the line that relates
amplitude of change to frequency of change on log/log scales. The
negative slope of the graph (�.60) in Figure 1C illustrates the
expected scaling relation. This is a power spectrum consistent with
pink noise. The power spectrum of idealized pink noise aligns
itself precisely along a line with a slope of �1 on the same scales
as Figures 1C and 1F. Pink noise is called 1/f � noise, or 1/f noise,
for this reason. The exponent � is the absolute value of the line’s
slope that relates frequency to power, and � � 1 for idealized pink
noise. (Recall that f�� � 1/f �.)

Individual participant slopes are listed in Table 1. Empirical 1/f
scaling relations produce a noisy spectrum with a slope that may
vary over a range of values greater than negative one and less than
zero. We found slope values that ranged from �1.0 to �0.30. The
spectral slope of each intact trial series was contrasted with the
spectral slope of surrogate data. Surrogates were produced by a
random shuffle of trial orders in each trial series (Theiler, Eubank,
Longtin, Galdrikian, & Farmer, 1992). The contrast tests whether
intact series differ reliably from surrogate white noise. All 10
intact trial series yielded steeper slopes than their respective sur-
rogate counterparts ( p � .05 by a sign test; intact trial series: M �
�0.66, SD � 0.22; surrogate trial series: M � �0.01, SD � 0.06).

Details of the Dispersion Analysis

We computed fractal dimensions using dispersion analysis. Dis-
persion analyses are comparably more reliable than other methods
of computing fractal dimension (Bassingthwaighte et al., 1994;
Caccia, Percival, Cannon, Raymond, & Bassingthwaighte, 1997;
Eke et al., 2000; Eke, Hermán, Kocsis, & Kozak, 2002).1 How-
ever, one dispersion technique is required for fractional Gaussian

noise (white and pink noise), and a different technique is required
for fractional Brownian motions (brown noise). One first needs to
know the noise category to choose the appropriate dispersion
technique. Spectral analysis does not yield reliable fractal dimen-
sions, but it does work to pick out the category of noise. The two
analyses together choose a color from the crayon box of ideal
noises (blue, white, pink, brown, black).

A dispersion analysis repeatedly resamples the data series using
sampling bins of different sizes to estimate the fractal dimension of
a trial series. The fractal dimension estimates the scaling relation
between a variance statistic and sample size—the change in a
variance statistic due to changes in bin sample sizes. It determines
whether the variance statistic converges fast enough, as sample
size increases, to yield a stable population parameter. If not, then
the process that produced the variance is scale free. It has no
characteristic scale or quantity of variance.

We adapted the standard technique of relative dispersion anal-
ysis to use normalized data—call this standardized dispersion
analysis to avoid confusion. The outcomes of the two techniques
are identical. The standardized dispersion analysis yields disper-
sion measurements in units of the standard error of the mean.
Dispersion techniques typically use a relative dispersion statistic,
which is expressed in terms of a ratio of the standard deviation and
the mean (i.e., RD � SD/M; see Bassingthwaighte et al., 1994).
We computed a fractal dimension statistic for each trial series after
the series had been prepared for the previous spectral analysis—
after each trial series was first detrended and normalized as de-
scribed above. Detrending is conservative in this kind of analysis.2

1 A single fractal dimension is sufficient to characterize the signal of a
monofractal process. Such signals have stationary scaling properties. To say a
process has stationary scaling properties is to say that the fractal dimension that
characterizes the process at one point in time is essentially the same at other
points in time. Signals taken from multifractal processes are more complex.
Multifractal processes may yield different local fractal dimensions at different
periods of time (Ivanov et al., 2001). Although dispersion techniques are
relatively robust, they do ultimately assume that the estimated scaling relation
does not fluctuate appreciably as a function of time—that the measured process
is an approximately stationary monofractal process (Caccia et al., 1997). It is
possible that the system on which response times attend may not respect these
assumptions. If so, then the present techniques would estimate the largest
fractal dimension in the data series. A test to distinguish a multifractal process
requires very long data series and more sophisticated statistical techniques.

2 We mentioned already that natural fractals live within a finite range of
scales. This has implications for the technique of dispersion analysis. Trial
series that display self-similar patterns of fluctuation are expected to display
nonstationary drift (trends) at many scales. It is difficult to distinguish simple
long-term trends from nested, long-range, fractal correlations (Hausdorff et al.,
1996). Simple long-term trends can bias estimates of fractal dimension. They
can even overwhelm the analysis and yield a spurious fractal dimension
statistic (Caccia et al., 1997). Consequently, it is prudent to remove at least
linear and quadratic trends before conducting the analysis. Detrending helps
protect against the false identification of scaling relations resulting from local
nonstationarities or fluctuations. It eliminates variability at scales close to the
size of the entire series, which works against a hypothesis of pink noise. As a
general rule, if the trial series has fractal structure, progressively more liberal
detrending procedures will not dramatically change fractal dimension esti-
mates (Hausdorff et al., 1996). For the simple reaction-time trial series, we
removed trends up to a quadratic, and we verified that the fractal dimension
estimates were essentially the same whether we removed only linear trends or
trends up to a quartic.

Table 1
Fractal Dimension and Spectral Slope Statistics for Each
Participant’s Trial Series of Simple Reaction Times

Fractal dimension Slope of the power spectrum

1.34 �0.43
1.33 �1.00
1.29 �0.60
1.33 �0.53
1.28 �0.73
1.33 �0.63
1.27 �0.89
1.30 �0.66
1.18 �0.86
1.34 �0.30

M � 1.30 M � �0.66
SD � 0.05 SD � 0.22

Note. The mean and standard deviation computations include all 10 series.
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Figure 2 illustrates the outcome of a dispersion analysis, a
scaling relation between dispersion and sample size on log/log
scales. The relation is linear on these log scales except for the
last four points (the most extreme point is not pictured; it falls
outside of the figure axes). The excluded points are the unfilled
dots in Figure 2. They correspond to the largest sample sizes in
the analysis. They are excluded because the detrending proce-
dures have eliminated variability at these scales. Depending on
the system under study, the linear scaling relation can be
expected to break down at either the smallest or largest sample
sizes or both (Cannon, Percival, Caccia, Raymond, & Bas-
singthwaighte, 1997). See Caccia et al. (1997) for additional
refinements of this technique. The fractal dimension of the
series is given by subtracting the negative slope of the least
squares regression line from 1, the Euclidean dimension of the
series.

Results of the Dispersion Analysis

Participants’ fractal dimension statistics are listed in Table 1.
Fractal dimensions of natural pink noise can range across an
interval less than 1.5 and equal to or greater than 1.2. Fractal
dimensions that cannot be distinguished statistically from 1.5
are effectively white noise. Fractal dimensions less than 1.2
could imply fractional Brownian motion (brown noise). One of
our trial series yielded a fractal dimension of 1.18, which
cannot be classified unambiguously as pink noise. We excluded
the ambiguous case because its fractal dimension would favor
our hypothesis in the contrast with surrogate data. Excluding
the ambiguous case equals a more conservative test. The re-
maining nine trial series ranged from 1.27 to 1.34 in fractal
dimension. These nine trial series all had smaller fractal
dimensions than their shuffled surrogates ( p � .05 by a sign
test; intact trial series: M � 1.31, SD � 0.03; shuffled trial
series: M � 1.50, SD � 0.02). All participants’ fractal dimen-
sion statistics were consistent with partly decorrelated pink
noise.

Correlated Noise in Word-Naming Times

All previous demonstrations of pink noise in cognitive per-
formance used cognitive tasks that required controlled cogni-
tive processing—participants made explicit discriminations or
choices. Word naming is widely assumed to be an automatic
cognitive process based on learned relations between words’
spellings and their pronunciations (see Tzelgov, Henik, Sneg, &
Baruch, 1996; cf. Besner & Stolz, 1999a, 1999b, who ques-
tioned whether words are processed automatically). If word
naming is an automatic cognitive process, then it provides a
second test of the memory capsule hypothesis. If pink noise in
cognitive tasks is exclusive to controlled processing, then
pink noise should not appear in a trial series of word-naming
times.

Our alternative hypothesis is a bit more involved and sug-
gests a comparison with simple reaction times. We expected to
find pink noise in trial series of naming times, but the signal
should have been less visible compared with simple reaction
time. Both word naming and our previous study presented
visual signals to respond and took spoken responses, but the

reaction-time paradigm holds signal and response constant. The
word-naming procedure presented a different printed word on
each trial, and each word required a different pronunciation.
The words also differed unsystematically in initial phonemes
that determine voice key registration and thereby affect naming
time (Kessler, Treiman, & Mullennix, 2002). Moreover, the
words in our experiment were presented to each participant in
a different random order. Thus, word properties functioned as
an external random manipulation with respect to estimating
internal background noise.

Random changes in word properties affect variability in the
same way as random intertrial intervals. Both decorrelate the
signal of pink noise. However, word properties may not entirely
obscure the signal. Gilden (1997) has previously demonstrated
pink noise in a discrimination task that used word targets. Thus, we
expected to find pink noise signals in naming times but weaker
signals compared with simple reaction times. Weaker signals yield
less steep slopes in spectral analyses and fractal dimensions closer
to 1.5.

Method

Participants. Twenty additional, native English-speaking, introductory
psychology students received course credit in exchange for their
participation.

Stimuli. The words for the naming study were 1,100 four- and five-
letter words drawn at random from 1,857 four- and five-letter words, a
subset of words used by Spieler and Balota (1997). Words ranged in
frequency from 10,601 to 1 per million (M � 86.81, SD � 458.28) and
otherwise included an uncontrolled mix of word properties.

Procedure. Each trial began with a fixation signal (���) visible for
172 ms (12 raster refresh cycles) followed by a word after 200 ms.
Participants were instructed to name the word quickly and accurately into
a microphone. Each word appeared in the center of a computer monitor
controlled by DMASTR software running on a PC (Forster & Forster,
1996).

A word target remained on the screen 200 ms after a response was
recorded, up to a maximum of 972 ms. If no response was recorded, trials
timed out after 4 s. Responses were detected using a voice key reliable to
within 1 ms. The experimenter sat quietly, well behind a participant,
and recorded pronunciation errors. Each response was followed by a
fixed 629-ms intertrial interval. Every participant completed 45 practice
trials and then the 1,100 experimental trials, which required about 45
minutes.

Results and Discussion

The mean error rate was 2.12% (SD � 1.48%), and the largest
error rate was 5.18%. Timed-out trials (Mdn � 1) were eliminated,
but the small portion of naming times that came from pronuncia-
tion errors were included to better preserve the trial-by-trial con-
tinuity of each trial series (cf. Gilden, 1997). In addition, we
removed naming times less than 200 ms and greater than 1,500 ms,
then computed the series mean and standard deviation, and re-
moved times that fell beyond �3 standard deviations from the
mean. The trimming criteria eliminated an average of 24.40
(2.22%) naming times from each trial-series (Mdn � 21,
SD � 10.33, minimum � 14, maximum � 57). The number of
times eliminated was unrelated to the spectral slopes or fractal
dimensions of the series. In every case, more than 1,024 mea-
surements remained after trimming. Subsequently, we trun-
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cated the beginning trials until 1,024 observations remained.
Trends up to a quadratic were removed, and then, the series was
normalized.

We are again interested in the slope of the line that relates
amplitude and frequency in the spectral analysis plus the fractal
dimension of the trial series. Each participant’s trial series of
naming times was subjected to a spectral analysis. Figure 3
portrays the outcome of a single participant’s spectral analysis.
The y-axis in the figure indicates the amplitude of change
(power), and the x-axis indexes the frequency of change. The neg-
ative slope of the graph (�.27) indicates the expected relation be-
tween power and frequency and is a power spectrum consistent with
partly decorrelated pink noise. The fractal dimension of the trial series
is 1.40.

Table 2 presents the spectral slope and the fractal dimension of
each participant’s trial series. The naming slopes ranged from a
minimum of �0.49 to a maximum of �0.14. As before, the
spectral slope of each intact trial series was compared with the
spectral slope of a randomly shuffled surrogate series. All 20 intact
trial series yielded steeper slopes than their surrogate counterparts
( p � .05 by a sign test; intact trial series: M � �0.29, SD � 0.01;
surrogate trial series: M � �0.01, SD � 0.04). Fractal dimensions

Table 2
Fractal Dimension and Spectral Slope Statistics for Each
Participant’s Trial Series of Word-Naming Times

Fractal dimension Slope of the power spectrum

1.47 �0.16
1.33 �0.38
1.37 �0.22
1.51 �0.22
1.41 �0.21
1.35 �0.35
1.33 �0.40
1.52 �0.20
1.44 �0.28
1.40 �0.27
1.42 �0.25
1.43 �0.14
1.41 �0.41
1.45 �0.22
1.40 �0.19
1.33 �0.40
1.35 �0.28
1.40 �0.29
1.30 �0.49
1.34 �0.40

M � 1.40 M � �0.29
SD � 0.06 SD � 0.10

Figure 3. Figures A–C (A: Naming Time Trial Series; B: Naming Time
Power Spectrum; C: Power Spectrum on Log-Log Scales) step through a
spectral analysis of one participant’s naming trial series. Figure A shows
the trial series of naming times after they have been trimmed, detrended,
and normalized. Figure B displays an intermediate step in which the results
of the spectral decomposition are plotted on linear axes. Frequency (x) is
plotted against power (y), or amplitude squared, on linear scales. Frequency
and amplitude range from low (near the origin) to high (away from the
origin). Low frequency is associated with high amplitude and high fre-
quency with low amplitude. Figure C displays the spectral results after the
frequency (x) and power (y) axes have been transformed to Base-10
logarithmic scales. Lower frequencies have higher amplitude in the form of
a scaling relation between frequency and amplitude.
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ranged from 1.30 to 1.52 across participants. Eighteen of the 20
intact trial series yielded smaller fractal dimensions than their
surrogate counterparts ( p � .05 by a sign test; intact trial series: M
� 1.40, SD � 0.06; surrogate trial series: M � 1.50, SD � 0.03).

Variation across response times from both simple reaction
time and word naming is consistent with partly decorrelated
pink noise. Naming yielded larger fractal dimension statistics
than simple reactions (nonparametric Mann-Whitney U test: ZU

� �3.39, p � .05). The pink-noise signal was less prominent in
naming times. The more whitened signal is sensibly understood
as due to random word properties that further decorrelate the
pink noise signal.

What Kind of System Do We Confront?

We now have sufficient evidence to broach the question, What
kind of dynamics are indicated by background noise in response
times? We begin by summarizing what we and others have learned
using spectral and dispersion analyses. After that, we review
hypotheses that have already been offered to explain pink noise in
human performance. Finally, we discuss the implications of pink
noise as we see them.

Our experiments have demonstrated the pattern of pink noise
in trial series of simple reaction times and word-naming times.
These demonstrations are significant because they fill signifi-
cant gaps in this literature. One previous article reported a
failure to observe pink noise in simple reaction times.3 So far as
we know, the question of pink noise in word naming or other
automatic cognitive performances has been previously over-
looked. The addition of our studies gives a more complete and
agreeable inventory of background noise in laboratory perfor-
mances, which we review after the caveat that follows.

Conventional distinctions such as controlled versus automatic
were useful for organizing existing findings. Yet we do not mean
to perpetuate these distinctions; we mean to call them into ques-
tion. The distinctions themselves collapse in a framework of
interaction-dominant dynamics as their theoretical motivation dis-
appears. The term automatic derives from the metaphor of billiard-
ball causality. A stimulus-cause triggers a ballistic effect such as
the Stroop effect. The conventional distinctions between controlled
and automatic (or cognitive vs. motor) assume component-
dominant dynamics between components of the mind or brain and
between the mind and body. Otherwise, the distinctions make no
sense. Replacing billiard-ball causality with circular causality and
component-dominant dynamics with interaction-dominant dynam-
ics eliminates the conventional meaning of the term automatic
(Van Orden & Holden, 2002). Keeping this caveat in mind, we list
examples of where correlated noise has been previously observed.

Correlated noise has been observed in perceptual learning
(Wagman, Dahle, & Schmidt, 2002), postural sway (Riley, Wong,
Mitra, & Turvey, 1997), and the timing of perceptual reversals of
reversible Necker cubes (Aks & Sprott, 2003). It has been found in
motor performances such as spacing and timing of rhythmic move-
ment (Rhodes & Schmidt, 2002) and the phase relation between
rhythmic movements (Schmidt, Beek, Treffner, & Turvey, 1991).
It has been found in tapping (Chen et al., 1997, 2001; Ding, Chen,
& Kelso, 2002), human gait (Hausdorff et al., 1996; Hausdorff,
Zemany, Peng, & Goldberger, 1999), and simple reaction time
(Table 1; Wagenmakers et al., in press; Ward & Richard, 2001).

Correlated noise has been found in controlled cognitive perfor-
mances including mental rotation, lexical decision, visual search,
repeated production of a spatial interval, repeated judgments of an
elapsed time, and simple classifications (Aks, Zelinsky, & Sprott,
2002; Clayton & Frey, 1997; Gilden, 1997; Gilden et al., 1995;
Kelly, Heathcote, Heath, & Longstaff, 2001). The word-naming
experiment demonstrated correlated noise in the background noise
of an automatic cognitive performance (Table 2). Background
noise is correlated noise in all these laboratory performances, and
the correlated noise is virtually always pink noise. Pink noise
implies interaction-dominant dynamics and self-organized critical-
ity. Pink noise is the natural prediction given the current under-
standing of self-organized criticality. Ubiquitous pink noise is not
sufficient evidence for self-organized criticality; it is simply a
necessary consequence. “A mathematical theory never guarantees
any property of empirical process; what it says is that if certain
assumptions are true, then certain results will follow” (Green &
Swets, 1988, p. 11).

Next, we review several different explanations of pink noise. All
encapsulate control of one kind or another inside the mind or brain.
We discuss each hypothesis in turn to clarify why none succeeds.
No evidence exists that is sufficient to encapsulate control or pink
noise inside the mind or brain. No evidence exists to contradict
global emergence.

The Memory Capsule Hypothesis

Self-organizing systems that exhibit pink noise come in two
general forms. A single process extends to multiple timescales, or
multiple processes are linked across multiple timescales. We in-
troduced the memory capsule hypothesis above: Processes of
discrimination and choice are linked across multiple timescales
within the memory capsule (Gilden, 2001). Pink noise is localized
in a specialized component of the mind.

The memory capsule hypothesis requires that pink noise be
localized in a particular kind of performance. Tasks that require
discrimination and choice should yield pink noise; tasks that do not
should not. The actual state of affairs contradicts the memory
capsule hypothesis. So-called automatic word naming, simple re-
actions, and other motor performances all yield scaling relations
consistent with pink noise. Conventionally, none of these perfor-
mances require controlled cognitive processing. Consequently,
they contradict the hypothesis that pink noise originates in a
memory capsule associated with controlled cognitive processing.

Encapsulated Subsystems

Ward and colleagues proposed an alternative to Gilden’s (2001)
memory capsule: They described a three-subsystems account en-

3 After we had submitted the present findings for publication, we were
made aware of two other studies, then unpublished, that had also found
pink noise in simple reaction times (Wagenmakers, Farrell, & Ratcliff, in
press; Ward & Richard, 2001). Of note, Wagenmakers et al. observed a
shallow spectral slope, different from white noise, in conditions like those
of Gilden et al. (1995) that had previously been interpreted as white noise.
Although Gilden et al. did not highlight the shallow spectral slope in their
simple reaction-time data, it is nevertheless there and in exactly the same
magnitude as reported by Wagenmakers et al. (D. L. Gilden, personal
communication, January 27, 2003).
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capsulated inside the brain (Greenwood & Ward, 2001; Ward,
2002; Ward & Richard, 2001). The central nervous system is not
a single process but a complex of processes that extend across
multiple timescales (on that we can agree; cf. Koch & Laurent,
1999). The number three simply comes from the minimum number
of relaxation equations that can be combined to mimic a pink-noise
spectrum across three decades of frequency (e.g., 100 Hz, 10 Hz,
and 1 Hz). Greenwood and Ward did not limit themselves to a
three-subsystems account; they also considered coupled processes
in the spirit of our proposal (Greenwood & Ward, 2003).

The three subsystems live on three different timescales. One
timescale is equated with a preconscious subsystem, another with
an unconscious subsystem, and the third with a consciousness
subsystem—the basis of conscious experience. Each of the three
subsystems includes its own source of white noise, with a separate
parameter to modulate the amount of white noise from that com-
ponent. The apparent pink noise in macro-level measurements is
simply the sum of noises from the three subsystems. However, no
existing data reliably dissociate preconscious, unconscious, or
conscious components or any other cognitive components (Chal-
mers, 1996; Farah, 1994; Fodor, 2000; Uttal, 2001; Velmans, 2000).

All attempts to dissociate cognitive components rely on conven-
tional laboratory methods. Most rely on logically flawed subtrac-
tive and dissociative methods, which require a roadmap of cogni-
tive processes before the fact to interpret dissociations after the
fact (Shallice, 1988; Van Orden et al., 2001). All standard factorial
analyses share the assumptions of homogeneous variability, inde-
pendent measurements, and component-dominant dynamics, the
very assumptions that pink noise brings into question. Pink noise
implies heterogeneous variability, interdependent measurements,
and interaction-dominant dynamics.

Another three-subsystems account equates its three timescales
with different mental functions (Wagenmakers et al., in press). Yet
the shared assumption of three timescales is too limiting, too easily
overwhelmed. Consider that a full session in either of our exper-
iments took less than one hour. Now compare with Delignières,
Fortes, and Ninot (2002), who observed pink noise in estimates of
self-esteem taken twice a day for 512 days. Roughly speaking, the
full range of timescales that we observed within the timeframe of
one hour is contained within one data point in Delignières et al.’s
data series. Their results require another, different, linear model on
top of the model that is already proposed—a six-subsystems ac-
count. Three-subsystems accounts are found wanting each time
correlated noise is demonstrated outside their range of timescales.
Again, our working hypothesis anticipates correlated noise at all
scales to the limits of the system.

The timescales of linear accounts are carefully chosen and
precisely tuned to approximate the coincidence of the scaling
relation. Yet this ignores the inherent order of the scaling relation.
How do intrinsic dynamics align power and frequency in such a
coherent fashion? In linear accounts, the implied coincidence of
the scaling relation becomes an extraordinary hypothesis that
would itself require extraordinary evidence. No such evidence
exists. Clearly, piecemeal accounts bear a burden of proof. They
must corroborate the assumption of linearity. Otherwise, “it is not
clear how much sense it makes to develop models and theories of
strongly correlated processes and then to describe them as a linear
superposition of independent events” (Jensen, 1998, p. 10).

Given our concerns, we frankly question the motivation for
linear accounts. A component-dominant approximation of an ap-

parent interaction-dominant phenomenon perpetuates an unin-
tended linear imperialism. Covert imperialism assigns a logical
priority to linearity as when linearity is assigned the favored status
of default hypothesis (Wagenmakers et al., in press). This is simply
incredible; linearity cannot be given the benefit of the doubt. The
assumption of linearity is not sufficiently trustworthy. It is too
often a specious assumption about complexity in nature, especially
the complex behavior of living beings (Rosen, 2000; West &
Deering, 1995).

All linear accounts parse scaling relations into pieces and add
them up again. However, a linear partition supplies a statistical
artifact, not a theoretical model. Piecemeal artifacts produce overly
regular features in a simulated data series. For example, an account
proposed by Wagenmakers et al. (in press) exhibits “terraces” in
simulated data series, which are never seen in behavioral data
(D. L. Gilden, personal communication, September 6, 2002).
Piecemeal artifacts do not fully accommodate the irregularity in
the natural data series, and residual irregularity cannot be simply
equated with random events (Mandelbrot, 1982, 1998). In nature,
there is no guarantee that signal and noise are causally distinct or
superposed (Abraham, 1983). Actual fractal noise is a coherent
whole extended in time. Actual pink noise does not come apart as
a linear partition of power among frequencies.

Encapsulated Cognitive Demands

Chen and colleagues (2001) proposed a different brain hypoth-
esis. They focused on cognitive demands and the presence of pink
noise. Briefly, the presence of pink noise is modulated by encap-
sulated cognitive demands, and the locus of cognitive demands is
“in the multiple timescale activities . . . in the human brain” (Chen
et al., 2001, p. 7; see also Ding et al., 2002).

Encapsulated cognitive demands were motivated by data from
tapping tasks, by dissociation studies of brain-damaged individu-
als, and by neuroimaging studies (Chen et al., 2001). We focus on
the tapping data exclusively. Dissociation studies and neuroimag-
ing both require specific a priori knowledge of the components in
question before reliable conclusions can be drawn, as we have
already noted. This point is not contentious. Scientists must first
know that there are units of behavior and what they are before
looking for their counterparts in the nervous system. The tapping
data have priority.

The tapping data consisted of timing errors compared with the
metronome that set the pace for tapping. The timing errors were
subjected to spectral analysis. Different power spectra were ob-
served for syncopated versus synchronized tapping. Syncopated
tapping between the beats of a metronome yielded a steeper
spectral slope than synchronized tapping on the beat. Chen et al.
(2001) attributed the steeper slope to the increased task difficulty
of tapping between the beats. They then used linked intuitions to
encapsulate the effect. They equated an increase in task difficulty
with an increase in cognitive demands, and they assumed that
cognitive demands are encapsulated inside the brain. Thus, the
change to a more pink pattern of background noise is encapsulated
within the brain.

The trigger assumption of Chen et al.’s (2001) logic is chal-
lenged by the present findings and by other studies. More difficult
tasks do not usually produce more pink signals; one almost always
sees the opposite. Gilden (2001) noted that pink noise is usually
most pronounced in simple tasks that repeat identical trials, and we
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saw the clearest signal of pink noise in what is arguably our least
difficult task, simple reaction time. Ward and Richard (2001)
conducted a more careful study of task difficulty that they equated
with decision load, “the number of stimulus and response alterna-
tives” (Ward, 2002, p. 141). Like us, they found more pronounced
signals of pink noise in less difficult task conditions (see also
Clayton & Frey, 1997). Yet Chen et al. found the more pronounced
signal in the more difficult condition.

Recall again that external manipulations of task demands are
external sources of white noise. More difficult task demands
amplify unsystematic variability in response measures, which cre-
ates a more irregular sampling pattern and decorrelates the signal
of pink noise. Task difficulty equals more unsystematic variability
equals less pink, whiter signals. If this were true for tapping, then
one should see the opposite of what was found. Again, Chen et al.
(2001) found the more pink signal in the more difficult condition.

So how is one to understand the contradiction? To begin with,
one must quit calling syncopated tapping more pink. This way of
talking assigns a particular direction to the effect, from synchro-
nized to syncopated. It takes synchronized tapping as a sort of
baseline, which leads us to ask how syncopated tapping differs
from synchronized tapping. Why not call the results from synchro-
nized tapping less pink? Why not take the condition of the visible
pink-noise signal to be the baseline? This change realigns the
conditions within the logic of internal versus external sources of
noise as it reverses their logical priority.

If syncopated tapping is taken as the baseline, then we are led to
ask how synchronized tapping differs from syncopated tapping in
which a healthy pink-noise signal is observed. We are led to ask
what it is about synchronized tapping that whitens the pink-noise
signal. Apparently, the change from syncopated to synchronized
tapping reduces the sensitivity of the tapping protocol for gauging
intrinsic dynamics. The task conditions of the synchronized con-
dition allow a more stable entrainment of internal dynamics to the
metronome beat. Each tap is on the beat. This coordination cedes
more control to the external driving force of the metronome, which
blunts the sensitivity of the laboratory protocol as a gauge of
internal dynamics. The example simply illustrates again how
changes in task demands are external factors that affect the capac-
ity to measure pink noise.

Is Control Ever Encapsulated Inside the Brain?

We continue our discussion of hypotheses in which control is
partly or wholly encapsulated in a brain, however brains are
conceptualized. Both brain hypotheses that we have considered
equate changes in task demands with brain functions. However, if
task demands are merely intuitively brainified, so to speak, then
we leave ourselves at risk of logical fallacy: If task demands are
exclusively cognitive demands and effects of cognitive demands
are encapsulated inside the brain, then effects of task demands
would be so encapsulated. Effects of task demands are observed,
therefore encapsulated brain effects are observed. This misleading
logic begs the question of encapsulated control. Nevertheless, task
demand � cognitive demand � brain function is the usual intu-
ition. So, we must look closely at the burden of proof that this
intuition carries.

Brain hypotheses require evidence sufficient to motivate
component-dominant dynamics between brain and body if they are
to make sense as scientific hypotheses. No doubt, micro-level

fluctuations in the central nervous system are necessary for cog-
nitive activity. That is not at issue, only whether the control of
cognitive activity can be encapsulated in the brain. Such brain
hypotheses require specific reliable corroboration for encapsulated
control. However, this is a weighty burden of proof, and no such
evidence exists.

For instance, it would not be sufficient to observe correlated
noise in brain activity to establish the intuition. Corroboration of a
brain hypothesis requires evidence sufficient to encapsulate corre-
lated noise in the brain, not simply to establish that it can be
observed (likewise for other behavioral phenomena). Correlated
noise is observed in many physiological systems (see, e.g.,
Bassingthwaighte et al., 1994; Goldberger, 1997; Solé & Good-
win, 2001), including the central nervous system (see, e.g.,
Georgelin, Poupard, Sartène, & Wallet, 1999; Poupard, Sartène, &
Wallet, 2001). Yet one presently confronts correlated noise in
measurements taken at a macro-level—the level of a person acting
as a whole being.

Neither is it enough to observe online correlations between
(nonlinear) behavioral dynamics and (nonlinear) brain dynamics,
as have been observed (Kelso, 1995). As with any correlation, this
simply establishes a relation between dynamics in the nervous
system and behavioral dynamics—a relation that could just as well
imply interaction-dominant dynamics that extend at least to the
periphery of the body.

If pink noise can be equated with the intrinsic dynamics of the
body, then the intrinsic dynamics of the body entail global emer-
gence. Among other things, isolation of causal powers in
component-dominant dynamics requires behavioral measures with
characteristic scales. Yet characteristic scales are precisely what
pink noise contradicts. The reviewed findings bring into question
whether human performance ever reduces to causal loci in the
mind, brain, or body.

Let us summarize the discussion to this point: Pink-noise scaling
relations are not exclusive to any particular kind of task (see also
Wagenmakers et al., in press). Pink noise cannot be encapsulated;
it is not the product of a particular component of the mind or body.
It appears to illustrate something general about human behavior.
Pink noise could signal states of self-organized criticality, and
self-organized criticality is a useful metaphor for understanding
the actions of intentional beings, which simply restates Juarrero’s
conjecture. Pink noise should not be equated with intentional
contents. Strictly speaking, pink noise may imply criticality and
interaction-dominant dynamics and provide a basis in evidence for
Juarrero’s conjecture. The entailed ideas of circular causality and
emergent properties accommodate intentional contents. Circular
causality perpetuates globally emergent, ordered, dynamic states in
positive feedback processes. Circular causality sustains intentional
contents in time.

Global Emergence

Intentional acts emerge out of situated intentional contents.
Intentional contents live within the hierarchy of constraints ex-
pressed in human activity. Different purposes entail different con-
straints that organize the body into different functional devices. Put
differently, the body comprises processes that take on their func-
tional character within an act, not prior to an act. The functional
device that responds in a laboratory task is constructed in the act.
Laboratory performances cannot be assigned to or reduced to
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specialized material devices in the body or brain. “Explicit mate-
rial processes [are] relegated to abstractions of enfolded coordina-
tion dynamics” (Turvey, 2002). In global emergence, the micro-
behaviors of parts take on meaning with respect to the global
macroactivities in which they participate. Within the constraints of
task instructions and inside a simple reaction trial, the participant’s
mind and body create together a simple reaction device, in word
naming, a word-naming device.

Compare the previous claim with the following fact from con-
ventional cognitive psychology: Trivial differences between cog-
nitive tasks require distinct cognitive devices. Even simple judg-
ments about when an event starts or where an object is located
“vary with task requirements in ways indicating the use of multiple
distinct mechanisms with different characteristics in different
tasks” (Durgin & Sternberg, 2002, p. 288). A Noah’s ark of
devices supplies a never-ending zoo of purposes.

If cognitive activity does not reduce to specialized cognitive
devices and scientists continue the pursuit, they will perpetuate
irreconcilable quarrels. Lacking confirmation of additivity, scien-
tists lack proper tools to discover which behaviors go with what
devices. Untethered, cognitive scientists choose devices intuitively
(Shallice, 1988), but they cannot reach agreement on whose intu-
itions to trust (Van Orden et al., 2001; Watkins, 1990).

Juarrero’s conjecture looks attractive by comparison. Human
bodies are flexibly coupled across many timescales to the changing
circumstances in which people find themselves. Behavior self-
organizes in a principled manner within the boundary conditions
that circumstances supply. Intentional contents themselves emerge
out of historical circumstances, and they enfold the perpetually
oncoming flow of changing circumstances. Together, previous and
oncoming circumstances bring novel purposive behaviors into
existence.

These, then, are the alternatives: either theorists build in unex-
pected circumstances a priori as component causes and special
devices or they equate circumstances with constraints on
interaction-dominant dynamics. Either theorists content them-
selves with ad hoc explanation or they seriously consider Juarre-
ro’s conjecture.

Direct Perception

For now, global emergence may seem a fairly unconventional
suggestion. Nevertheless, there are ideas in circulation that follow
naturally from assuming global emergence and interaction-
dominant dynamics. Interaction-dominant dynamics motivate sev-
eral ongoing research programs. This section and the next illustrate
this for direct perception and embodiment. These examples dem-
onstrate the wider implications of Juarrero’s conjecture. It is not a
narrow claim about background noise; it reinforces reliable general
hypotheses about perception, action, and cognition. One example
is direct perception.

William James (1912/1976) proposed direct perception within
his radical empiricism. James stipulated that relations among per-
ceptual objects and between a perceiver and perceptual objects are
real and are directly perceived. Relations are intrinsic to experi-
ence and have the same ontological status as objects and perceiv-
ers. Relations provide the order in experience, and perception of
order is immediate, direct, unmediated. James Gibson inherited
this ontological stance via his graduate mentor, Edwin B. Holt, a
student of James (Heft, 2001). However, Gibson enriched the term

direct perception. He referred to an unmediated relation between
perception and action, which recurs as a cycle: Action makes
possible perception, perception specifies the possibilities for ac-
tion, action makes possible perception, perception specifies action,
and so on (Michaels & Carello, 1981).

Direct perception can seem counterintuitive. Even the superfi-
cial fact of time passing between stimulus and response appears to
contradict direct perception. Surely in-line causal factors must fill
up the gap in time between stimulus and response. If so, then
researchers should discover these factors. This intuition was
widely trusted at the end of the 19th century, and it is widely
trusted today. Yet the intuition is impracticable because behavior
cannot be neatly carved at stimulus–response joints. Others have
pointed this out concerning molar behaviors that are extended in
time (Hineline & Wanchisen, 1989). The insight is justly extended
to all behavior. Global emergence bars scientists from dividing
purposive activity among causal factors. It necessitates method-
ological direct perception, as we explain.

We described above how the pace of data collection sets an
entry level into the body’s temporal hierarchy. The trial pace of
measurement taking divides the temporal scales of the body into
timescales slower and faster than this pace. The trial pace also sets
up an artifactual cycle of perception and action. On each trial, the
signal to respond is perceived and acted on, which ends the trial
and starts the next cycle of perception and action. The pattern of
variation across trial measurements reveals the intrinsic dynamics
of perception and action, which is seen as the scaling relation of
pink noise.

The scaling relation concerns bodily changes on timescales
slower than the artifactual trial pace. Pink noise implies interde-
pendence among changes on these slow timescales, which implies
interdependence among cycles of perception and action. Instead of
discrete responses, one finds a continuous, intertwined flow of
activity. This fact has consequences for how researchers study
perception and action. Manipulations of human activity may per-
turb or redirect the flow of activity—that researchers can do—but
they cannot partition the flow among individual response trials. If
they cannot partition data among effects, then they cannot discover
causes between perception and action. No empirical basis exists to
discover causal factors (cf. Watkins, 1990).

In sum, interdependence implies irreducible relations among
signals to respond, responses themselves, and the data scientists
collect. Task instructions and measurement protocols alter the flow
of activity (Van Orden, Holden, Podgornik, & Aitchison, 1999).
Scientists change behavior as they measure it, as each measure-
ment changes the potential for perception and action on subsequent
trials. Consequently, cycles of perception and action cannot be
causally segregated. Clearly, research tools designed to partition
measurements among effects and to reduce effects to causes are
inappropriate for the job at hand (Rosen, 2000). Researchers
require the right kind of tools to study globally emergent phenom-
ena. Methodological direct perception means simply that the tools
scientists use should be the right tools for the job.

Embodiment

Juarrero’s conjecture also concerns how the body figures in
cognitive activity. Traditional cognitive science has explicitly re-
jected the body as a basis for control of cognitive activity. Its
well-publicized objective is the architecture of a disembodied
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mind. Interaction-dominant dynamics combine body and mind in
cognitive activity. Human beings are “creatures whose design
principles do not respect the intuitive boundaries between cogni-
tion, body, and world” (Clark, 1999, p. 98). Take poetry, an
undeniably cognitive activity. Poetry was once viewed as an arbi-
trary product of creative expression. Figurative poetic meanings
were assumed to be unstructured. Only literal meanings were
systematic. However, this view is incorrect. Figurative and literal
expressions come out of the same sources of systematic use,
constraints on human experience that come from being a body in
the world (Gibbs, 1994).

For example, the meanings of the word stand are constrained by
human posture. Human bodies stand erect, and figurative mean-
ings reflect this fact as in stand your ground, outstanding, and
standoffish. These patterns of word use reflect dimensions of
posture such as verticality, balance, force, and resistance to force.
These embodied constraints come from upright stance in a gravi-
tational field (Lakoff, 1987). The case of stand is deceptively
transparent of embodiment. One can easily overlook the profound
subtleties of the insight, but figurative expression is one of many
examples of embodied cognition (Gibbs, 1994; Johnson, 1987;
Lakoff, 1987; Lakoff & Johnson, 1999; Varela, Thompson, &
Rosch, 1991; Wilson, 2002).

Notably, embodiment refers to heterogeneous processes stacked
on a hierarchy of timescales. Being human with respect to time-
scales of human evolution constrains the patterns of language and
thought that emerge on timescales of cultural change—the body
constrains language and thought. In turn, cultural patterns of
language and thought constrain cognitive propensities on faster
timescales of human discourse—culture constrains the cognitive
activities of the mind and body. In the next turn, cognitive con-
straints that emerge in human discourse are continually available
to control motor coordination. Cognitive factors supply subtle,
measurable structure to the rapidly changing kinematics of bodily
movements (Abrams & Balota, 1991; Balota & Abrams, 1995;
Gentilucci, Benuzzi, Bertolani, Daprati, & Gangitano, 2000;
Kawamoto, Kello, Higareda, & Vu, 1999; Zelinsky & Murphy,
2000).

In another example, neural processes develop to fit the geometry
of actions. Bodily activities shape the topography of neural pro-
cesses—the body constrains the brain (compare Purves, 1988). In
still other instances, long-term bodily limits such as range of
motion, plus the current configuration of the body, constrain
cognitive judgments—the body constrains the mind (see, e.g.,
Glenberg, 1997; Glenberg & Kaschak, 2002; Klatzky, Pelligrino,
McCloskey, & Doherty, 1989). Imagination, including imagined
movements that never occur, is likewise constrained (Parsons,
1994). Imagination unfolds along lines of recurring embodied
activity (Gibbs & Berg, 2002).

In summary, interaction-dominant dynamics necessitate a re-
search program of situated embodied cognition. No causal distinc-
tion is made between the mind and body, so being a body comes
with constraints for cognitive activity. Timescales of embodiment
compose a hierarchy ranging from glacial scales of evolution to
online kinematics. In hindsight, embodiment would appear to have
required interaction-dominant dynamics. In what other form could
formal a priori motivation appear? Picture toe-tapping proponents
of embodied cognition, arms folded, waiting impatiently for Juar-
rero’s conjecture and the justification it supplies.

Conclusions

The most reliable implications of new science are often what it
can say about old science—that scientists should question the
assumption of component-dominant dynamics and the Newtonian
metaphor of cause and effect. The contrast with interaction-
dominant dynamics and self-organized criticality has been the
engine of change in this regard. The story that these assumptions
tell is necessary to understand the significance of ubiquitous cor-
related noise. As in any critical contrast, the confirmed hypothesis
becomes more credible. It is therefore more credible that inten-
tional acts originate in states of self-organized criticality, that they
express general principles of pattern formation in thermodynamic
systems.

Self-organized criticality supplies the first plausible metaphor
for self-control. Near critical points, interaction-dominant dynam-
ics coordinate activity across the multiple timescales of embodied
fluctuations. Context sensitivity near critical points situates behav-
ior within the flow of circumstances. An actor situated in this sense
reflects previous and oncoming circumstances directly as purpo-
sive behavior. These conclusions are supported by widespread
evidence of pink background noise that we have described. They
find another kind of support in the widely held belief that human
beings are intentional beings. People interpret each other’s actions
as intentional in all domains of human discourse (Gibbs, 1999).
Scientists do the same when they seek a participant’s cooperation,
give careful instructions on how to perform, or discard an unco-
operative person’s data.
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