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Four experiments examined trial sequencing effects in human contingency judgment. In 
Experiments 1-3, ratings of contingency between a target cue and outcome were affected by 
the presentation order of a series of trials distributed in 2 distinct blocks and showed a recency 
bias. Experiment 4 replicated this effect when the trials were partly intermixed. These recency 
effects are predicted by an associative learning model that computes associative strengths trial 
by trial and incorporates configural coding of cues but are problematic for probabilistic 
contrast accounts, which currently have no provision in the contingency computation for the 
differential weighting of trials as a function of their order of presentation. 

Humans and other organisms are very adept at judging 
whether and to what extent two events are related. People 
can learn that pressing a light switch causes a light to come 
on, that eating a particular food makes them ill, that car 
accidents are more likely on wet roads, and a host of similar 
event relationships. A great deal of research interest has been 
recently dedicated to the study of how such judgments are 
made. In this article, we evaluate a theory of contingency 
judgment, recently formulated by Cheng and Holyoak 
(1995), which proposes that individuals compute event 
relationships in a normative fashion. In addition, the predic- 
tions made by this contingency theory are contrasted with 
those made by a completely different account of how event 
relationships are detected, namely an associative account 
(Dickinson, Shanks, & Evenden, 1984; Gluck & Bower, 
1988; Kruschke, 1992; Pearce, 1994; Rescorla & Wagner, 
1972; Wasserman, Elek, Chatlosh, & Baker, 1993). 

Suppose we wish to compute the degree of association 
between two events that we call a cue (C) and an outcome 
(O). According to the so-called AP rule, the normative 
metric of event association is given by the difference 
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between the probability of the outcome in the presence of the 
cue, P(O/C), and its probability in the absence of the cue, 
P(O/C):  

A P =  P(O/C)  - P (O /C) .  (1) 

This metric can take on values between 1.0 and -1 .0 .  
When the probability of the outcome in the presence of the 
cue is 1.0 and its probability in the absence of the cue is 0, a 
connection plainly exists and AP is 1.0. For intermediate 
cases where P(O/C) is greater than P(O/C), a connection is 
again present, but in this case an imperfect one. Windows 
don't always break when hit by balls, but being hit by a ball 
certainly increases the likelihood that a window will break. 
When P(O/C) and P(OIC) are equal, the outcome is no 
more likely in the presence of the cue than in its absence; 
obviously, in such cases no relationship exists. When 
P(O/C) is zero and P(OIC) is 1.0, the cue perfectly predicts 
the absence of the outcome. Again, intermediate cases exist 
when P(O/C) is less than P(OIC). Here, we would say that 
a cue--outcome relationship exists, except that it happens to 
be a negative one. 

A number of researchers have suggested that people 
determine event relationships by maintaining records of the 
relevant conditional probabilities and then base their contin- 
gency_judgments on the difference between P(O/C) and 
P(OIC) (e.g., Wasserman, 1990). However, the computation 
of AP given in Equation 1 needs to be modified because that 
equation makes a number of erroneous predictions even in 
simple situations. For example, consider an experiment by 
Shanks (1991, Experiment 2), in which participants learned 
relationships between symptoms (cues) and diseases (out- 
comes). In a so-called contingent condition, cues A and B 
were paired together on some trials and reliably predicted 
outcome O1 (AB--. 00. On other trials, B predicted no 
disease outcome (B ~ no O) and C predicted outcome O1 
(C---  O1). In a noncontingent condition, presented concur- 
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rently, participants received DE ---. 02, E --4 O2, and F ---- no 
O trials. After a number of trials, participants estimated the 
relationship between cueA and outcome O1 and between cue 
D and outcome 02. The probability of outcome O1 given cue 
A, P(OllA) ,  is 1.0 (~cause  disease 1 always occurs on AB 

trials), and P(Ol lA)  is .2 (because disease 1 occurs in 1 out 
of  the 5 trial types in which cue A is absent, and these trial 
types are equiprobable). According to the AP rule, then, the 
contingency between cue A and outcome 1 was 0.8. In terms 
of AP the contingency between D and 02 was also .8 
[P(O21D) = 1.0 and P(O2/D) = .2], yet people gave reliably 
greater judgments for the A ~ O1 than for the D --. 02 
relationship, and common sense suggests that this result is 
reasonable: O1 is contingent on cue A because it does not occur in 
the presence of cue B alone, whereas 02 is not contingent on cue 
D because it also occurs on trials with E alone. 

This finding is at variance with the AP rule, but as Cheng 
and Holyoak (1995) have pointed out, this measure, as 
computed in Equation 1, is not the appropriate normative 
standard against which individuals' judgments should be 
evaluated. In fact, a reinterpretation of this rule allows these 
particular results and related cue selection effects to be 
explained (Cheng & Holyoak, 1995; Melz, Cheng, Holyoak, 
& Waldmann, 1993). This new version of the normative 
theory is called the probabilistic contrast model (Cheng & 
Novick, 1990, 1991, 1992). 

Probabilistic Contrast Model 

The probabilistic contrast model (PCM) represents a 
normative extension of the AP metric to situations in which 
the target cue-outcome relationship is evaluated against a 
varying context (i.e., situations where multiple predictors 
co-occur or the background cues change). In these more 
complex situations, both the relationship between a target 
cue (A) and the outcome and also the predictive status of 
other cues are taken into account. Specifically, the contin- 
gency between cue A and the outcome must be computed 
over certain restricted foca l  sets of events. Suppose that cue 
A co-occurs with cue B and both cues are paired with the 
outcome. To evaluate the true or normative relationship 
between cue A and the outcome, the status of any other 
possible alternative predictors of the outcome (such as B) 
need to be held constant. This requirement is met if the 
contingency between A and the outcome is computed over a 
focal set in which cue B is always present or over a focal set 
in which cue B is always absent. Then, the contingency 
between A and the outcome conditional on the presence of 
the alternative cue B, APB, is simply the difference between 
the proportion of cases in which the outcome is present 
given the presence of both cues and the proportion of cases 
in which the outcome is present given the absence of the 
target cue A and the presence of the alternative cue B: 

AP B = P(O/A . B )  - P ( O I A . B ) .  (2) 

Alternatively, the contingency between A and the out- 
come may be computed as the difference between the 
proportion of cases in which the outcome is present given 

the presence of the target cue A and the absence of the 
alternative cue B and the proportion of cases in which the 
outcome is present given the absence of both cues: 

AP-ff = P ( O / A .  -B) - P(OIA .B).  (3) 

Thus, the PCM comes to satisfy a normative requirement 
about when two events may be regarded as related. The 
evaluation of the predictive status of a cue must be based on 
a contrast between what happens when it is present versus 
what happens when it is absent, all else being held constant. 
Cheng and Holyoak (1995) have recently put forward a 
specific implementation of this normative analysis to ex- 
plain how people detect predictive relationships between 
events. It should be noted that the PCM was originally 
presented as a computational-level theory (e.g., Cheng & 
Novick, 1992) with no specification of how the computa- 
tions might be performed in mental processing terms. In the 
present article, we were principally concerned with the 
algorithmic-level version of the PCM formulated by Cheng 
and Holyoak and Melz et al. (1993) and directly contrasted 
by them with the Rescorla-Wagner theory. We refer to this 
as the PCM-ALG model. Cheng and Holyoak's implementa- 
tion of the PCM includes several steps: (a) selecting which 
cues will be incorporated in the focal sets or will be used to 
conditionalize other cues, (b) choosing the conditional 
contrasts to be calculated, and (c) integrating the informa- 
tion provided by the different conditional contrasts into a 
single judgment about the predictive value of the target cue. 
According to this particular version, the different focal sets 
are exclusively defined in terms of the normative require- 
ments mentioned above. 

To see how the PCM-ALG implementation works, let us 
consider its application to the experiment by Shanks (1991, 
Experiment 2). With regard to the target cue A--outcome O 1 

relationship, the model implementation predicts that cue C 
will be initially selected as a conditionalizing cue given that 
it has been consistently paired with outcome O1. Though cue 
B might in principle be regarded as a potential conditionaliz- 
ing cue, the fact that cue B was consistently paired on its 
own with the absence of the outcome precludes its consider- 
ation as a potential alternative predictor. As participants 
have no prior beliefs about the predictive value of any other 
cue, cue C may be initially regarded as the only conditional- 
izing cue. Hence, this is the cue whose status (presence or 
absence) needs to be controlled to correctly assess the true 
predictive value of the target cue A. In general, people will 
prefer the contrast conditional on the absence of all condition- 
alizing cues (for a presumably positive relationship between 
the target cue and the outcome) or the contrast conditional 
on the presence of an already known predictive cue (for a 
presumably negative relationship; see Cheng & Holyoak, 
1995, for further explanation of this point). From the 
information provided in the task, the only meaningful 
conditional contrast that can be computed is the one that is 
conditional on the absence of cue C. According to this 
contrast, participants will compute the probability of O1 
given the presence of A and the absence of C, P ( O l l A .  C), 
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which has a value of 1.0. In addition, partidpants will com- 
pute the p.Lobability of O 1 in the absence of both A and C, 
P(O1/A. C), which has a value of 0. Thus, cue A 
has a conditional contingency of 1.0 in the focal set in which 
cue C is absent. 

With regard to the relationship between the target cue D 
and outcome 02, cue E will be selected as the only 
conditionalizing cue as it has been consistently paired with 
outcome 02. Again, from the information provided in the 
task, the only conditional contrast that can be computed is 
the one conditional on the presence of cue E. Thus, 
participants will compute the probability of 02 given the 
presence of both D and E, P(O2/D. E), which has a value of 
1.0. In addition, they will compute the probability of.__O 2 in 
the absence of cue D and the presence of cue E, P(O2/D. E), 
which also has a value of 1.0. Therefore, cue D has a 
conditional contingency of 0 in the focal set in which cue E 
is present. Because the most relevant conditional contrast, 
the contrast conditional on the absence of cue E, cannot be 
computed, participants will not be completely certain about 
the predictive value of cue D. In this case, they may partially 
consider the unconditional AP metric between cue D and 
outcome 02, which yields a value of 0.8. However, it should 
be remembered that this is tantamount to saying that 
participants consider an inappropriate or nonnormative 
contingency measure for the situation involved here. In 
accordance with Cheng and Holyoak's (1995) implementa- 
tion, participants will integrate the information from the 
different contrasts that have been computed. Thus, ratings 
for cue D will vary between 0 and .8 (on a scale from 0 to 
1.0). Hence, higher ratings are expected for cue A than for D, 
which was the empirical result observed. 

The Associative Account  

Another way of explaining these results is based on an 
entirely different mechanism. According to associative mod- 
els, people form mental connections between the various 
events and update these connections on a trial-by-trial basis 
according to some connectionist learning rule. One simple 
rule was proposed by Rescorla and Wagner (1972) to deal 
with associative learning in conditioning experiments, and is 
formally equivalent to the delta rule used in many connection- 
ist learning models (Gluck & Bower, 1988; Kruschke, 1992, 
1993; McClelland & Rurnelhart, 1985). On each trial, the 
strength (V) of the target association is changed by an 
amount AV, given by: 

A V  = ~ X p X ( X  -- :,Y-,V), (4) 

where ot and 13 are learning rate parameters determined by 
the saliences of the cue (or = 0 when the cue does not occur 
on a trial) and the outcome, respectively; k is the total 
association strength that can be supported by the outcome 
(normally set to 1.0 if the outcome occurs on a given trial 
and to 0.0 otherwise); and ~V is the sum of the associative 
strengths of all cues present on the current trial. Learning 
continues until k equals EV, which means that the outcome 
is fully predicted on trials on which it occurs and its absence 

is also fully predicted on trials on which it does not occur. In 
those cases in which the cue predicts the absence of the 
outcome, its associative strength becomes negative. It is 
assumed that people's ratings of the relationship between the 
target cue and the outcome are monotonically related to the 
associative strength of that cue (V). 

How does the Rescorla-Wagner theory explain the results 
of the Shanks (1991, Experiment 2) study? In the contingent 
condition, the model assumes that the associative strength of 
both cues A and B will increase on AB ---, Oi trials because 
they are paired with outcome O1. However, the associative 
strength of cue B will decrease on B ----, no O trials as this cue 
is explicitly paired with the absence of the outcome. 
Eventually, the competitive nature of the learning algorithm 
will ensure that cue A ends up with an associative strength of 
k. In the noncontingent condition, the associative strengths 
of both cues D and E will increase on DE ~ 02 trials. In 
addition, cue E will further augment its associative strength 
on E---, Oz trials. Note that when ~Vbegins to exceed k on 
DE---, O2 trials, both cues will lose associative strength. Yet, 
cue E will still increase its strength on E ~ 02 trials. As a 
consequence of this trade-off, cue E will end up with all the 
associative strength available (k) and the associative strength 
of cue D will be zero. Trials with cues C and F have been 
dropped from this analysis because they do not affect what is 
learned about the other cues. Hence, the theory predicts a 
greater associative strength for cue A in the contingent 
condition than for cue D in the noncontingent one. Thus, 
higher ratings are expected for cue A than for D, consistent 
with people's ratings. 

Comparison o f  the Theories 

To summarize the discussion to this point, two accounts of 
how contingency judgments are made have been described, 
one based on the computation of conditional contrasts and 
the other based on accumulating changes in associative 
strength. How can we decide between these the.odes? A large 
amount of research has been conducted with the aim of 
distinguishing them (e.g., Baker, Mercier, Vallte-Tou- 
rangeau, Frank, & Pan, 1993; Chapman, 1991; Cheng & 
Holyoak, 1995; Melz et al., 1993; Price & Yates, 1993; 
Shanks, 1991, 1993a; Van Hamme & Wasserman, 1994; 
Wasserman et al., 1993; Waldmann & Holyoak, 1992; see 
Allan, 1993, and Shanks, 1993b, 1995a, for reviews). In 
what follows, some of these efforts are briefly reviewed. 

One strategy has been to obtain from participants not only 
their contingency judgments but also their ratings of the 
relevant conditional probabilities, and then to evaluate the 
extent to which the function relating them is as described by 
Equation 1. In an instrumental learning task, Wasserman et 
al. (1993) asked participants to rate an action--outcome 
relationship and at the same time to estimate the probability 
of the outcome (O) in the presence [P(O/A)] and in the 
absence [P(O/-A)] of the action (A). In different problems the 
actual value of AP varied from -1 .0  to 1.0. In these 
experiments the target action took place against a nonvary- 
ing context; hence, the unconditional AP measure is the 
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appropriate normative metric of the programmed relation- 
ships. 

Although contingency judgments were generally accu- 
rate, and although probability estimates were generally quite 
close to the programmed probabilities, Wasserman et al. 
(1993) concluded that contingency judgments were not 
mediated by estimates of the relevant conditional probabili- 
ties, but were instead better accounted for by the Rescorla- 
Wagner theory. The reason for reaching this conclusion was 
that biases in contingency estimates were not well explained 
by biases in probability estimates. For instance, on the basis 
of participants' probability estimates, increasing P(O/A) 
from 0.0 to 1.0 should have had a smaller impact on 
contingency judgments than increasing P(OIA) from 0.0 to 
1.0. In fact, the exact opposite effect was observed in 
individuals' contingency ratings. 

Another piece of evidence that can be marshaled in favor 
of the associative theory comes from studies of the learning 
functions obtained by asking people to estimate event 
contingencies after varying numbers of trials. In several 
studies, a relationship was established between a target cue 
and an outcome within a constant context, and the general 
finding (e.g., Shanks, 1985a, 1987, 1995a; Shanks, L6pez, 
Darby, & Dickinson, 1996) is that under a positive contin- 
gency, judgments start close to zero and slowly increase in a 
negatively accelerated fashion toward the actual contin- 
gency, whereas under a negative contingency, judgments 
slowly decrease across trials toward the actual contingency. 
When ~ is zero but the probability of the outcome is fairly 
high, an interesting finding is that judgments tend to increase 
initially before falling back toward zero (e.g., Shanks et al., 
1996), a result that is also obtained in animal conditioning 
studies (Kremer, 1971; Rescorla, 1972). The overall pattern 
of results is well accommodated by the Rescoda-Wagner 
theory, because associative strengths are assumed to start at 
zero and because increments and decrements in associative 
strength get smaller the closer ~V is to its asymptotic level 
(k). The preasymptotic biases found in participants' ratings 
when Ap is zero and outcomes are very frequent is also 
predicted by the Rescorla-Waguer theory (see Shanks, 
1995a, for further explanation). Although learning functions 
are not necessarily incompatible with a normative account 
(e.g., Fales & Wasserman, 1992, have suggested that Bayes's 
theorem may accommodate such functions), these results are 
problematic for theories that assume that contingency judg- 
ments are based on ~ ,  because the latter was kept constant 
across trials in these experiments. In addition, it is not 
obvious how a normative analysis can give an account of the 
preasymptotic bias shown by judgments in high-frequency 
noncontingent conditions. 

Although these results tend to favor the Rescorla-Wagner 
theory, some data reported by Waldmann and Holyoak 
(1992) seem to be better explained by the PCM. Waldmann 
and Holyoak have supplemented the contingency account 
with a causal model theory. According to this theory, people 
are sensitive to the causal status of cues and outcomes when 
learning predictive relationships between events. Specifi- 
cally, this theory predicts that in a situation in which 
multiple cues are possibly related to a single outcome (as in 

the previously mentioned experiment by Shanks, 1991), cue 
selection effects may only emerge when the cues are 
interpreted as causes and the outcome as an effect (e.g., 
different foods [cues] causing an allergic reaction [out- 
come]) but not when the cues and the outcome are inter- 
preted as effects and a cause, respectively (e.g., different 
symptoms [cues] being caused by a virus [outcome]). This 
comes about because, as Waldmann and Holyoak (1992) 
said, "People have a strong predisposition to learn directed 
links from causes to effects, rather than vice-versa, even in 
situations in which they receive effect information prior to 
cause information" (p. 224) and "different effects, like 
different dependent measures obtained in an experiment, do 
not compete with one another; rather, each effect, as well as 
any interaction among the effects, provides information 
about the consequences of the cause" (p. 226). Because 
associative theories ignore the possible causal status of 
events and merely focus on their relatedness, it should make 
no difference whether a cue-outcome learning task is 
presented in an effect ---. cause rather than a cause --. effect 
format. Waldmann and Holyoak obtained evidence favoring 
their causal model theory over associationist theories. How- 
ever, their study has been criticized on methodological 
grounds and, contrary to the causal model theory, evidence 
has been reported that cue competition does emerge in 
effect --, cause situations (Matute, Arcediano, & Miller, 
1996; Price & Yates, 1995; Shanks & L6pez, 1996; see also 
Waldmann & Holyoak, 1997). Thus, the evidence on this 
issue is currently inconclusive. 

Two key points are illustrated by this short review. First, 
the two theories make divergent and testable predictions in a 
wide range of situations. Second, although previous research 
has not succeeded in yielding a conclusive answer to the is- 
sue of which theory better accounts for human contingency 
judgment data, the associative explanation seems to be fa- 
vored, in general, by the current data. Nevertheless, we believe 
that firmer conclusions may be reached from studies focus- 
ing on different aspects of contingency judgment, specifi- 
cally, those aspects related to the nature of the mechanism by 
which people compute predictive relationships. 

Trial Order Effects 

Perhaps one of the clearest ways of distinguishing be- 
tween the two theories is in terms of their predictions 
concerning manipulations of the order in which different 
trial types are seen. If people compute event relationships by 
maintaining accurate records of the normatively relevant 
conditional probabilities, changing the order in which trials 
are seen should, according to the PCM-ALG, have no effect 
on contingency estimates: Such conditional probabilities are 
the same regardless of the order in which the events are 
observed. The Rescorla-Wagner theory, on the other hand, 
predicts profound effects of trial order variations. The 
predictions of the model are elaborated in detail later, but for 
present purposes the main thing to note is that the model 
predicts recency-density effects whereby the most recent 
and dense trial types will have the biggest impact on 
judgments. 
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Trial order effects are inherently interesting because they 
allow a direct examination of the processes involved in the 
real-time updating of beliefs. Although trial order effects 
have been demonstrated in a variety of judgment tasks (see 
Hogarth & Einhorn, 1992), the evidence'for order effects in 
contingency judgment is very sparse. Some of the best 
evidence comes from a series of studies by Chapman (1991), 
which focused on the selectional effect called blocking 
(Kamin, 1968). In her experiments, which as in Shanks's 
(1991) study used a medical diagnosis procedure, it was 
shown that contingency judgments were affected by trial 
order manipulations. For instance, in Chapman's Experi- 
ment 2, participants received trials divided into three phases. 
Trials in Phase 1 showed that cue P predicted outcome O1 
(P ---* O1) and cue N was paired with the absence of the 
outcome (N---, no O). In Phase 2, the combination of cues P 
and F predicted O1 (PF ---, O1) and the combination of cues 
N and B also predicted O1 (NB ---. 01). Then in Phase 3, N 
was paired with outcome O1 (N---, O1) and cue P was paired 
with the absence of the outcome (P ----, no O). Note that PF 
and NB were treated identically in Phase 2, and that both P 
and N were associated by themselves with O1 in one phase 
and were not associated with O1 in another phase; for P the 
association with O1 occurred in Phase 1, whereas it occurred 
in Phase 3 for N. Because the relevant trial types for the 
target F --* O1 and B ---* O1 relationships are, therefore, 
identical, except that the order in which these trials are 
presented is different, the PCM-ALG predicts that ratings 
for these two cues should be equal. However, participants 
rated the predictive value of cue B as being greater than that 
of cue F. Although inconsistent with contingency-based 
theories, this result is predicted by the Rescorla-Wagner 
theory. According to that theory, symptom P will have 
acquired positive associative strength in the first stage and 
will therefore block symptom F from acquiring significant 
associative strength on the PF ~ O1 trials. In contrast, 
symptom B will acquire half of the associative strength 
available on the NB --. O1 trials, and this will not be affected 
by the subsequent N---* Ol trials. 

Although this particular result only contradicts the 
PCM-ALG's predictions, other trial order effects reported by 
Chapman (1991) were problematic for both the PCM-ALG 
and the Rescorla-Wagner theory. For example, in her 
Experiment 3, Chapman found that blocking could be 
demonstrated in situations where compound cue trials are 
presentexl before (rather than after) single cue type trials, a 
result that is not predicted by the Rescorla-Wagner theory. 
At variance with the PCM-ALG, this procedure generated a 
blocking effect of a significantly lesser magnitude than the 
standard procedure, however. Thus, individuals re-evaluated 
the predictive values of the target cues as a result of new 
information about the predictive value of competing cues 
(see also Shanks, 1985b, for similar results). 

Probably the main question in studies of trial order effects 
in the updating of beliefs is whether judgments are most 
influenced by information presented first or last (i.e., pri- 
macy vs. recency). Chapman's (1991) findings are hard to 
interpret in terms of primacy and recency because trial order 
for the target cues was not directly manipulated. In Chap- 

man's Experiment 2, for example, the order of trials paired 
with the target cues F and B was manipulated, but not that of 
F and B themselves. Only a small number of studies have 
asked whether primacy or recency effects occur in contin- 
gency ratings. In one study (Yates & Cnrley, 1986; see also 
Curley, Young, Kingry, & Yates, 1988), participants had to 
detect the relationship between the color of a fictitious plant 
and its region of origin. Although the overall information 
provided indicated that these attributes were unrelated (i.e., 
flap = 0), trials were divided into two blocks containing 
contradicting information about this relationship: In one 
condition, the early information suggested a positive relation- 
ship and the later information a negative one, whereas in a 
second condition, this ordering was reversed. In addition to 
having to rate the predictive relationship between the 
attributes, participants had to explicitly rate the conditional 
probabilities that defined the contingency (see Equation 1). 
The results showed that contingency judgments derived 
from these latter conditional probability ratings showed a 
primacy effect, but this effect only occurred when partici- 
pants were not informed at the beginning of the experiment 
about the later rating test. Participants informed about the 
test showed no order effect. Wasserman, Kao, Van Hamme, 
Katagiri, and Young (1996) also failed to observe order 
effects in two experiments in which participants judged the 
relationship between the presence or absence of a fertilizer 
and whether or not a plant bloomed. As in the Yates and 
Curley (1986) study, Ap was zero overall but went from 
positive to negative in some conditions and from negative to 
positive in others. 

In general, these results show that people's contingency 
judgments are often insensitive to the order in which trials 
are presented, as the PCM-ALG predicts. However, small 
effects are sometimes observed, as in Chapman's (1991) 
experiments. The experiments by Yates and Curley (1986) 
and Wasserman et al. (1996) are probably not very diagnos- 
tic because quite small numbers of trials were used and thus 
there is little opportunity for the effects of a belief updating 
mechanism to become apparent. Given the theoretical 
importance of these effects in potentially distinguishing 
between contingency-based and associative accounts of 
contingency judgment, further explorations of their impor- 
tance on such judgments is in order. It is perhaps also worth 
mentioning that in situations where order effects are com- 
monly observed, for example in studies of personality 
judgment (Hogarth & Einhom, 1992), they have in general 
proven difficult to account for. Judgment models based on 
Bayes's theorem, for instance, predict no order effects under 
any circumstances (Slovic & Lichtenstein, 1971). 

Overview of  the Experiments 

The four experiments we present specifically evaluated 
the possible influence of trial order on contingency judg- 
ments using longer series of trials. In all of the experiments, 
individuals performed a trial-by-trial learning task in which 
they had to learn predictive relationships between different 
cues and outcomes. Subsequently, in a test stage, they had to 
rate some target cue--outcome relationships. In the first three 
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experiments, during the learning stage, trials were divided 
into two distinct blocks. The relationships programmed in 
these two blocks were different: In fact, they contradicted 
each other, though to different extents in the different 
experiments. Thus, two trial order conditions were defined 
according to the particular block of trials that was presented 
first. At the end of the learning stage, taken as a whole, the 
statistical relationships arranged between the different cues 
and outcomes were identical for both trial order conditions. 
Hence, any difference in participants' contingency judg- 
ments would reflect the impact of trial order on these ratings, 
as this was the only difference between the experimental 
conditions. One alternative possibility is that participants 
simply forgot the relationships programmed during the first 
block of trials and, thus, different ratings are expected in the 
two trial order conditions. This possibility was specifically 
evaluated in Experiment 3. Another possibility relates to the 
fact that trials were presented in two distinct blocks and, 
hence, any difference between judgments might be due to 
this aspect of the procedure. In Experiment 4, therefore, a 
gradual transition was made between blocks in the sense that 
trial types were intermixed in a particular way, though two 
trial order conditions were still defined. In addition, this 
design allowed us to evaluate whether participants were 
operating on a limited moving-window basis, so that only 
the most recent information was considered in their contin- 
gency ratings. Both of these possibilities can be regarded as 
alternative interpretations of trial order effects that are 
compatible with the PCM-ALG's predictions, provided the 
model is supplemented with additional mechanisms. 

Experiment  1 

In Experiment 1 we evaluated whether the order in which 
trials are presented influences contingency judgments. The 
task was divided into two blocks of trial types, and two trial 
order conditions were compared. In one of the trial order 
conditions, a contingent relationship was programmed be- 
tween a target cue and an outcome during the first block of 
trials, whereas in the second block this relationship was 
turned into a noncontingent one. In the other trial order 
condition, the order in which blocks were presented was 
simply reversed. 

As in Shanks' (1991) experiment, participants received 
information about the symptoms that a particular patient 

presented and they had to diagnose the disease this patient 
was suffering from. All of the relationships were probabilis- 
tic. Table 1 shows that the cues of interest, A and D, were 
followed by their respective outcomes O1 and 02 exactly the 
same number of times and in compound with cues that had 
undergone exactly the same treatment. The only difference 
between A and D was that A was a better predictor of O1 than 
its pairmate B in Block 1 and a worse predictor than its 
pairmate C in Block 2, whereas for D this was reversed. That 
is, D was a worse predictor of 02 than E in Block 1 and a 
better predictor than F in Block 2. After seeing all of the 
trials, participants judged the relationship between cue A and 
outcome O1 and between cue D and outcome 02. If these two 
ratings differed, judgments could be regarded as being 
sensitive to trial order, as this is the only factor in which the 
two conditions differed. 

The contingency-based and the associative model make 
different predictions about contingency ratings in the two 
conditions. Specifically, the PCM-ALG predicts that judg- 
ments should be identical across conditions, whereas the 
Rescoda-Wagner model predicts lower judgments in the 
contingent-noncontingent (con-non) condition than in the 
noncontingent--contingent (non--con) condition. Where do 
these model predictions come from? With regard to the 
PCM-ALG, judgments concerning the A ~ O1 and D ~ O2 
relationships should not differ because the probabilistic 
evidence provided during the task in these two conditions is 
identical (see the Appendix for detailed contingency calcula- 
tions as predicted by the PCM-ALG). In contrast, the 
Rescorla-Wagner theory predicts a recency effect in individu- 
als' ratings. The dotted lines of Figure 1 show the associative 
strengths predicted for target cues A and D across trials 
under the two experimental conditions (the meaning of the 
continuous lines is discussed below). With respect to the 
A ~ O1 relationship (con-non condition), the associative 
strength of cue A increases during the first block of trials 
until reaching an asymptotic positive value of about .6. 
During the second block of trials, its associative strength 
diminishes towards an asymptotic value of 0, provided a 
sufficient number of trials is presented. With regard to the 
D ---, 02 relationship (non-con condition), the associative 
strength of cue D at the end of the first block of trials is 0. 
However, its associative strength increases until reaching an 
asymptotic value of around 0.6 during the second block of 
trials. Hence, lower ratings are expected for cue A than for 
cue D at the end of the learning phase, as participants' 

Table 1 
D e s i g n  o f  E x p e r i m e n t  1 

Trial order 
condition Block 1 Block 2 Test cue Judgment 

Con-non 8 AB --* O1/2 AB ---* no O 8 A C - - - * O I I 2 A C - - * n o O  A---*Ol? M= 73.6 
8 B --~ no OI2 B--* 01 8 C - - * 0 1 1 2 C - - * n o 0  

Non--con 8 DE ---* 0212 DE ---* no O 8 D F ~ O2/2 D F  ~ no O D ~ 02? M = 80.6 
8 E ~ 0212 E ---* no O 8 F --~ no 012 F ~ 02 

Note. Con = contingent; Non = noncontingent. A, B, C, D, E, and F are symptoms; Ol and 02 are 
diseases 1 and 2, respectively; no O = no disease. 
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Figure 1. Solid lines: differences (Differ.; cue A) across the 
learning stage between the proportion of times disease 1 is 
predicted on AB versus B and AC versus C trials and differences 
(cue D) between the proportion of times disease 2 is predicted on 
DE versus E and DF versus F trials in Experiment 1. Dashed lines: 
predicted changes in the associative strengths of cues A and D 
across the learning stage according to the Rescorla-Wagner (R-W) 
theory. Predictions were averaged across 10 replications of the 
same number and equivalent pattern of training trials as the 
participants received in Experiment 1. All ot and 13 parameters were 
set to .2, and k was set to 1.0 and 0 for the occurrence and absence 
of the target outcome, respectively. 

ratings about the predictive value of  a particular cue are 
monotonically related to its associative strength. 

itchiness, respectively. For the remaining participants, the assign- 
ments for symptoms A and D were reversed and also for symptoms 
G and J. Orthogonally to this, for half of the participants, diseases 
1-4 were Cajal's Disease, Hocitosis, Ochoa's Syndrome, and 
Beralgia, respectively. For the other half, the assignments for 
diseases 1 and 2 were reversed and also for diseases 3 and 4.1 On 
each trial, participants read on the screen the symptom or symp- 
toms that the patient had: "Patient number 'X'  has the following 
symptoms . . . .  "Then, a list of symptoms appeared and the correct 
diagnosis for that patient was requested: "What is the correct 
diagnosis?" There were five possible diagnostic categories for each 
patient: M = Cajal's Disease, H = Hocitosis; S = Ochoa's 
Syndrome, B = Beralgia, and N = no disease. After participants 
had made their diagnosis, the program indicated what the correct 
diagnosis was for that particular patient: "The correct answer is 
Cajal's D i ~ o c i t o s i s / O c h o a ' s  Syndrome/Beralgia/no disease." A 
beep accompanied the correct diagnosis if the participant's diagno- 
sis was wrong. For symptoms AB, the correct diagnosis was disease 
1 on 80% of the trials and no disease on the remaining 20%. For 
symptoms DE, the correct diagnosis was disease 2 on 80% of the 
trials and no disease on the remaining 20%, and so on (see Table 1). 
Participants pressed the space bar to see the next patient. 

After all of the trials had been presented, participants had to rate 
on a scale from 0 to 100 the relationships between the target 
symptoms and each of the diseases: "Mark with an 'X' on a scale 
from 0 to 100 the degree of relationship between [symptoms A/D] 
and the different diseases. Zero means that there is no relationship 
and 100 means a perfect relationship." Although participants rated 
the degree of relationship between each symptom and disease, only 
those judgments concerning the target relationships are considered, 
namely symptom A --4 disease 1 and symptom D ---* disease 2. As 
two identical sets of symptoms and diseases were included per trial 
order condition and a counterbalancing procedure was adopted, 
participants' judgments were collapsed into a single measure, one 
per trial order condition. 

Resul ts  and  Discuss ion  

M e t h o d  

Participants and apparatus. The participants were 36 psychol- 
ogy undergraduates from Universidad de M~laga who volunteered 
to take part in the experiment. All participants were tested 
individually, and the task was presented on an IBM-PC computer 
connected to a color monitor. Participants' judgments were re- 
quested by means of a paper-and-pencil questionnaire. 

Procedure. After a brief verbal description of the task, partici- 
pants read the instructions on the computer screen. Their task was 
to diagnose a set of hypothetical patients according to the 
symptoms they had. A total of 160 trials was presented, divided into 
two blocks of 80 trials. Each trial comprised the case history of a 
single patient. Table 1 displays the trial types that were pro- 
grammed, and these were randomized within blocks. A total of 10 
trials of each trial type was presented. The two blocks were 
presented in a single series with no break so that participants could 
not formally distinguish them. 

Table 1 displays only half of the trial types that occurred in the 
experiment. The other half were identical except that different 
symptoms (G to L) and diseases (3 and 4) were used. The 
relationships between these new symptoms and diseases mimicked 
the ones described in Table 1. Thus, there were two sets of 
relationships for each of the con-non and non-con conditions. For 
half of the participants, symptoms A-L were swollen gums, 
coughing, painful breathing, fever, excessive perspiration, sick- 
ness, headache, tremor, baldness, tachycardia, sight loss, and 

Table 2 shows the percentage of  correct diagnoses across 
participants for the last two trials of  each trial type at the end 
of  each training block. According to these mean percentages 
(M = 55.2 and M = 59.6 for Blocks 1 and 2, respectively), 
the task did not raise special difficulties for the participants. 
As there were five response categories, chance performance 
is I out of  5, or 20% correct. Given the probabilistic nature 
of  the task, the maximum level of  correct responding 
achievable is 80%. 

All  the statistical analyses reported in this series of  
experiments adopted a significance level of  99% (et = .01), 
unless otherwise stated. The critical data are the judgments  
made at the end of  the learning stage. Table 1 shows that 
ratings were higher in the non-con  than in the con-non  
condition (M = 80.6, SE = 3.7 and M = 73.6, SE = 4.4, 
respectively). A t test showed that the difference was 

1 All experiments were conducted in Spanish. The actual Span- 
ish names for symptoms A-L were enc£as inflamadas, tos, respira- 
citn fatigosa, fiebre, sudoracitn excesiva, mareos, dolor de 
cabeza, temblor, cafda del cabello, taquicardia, p~rdida de visitn, 
and picor, respectively. The Spanish names for diseases 1--4 were 
mal de Cajal, hocitosis, sfndrome de Ochoa, and beralgia, respec- 
tively. 
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Table 2 
Percentages of Correct Diagnoses on the Last Two 
Occurrences of Each Trial Type in the Learning Stage 
of Experiment I 

Trial type % correct 

Block 1 
AB 55.6 
B 58.3 
DE 59.7 
E 47.2 

M 55.2 
Block 2 

AC 67.4 
C 50.7 
DF 63.4 
F 56.9 

M 59.6 

Note. Chance performance is 20%. A, B, C, D, E, and F are 
symptoms. 

A 2 (order: con-non vs. non--con) X 10 (blocks) within- 
subjects analysis of variance (ANOVA) was performed on 
these difference scores. The blocks variable included two 
trial presentations of each target trial type. Only blocks and 
the Order x Blocks interaction produced significant differ- 
ences, F(9, 315) = 5.67, MSE = 0.09, and F(9, 315) = 9.50, 
MSE = 0.10, respectively. Four nonorthogonal planned 
contrasts served to test the associative moders most relevant 
predictions. In the con-non condition, the difference score 
after the fifth block was significantly greater than after the 
first block, F(1, 35) = 15.09, MSE = 0.10. In addition, the 
difference score after the last block was smaller than after 
the fifth block, F(1, 35) = 14.08, MSE = 0.10. In the 
non-con condition, the difference score between the fifth 
and first block was not significant, F(1, 35) = 0.70, MSE = 
0.10, but the difference score after the last block was greater 
than after the fifth block, F(1, 35) = 14.91, MSE = 0.10. As 
indicated by these contrasts, the main features of partici- 
pants' differential diagnoses across trials can be readily 
understood in terms of the associative model. 

statistically significant, t(35) = 3.11. Thus, the results 
showed a significant trial order effect on contingency 
judgments. Contrary to the predictions of the PCM-ALG, 
and in contrast to the findings of Yates and Curley (1986) 
and Wasserman et al. (1996), participants' judgments were 
affected by the order in which trials were presented and 
showed a recency effect. In addition, the specific trial order 
effect obtained is predicted by the Rescorla-Wagner model, 
as shown in Figure 1 (dotted fines). 

As earl be seen in these dotted fines of Figure 1, the 
Rescorla-Wagner theory postulates gradual changes in the 
associative strength of the target cues across trials. The 
model predicts that ratings at the end of Block 1 should be 
higher in the con-non than in the non--con condition, and 
this should be followed by an inversion of the relative 
ordering of ratings for the two trial order conditions by the 
end of the task. Although judgments were only elicited at the 
end of the learning stage so as not to make the trial blocks 
distinguishable, an indirect measure of how individuals' 
estimations of the target relationships evolve across trials 
can be derived. Thus, the Rescorla-Wagner theory's predic- 
tions across trials can also be tested. The model assumes that 
the difference between the proportion of times disease 1 is 
diagnosed on AB trials and on B trials reflects the associative 
strength of cue A across the first block of trials. Similarly, the 
difference between the proportion of times disease 1 is 
diagnosed on AC trials and on C trials reflects the associative 
strength of cue A during the second block of trials. Corre- 
spondingly, the difference between the proportion of times 
disease 2 is diagnosed on DE trials and on E trials indexes 
the associative strength of cue D across the first block and 
that between DF and F trials its associative strength across 
the second block. Hence, we can indirectly track through 
these differences how participants' estimations of the target 
relationships evolved during the learning session. The 
continuous lines of Figure 1 show that these difference 
scores mirror quite closely the predicted associative strengths. 

Experiment  2 

The results from Experiment 1 show the influence of trial 
order on contingency judgments, contrary to the predictions 
of the PCM-ALG. The PCM-ALG assumes that apart from 
the selection of restricted focal sets, all trial types contribute 
to the computation of contingency. The order in which these 
trials is presented should have no effect. 

Nevertheless, ratings were very high in both trial order 
conditions. In fact, mean judgments were above 70 on a scale 
from 0 to 100, and the actual trial order effect was small in 
absolute ten-c~s. This result is in line with the results of previous 
research, as mentioned above, in which empiricaUy small trial 
order effects were also found (Chapman, 1991; Shanks, 1985b). 

In our previous experiment, cues went from being reliable 
predictors of the outcomes to being nonpredictors of these 
outcomes, or vice versa. Although the changes in the 
relationships programmed between blocks were large enough 
to produce a significant order effect, more dramatic changes 
in these relationships should create a greater effect. Such 
modifications in the design do not qualitatively alter the 
main predictions made by the PCM-ALG or Rescorla- 
Wagner theory. Hence, evaluating the influence of trial order 
in this new situation should be more illuminating for 
comparing the predictions of the two theories. 

Table 3 shows the design of the present experiment in 
which a more radical manipulation of trial order is made. As 
before, two trial order conditions were programmed. Cue A's 
contingency for outcome O1 went from strongly positive in 
Block 1 to strongly negative in Block 2, whereas for cue D 
these contingencies (for outcome 02) were reversed. As with 
Experiment 1, the PCM-ALG predicts no order effect on 
contingency judgments because the trial types for the two 
conditions are identical (contingency calculations as pre- 
dicted by PCM-ALG are also included in the Appendix). In 
contrast, the Rescorla-Wagner theory again predicts a strong 
recency effect in contingency judgments. The dotted lines of 
Figure 2 present the associative strengths predicted for the 
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Table 3 

Design of  Experiments 2 and 3 

Judgments 

Trial order condition Block 1 Block 2 Test cue Exp. 2 Exp. 3 

Con-inh AB--,01 AC---,noO A---'01? M =  19.7 M =  18.2 
B --, noO C ~ O1 

Inh-con DE --* noO DF--4 02 D "-'* 0 2  .9 M = 69.4 M = 45.0 
E-- .  02 F---~ noO 

Note. Exp. = experiment; con = contingent; inh = inhibitory. A, B, C, D, E, and F are symptoms; 
O1 and 02 are diseases 1 and 2, respectively; no O = no disease. 

target cues A and D across trials under the two experimental 
conditions. As can be seen, the theory predicts that judg- 
ments in the contingent-inhibitory (con-inh) condition 
should be lower than those in the inhibitory-contingent 
(inh--con) condition. In addition, this associative account is 
sensitive to the fact that a more radical change in the 
contingencies programmed within each condition has been 
made and, hence, a greater trial order effect is expected for 
this design. Specifically, concerning the A --. Ol relation- 
ship, the associative strength of  cue A increases during the 
first block of  trials toward an asymptotic positive value of  
1.0. During the second block of  trials, its associative strength 
diminishes toward an asymptotic negative value of  -1 .0 .  
This comes about because on AC --. no O trials, h = 0 and 
]~V is greater than 0 as a result of  the C ---. O1 trials and, 
therefore, cue A's  associative strength will acquire a nega- 
tive value, assuming a sufficient number of  trials is provided. 

l 

c~ 0.8 

0.6 

0.4 

e~ 0.2 

o 

~ -0.2 

o -0.4 

~ -0.6 

~ -0.8 

-1 i i 
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Figure 2. Solid lines: differences (Differ.; cue A) across the 
learning stage between the proportion of times disease 1 is 
predicted on AB versus B and AC versus C trials and differences 
(cue D) between the proportion of times disease 2 is predicted on 
DE versus E and DF versus F trials in Experiment 2. Dashed lines: 
predicted changes in the associative strengths of cues A and D 
across the learning stage according to the Rescorla-Wagner (R-W) 
theory. Predictions were computed using the procedure described 
in Experiment 1 (see Figure 1). 

With regard to the D ---* 0 2 relationship, the asymptotic 
associative strength of  cue D at the end of  the first block of  
trials is -1 .0 ,  as it reliably predicts the absence of  O1. 
However, its associative strength increases toward an asymp- 
totic value of  1.0 during the second block of  trials. Hence, 
lower ratings are expected for cue A than for cue D. Given 
that the difference between the associative strengths of  the 
target cues at the end of  the learning stage is larger now than 
in Experiment 1, the experimental manipulation should have 
a greater impact on participants' judgments in Experiment 2. 

Method 

Participants and apparatus. The participants were 32 psychol- 
ogy undergraduates from Universidad de M~laga who volunteered 
to take part in this experiment. They had not participated in 
Experiment 1. The same computer and similar questionnaires were 
used as in Experiment 1. 

Procedure. Except where specifically mentioned, procedural 
details were as for Experiment 1. The experiment was again 
presented as a medical diagnosis task. 

Table 3 shows half of the trial types that occurred during the 
experiment. The other half was identical except that different 
symptoms (G to L) and diseases (3 and 4) were used. The symptom 
and disease names as well as the counterbalancing procedure were 
as described for Experiment 1. 

At the end of the learning phase, participants rated the relation- 
ships perceived between the target symptoms and each of the 
diseases on a scale from - 100 to 100. The negative half of the scale 
was introduced because of the negative relationships programmed 
between cues and outcomes. Specific written instructions were 
provided about the exact meaning of this negative scale: 

Use the POSITIVE HALF of the scale if you think that the 
symptom indicates the presence of the disease. Use the 
NEGATIVE HALF if you think that the symptom indicates 
the absence of the disease. Use values close to 0 if you think 
that symptoms and diseases are unrelated. 

Results and Discussion 

Table 4 shows the percentage of  correct diagnoses across 
participants for the last two trials of  each trial type at the end 
of  each block. By the end of  each block, participants had 
learned reasonably well the relationships programmed in 
that block (M = 93.4, SE = 1.5 and M = 84.0, SE = 3.1 for 
Blocks 1 and 2, respectively). Chance performance is 1 out 
of  5 response categories, or 20% correct. Because the 
symptom-disease relationships were deterministic, the per- 
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Table 4 
Percentages of Correct Diagnoses on the Last Two 
Occurrences of Each Trial Type in the Learning Stage 
of Experiment 2 

Trial type % correct 

Block 1 
AB 91.4 
B 97.7 
DE 89.1 
E 95.3 

M 93.4 
Block 2 

AC 82.8 
C 85.2 
DF 73.4 
F 94.5 

M 84.0 

Note. Chance performance is 20%. A, B, C, D, E, and F are 
symptoms. 

centage of correct responses is of course greater than in 
Experiment 1. 

The main results are participants' contingency judgments 
in the two trial order conditions. Mean ratings from the 
inh-con condition (M = 69.4, SE = 3.6) were higher than 
ratings from the con-inh condition (M = 19.7, SE = 7.4). A 
t test showed that the difference was statistically significant, 
t(31) = 7.68. 

The results revealed that contingency judgments were 
again affected by trial order, at variance with the predictions 
of the PCM-ALG. Moreover, the specific trial order effect 
found is predicted by the Rescorla-Wagner theory. 

In what follows, we undertake an evaluation of whether 
participants' estimations of the target relationships evolved 
across trials in the manner predicted by the theory. The 
differences between the proportion of times the target 
diseases were diagnosed on the relevant trial types (AB vs. B 
and AC vs. C, and DE vs. E and DF vs. F)  serve this 
purpose. These differences are shown in the continuous lines 
of Figure 2. Again, a general parallel between participants' 
performance and the associative theory's predictions can be 
seen. A 2 (order: con-inh vs. inh--con) × 10 (blocks) 
within-subjects ANOVA was performed on these differ- 
ences. The blocks variable included two trial presentations 
of each target trial type. Both within-subjects variables, 
order and blocks, were significant, F(1, 31) = 26.28, MSE = 
0.17, and F(9, 279) = 2.25, MSE = 0.08, p < .05, 
respectively. The interaction between the variables also was 
significant, F(9, 279) = 227.24, MSE = 0.12. Four nonor- 
thogonal planned contrasts served to evaluate the model's 
main predictions. In the con-inh condition, the difference 
after the fifth block of trials was significantly greater than 
after the first block, F(1, 31) = 119.77, MSE = 0.12. 
Similarly, the difference after the last block of trials was 
smaller than after the fifth block of trials, F(1, 31) = 450.59, 
MSE = 0.12. In the inh-con condition, the difference after 
the fifth block of trials was smaller than after the first block, 

F(1, 31) = 166.37, MSE = 0.12. In addition, the difference 
after the last block of trials was greater than after the fifth 
block, F(1, 31) = 507.11, MSE = 0.12. Thus, the main 
characteristics of the model's predictions were well illus- 
trated by the participants' performance across trials. 

One discrepancy between the model's predictions and 
participants' judgments is that the former predicts a negative 
terminal associative strength for cues in the con-inh condi- 
tion, whereas judgments had a mean positive value of 19.7. 
How can we explain this discrepancy? Participants may have 
had difficulties with the use of the response scale, which 
means that they could not clearly distinguish between its 
negative half and values close to zero. In fact, participants 
only used the negative half of the scale on 12 out of 64 pos- 
sible occasions (2 per participant) in which the relationship 
was negative during Block 2. In line with this, participants 
were informally interviewed at the end of the task, and some 
of them indicated difficulties in distinguishing between 
negative judgments and ones close to zero. This discrepancy 
may then be understood in terms of a performance deficit 
rather than an associative one. The general agreement shown 
in Figure 2 between the model's predictions and partici- 
pants' performance also speaks in favor of this possibility, 
and the monotonic relationship assumed by the Rescoda- 
Wagner theory between the cues' associative strengths and 
participants' judgments is reinforced in the results. 

The absolute difference between judgments in the two 
trial order conditions in Experiment 1 was 7.0 (80.6 vs. 
73.6), whereas in Experiment 2 it was 49.7 (69.4 vs. 19.7). 
Plainly, in absolute terms, the trial order effect found in 
Experiment 2 was of a much greater empirical magnitude 
than the one found in our previous experiment, as predicted 
by the associative theory. Given the relevance of trial order 
effects from a theoretical perspective, having found an 
empirically robust trial order effect is of considerable interest. 

We have argued that the trial order effects we have 
obtained are at variance with the PCM-ALG, but of course it 
is possible to think of various ways in which the data and 
theory might be reconciled. Therefore, in Experiments 3 and 
4 we explored two straightforward possibilities for explain- 
ing the results without contradicting the PCM-ALG's predic- 
tions. We concluded, however, that neither of these possibili- 
ties is viable. 

Experiment  3 

A simple explanation of the effects of trial order found in 
Experiments 1 and 2 is that the Block 2 trial types led to 
forgetting or unlearning of the Block 1 types. Clearly, as far 
as the target cues are concerned, the patterns of association 
presented in the two blocks are largely contradictory, and so 
it is plausible to imagine that some degree of forgetting of 
the earlier trial associations is caused. Indeed, evidence from 
verbal list-learning experiments using an A-B, A-C design 
suggests that the number of trials presented in Block 2 may 
have been sufficient to lead to very substantial levels of 
forgetting (e.g., Barnes & Underwood, 1959). If, at the time 
of making their contingency ratings, participants had no 
memory of the Block I trial types, then the trial order effects 
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observed would be expected even on the PCM-ALG, 
because the contingency during Block 2 between cue A and 
outcome O~ was lower than the contingency between cue D 
and outcome 02, both in Experiments 1 and 2. This 
hypothesis is especially plausible if we take into account the 
likelihood that participants presumably cannot keep track of 
all of the information presented during the task because of an 
obvious limited capacity of information processing. Pro- 
vided that participants have unlearned all of the Block I 
trials types, the PCM-ALG can give an adequate account of 
the results (see Appendix). Although the following analysis 
only refers to Experiment 2, a similar analysis can be 
performed for Experiment 1. 

The PCM-ALG's predictions are modified if Block 1 
trials are not included in the computations of the conditional 
contrasts. It can easily be seen from Table 3 that there is a 
negative contingency between cue A and outcome O1 and a 
positive one between cue D and outcome 02 if only Block 2 
trials are considered. Hence, different ratings are predicted 
for the two trial order conditions. Note, however, that if just 
one trial of each type from Block 1 is recalled and included 
in the calculation, the model predicts no trial order effect, as 
it is probabilities rather than event frequencies that matter 
for the PCM-ALG. In this case, the set of probabilities 
would be identical for A and D and, hence, the same 
conditional contrasts would be computed yielding the same 
contingency values. Thus, the model would not be able to 
account for the trial order effect previously found. 

The aim of Experiment 3 was, thus, to evaluate the 
viability of this forgetting hypothesis. For this, a test stage 
was included after paxtieipants had made their contingency 
judgments. In this test stage, two trials of each trial type 
(from Blocks 1 and 2; see Table 3) were re-presented 
without any feedback. The key issue is whether participants 
can remember the correct responses for the Block 1 trial 
types. If they can, then the forgetting hypothesis becomes 
unviable. However, if participants have forgotten or un- 
learned the Block 1 trial types, they will obviously make 
more errors on test trials from Block 1 than from Block 2. In 
addition, another prediction can be derived from this hypoth- 
esis. For example, if participants are presented with symp- 
tom C in the test stage, we will expect them to diagnose 
disease Ol with greater probability than they do when 
presented with symptoms A and C combined. If participants 
have unlearned the Block 1 trial types, then they should 
apply the negative contingency experienced for symptom A 
in Block 2 to the Block 1 test trials as well because this is the 
only source of evidence available to them concerning 
symptom A's predictive role. Thus, participants will reverse 
their diagnoses made during the first half of the learning 
stage itself. Although participants should be more inclined to 
diagnose O~ on an AB trial than on a B trial during Block 1 
trials, they should (on the forgetting hypothesis) more often 
diagnose O1 on B rather than on AB trials during the test 
stage (i.e., after experiencing a negative contingency for 
symptom A and disease O~ in Block 2). A similar argument 
can be made for symptom D, with the opposite change of 
predictions. In this case, participants should be more in- 
clined to diagnose 02 on DE than on E trials during the test 

stage, even though the opposite diagnoses should have been 
made in Block 1 itself. 

To sum up, according to the forgetting hypothesis, indivi- 
duals should make more errors on the test trials from Block 1 
than from Block 2. Also, people should make more O1 diag- 
noses in the test stage on B trials than on AB trials and, con- 
versely, they should make more 02 diagnoses on DE than on 
E trials, despite the fact that the opposite pattern of diag- 
noses should have been made in Block 1 of the learning 
stage. 

Method 

Participants and apparatus. A total of 20 psychology students 
from Universidad de MAlaga volunteered for this experiment. They 
had not participated in the previous experiments. The same 
computer and similar questionnaires were used as in Experiments 1 
and 2. 

Procedure. Procedural details were as in the previous experi- 
ments. The learning stage was identical to the one described for 
Experiment 2 (see Table 3). Thus, two sets of con-inh and inh--con 
trials were again programmed, and contingency judgments were 
also required at the end of this learning stage. 

After participants had made their ratings, a test stage was 
presented consisting of 32 trials. Each of the 16 different trial types 
from the learning stage was presented twice in a random order. 
Unlike in the learning stage, participants were not given any 
feedback in the test stage about their diagnoses. 

Results and Discussion 

Table 5 shows the percentage of correct responses across 
participants for the last two trials of each trial type at the end 
of each block of the learning stage. These mean percentages 
show that by the end of each block participants had a good 
knowledge of the programmed relationships (M = 92.5, 
SE = 2.9 and M = 81.3, SE = 4.8 for Blocks 1 and 2, 
respectively), chance performance being 20% correct. 

Table 5 
Percentages of Correct Diagnoses on the Last Two 
Occurrences of Each Trial Type in the Learning Stage 
of Experiment 3 

Trial type % correct 

Block 1 
AB 91.3 
B 97.5 
DE 93.8 
E 87.5 

M 92.5 
Block 2 

AC 78.8 
C 78.8 
DF 70.1 
F 97.5 

M 81.3 

Note. Chance performance is 20%. A, B, C, D, E, and F are 
symptoms. 
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Participants' contingency judgments after the learning 
stage replicated our previous findings. Ratings from the 
inh-con condition were higher than ratings from the con-inh 
condition (M = 45.0, SE = 6.7 and M = 18.2, SE = 9.0, 
respectively; see Table 3). A t test showed that the difference 
was statistically significant, t(19) = 3.8. At variance with the 
PCM-ALG's predictions but consistent with those of the 
Rescorla-Wagner theory, judgments were sensitive to trial 
order. 

The main interest of this experiment was to evaluate 
participants' performance during the test stage. Table 6 
shows the mean percentages of correct responses for each 
trial type during this test. As can be seen, the mean 
percentages of correct responses for those trial types origi- 
nally presented during Blocks 1 and 2 of the learning stage 
were M = 71.6, SE = 4.1 and M = 70.3, SE = 3.2, 
respectively. These two mean percentages did not differ 
statistically, t(19) = 0.32. Thus, participants seemed to 
remember with a similar degree of accuracy trials from both 
blocks of the learning stage, which is at variance with the 
forgetting hypothesis. According to this hypothesis, partici- 
pants should have made more errors on Block 1 trials, as 
these trials should have been displaced from memory by the 
more recent information, that is, the Block 2 trials. 

Moreover, according to the forgetting hypothesis partici- 
pants in the test stage should have reversed the diagnoses 
they made during the first half of the learning stage, as 
described above. Specifically, the proportion of Ol diag- 
noses on AB trials should be greater than on B trials during 
Block 1 of the learning stage but lower during the test stage. 
Correspondingly, the proportion of 02 diagnoses on DE 
trials should be lower than on E trials during Block 1 of the 
learning stage but higher during the test stage. Table 7 
displays the proportion of these diagnoses for each trial type 
during Blocks 1 and 2 of the learning stage and in the test 
stage. The table shows that, contrary to the PCM-ALG, 
responding in the test stage was consistent with responding 
at the end of each learning stage. A 2 (order: con-inh vs. 

Table 6 
Percentages of Correct Diagnoses of Each Trial Type 
in the Test Stage of Experiment 3 

Trial type % correct 

Block 1 
AB 48.8 
B 93.8 
DE 65.0 
E 78.8 

M 71.6 
Block 2 

A C 72.5 
C 70.0 
DF 48.8 
F 90.0 

M 70.3 

Note. Chance performance is 20%. A, B, C, D, E, and F are 
symptoms. 

Table 7 
Percentages of Diagnoses of the Target Diseases Across 
the Different Trial Types During the Learning (Last Two 
Occurrences) and Test Stage of Experiment 3 

Trial type % correct 

Learning stage 

Block 1 
AB 91.3 
B 1.3 
DE 3.8 
E 87.5 

Block 2 
AC 11.3 
C 78.8 
DF 70.0 
F 1.3 

Test stage 

Block 1 
AB 48.8 
B 2.5 
DE 21.3 
E 78.8 

Block 2 
AC 23.8 
C 70.0 
DF 48.8 
F 6.3 

Note. For trial types AB, B, AC, and C, the predictions refer to 
disease O1. For DE, E, DF, and F, the predictions refer to disease 
02. A, B, C, D, E, and F are symptoms. 

inh--con) × 2 (stage: block 1 vs. test) × 2 (type of cue: 
compound vs. single) ANOVA was performed on these 
proportions. The main effects of the within-subjects vari- 
ables order and stage were significant, F(1, 19) = 8.68, 
MSE = 0.08, and F(1, 19) = 12.49, MSE = 0.02, 
respectively. The interactions Order × Stage, Order X Type 
of Cue, and Order × Stage × Type of Cue were also 
significant, F(1, 19) = 15.95, MSE = 0.03; F(1, 19) = 
224.84, MSE = 0.08; and F(1, 19) = 35.78, MSE = 0.03, 
respectively. The analyses to evaluate the forgetting hypoth- 
esis were, though, simple effect contrasts. At variance with 
this hypothesis, the contrasts revealed that the proportion of 
O1 diagnoses was higher onAB trials than on B trials, both in 
Block 1 and in the test stage, F(1, 19) = 671.58, MSE = 
0.01, and F(1, 19) = 35.58, MSE = 0.06, respectively. 
Similarly, the proportion of 02 diagnoses on DE trials was 
lower than on E trials, both in Block 1 and in the test stage, 
F(1, 19) = 198.75, MSE = 0.03, and F(1, 19) = 35.77, 
MSE = 0.09, respectively. Despite not having forgotten the 
information provided during Block 1, an inspection of the 
data reveals that participants were at the same time sensitive 
to the negative relationship arranged during Block 2 of the 
learning stage between A and O1 and the positive one 
between D and 02. Participants only chose disease O1 on 
23.8% of AC trials, whereas they chose it on 70.0% of C 
trials. In contrast, participants chose disease 02 on 48.8% of 
DF trials, whereas they only chose it on 6.3% of F trials, 
consistent with the contingencies programmed in Block 2. 
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In sum, these results are at variance with the forgetting 
hypothesis. Participants' performance during the test stage 
was not exclusively sensitive to the contingencies presented 
during Block 2, as it would be if Block 1 trials had been 
forgotten or unlearned. Thus, the trial order effect found is 
inconsistent with the PCM-ALG's predictions. 

What are the implications of these test data for the 
associative theory? Although the trial order results obtained 
thus far in the present series of experiments are predicted by 
the Rescorla-Wagner theory, the test stage results from the 
present experiment are deeply problematic for the associa- 
tive account. As can be seen in Figure 2, the model predicts a 
strongly negative and positive associative strength for cues 
A and D, respectively, at the end of Block 2. Thus, 
participants' performance in the test session should have 
been sensitive to these final predictive values of both target 
cues. The negative associative strength of cue A (equal at 
asymptote to - h )  should have led participants to predict the 
absence of disease O1 on AB trials, at least, just as on B trials. 
Also, the positive associative strength of cue D (equal at 
asymptote to k) should have led participants to predict the 
presence of disease 02 on DE trials, at least, just as on E 
trials. But neither of these predictions was fulfilled, as 
shown above. From the point of view of the model, the 
associative strengths of A and D in the test stage are 
paradoxical: A increases the proportion of outcome predic- 
tions when compounded with B but decreases it when 
compounded with C, and similarly for D when compounded 
with F and E. 

In fact, in this experiment the Rescorla-Wagner theory 
predicts the well-known phenomenon of catastrophic forget- 

ring (Kruschke, 1993; Lewandowsky, 1991; McCloskey & 
Cohen, 1989; Ratcliff, 1990; Sloman & Rumelhart, 1992). 
As a result of learning the new relationships programmed 
between cues and outcomes during Block 2, participants 
should have unlearned all previous relationships. Contrary 
to this prediction, participants' diagnostic responses during 
the test session showed a similar degree of accuracy for 
trial types originally presented in Blocks 1 and 2 of the 
learning stage. 

The problem of catastrophic forgetting is not restricted to 
the Rescoda-Wagner theory but also represents a limitation 
for other associative or connectionlst models. For instance, 
backpropagation networks using the generalized delta rule 
as a learning algorithm (Rumelhart, Hinton, & Williams, 
1986) predict the same catastrophic forgetting effect. In fact, 
this effect was originally described in relation to such 
connectionist models (McCloskey & Cohen, 1989). By way 
of illustration, we conducted a series of simulations using 
backpropagation networks as described by MeClelland and 
Rumelhart (1988). The training patterns coincided with the 
training trials participants received during the learning stage 
of Experiment 3 and were also distributed in two blocks 
within each trial order condition (con-inh: AB --, Or, B --* no 
O followed by A C  --* no O, C --* O1; inh--con: DE --,  no O, 
E --, 02 followed by D F  --, 02, F - 4  no O). Different param- 
eters and network architectures (different numbers of hidden 
units) were tested in these simulations but all of them 
showed the basic catastrophic forgetting effect; thus, only 
the details of one of them are described. The outcome of this 
simulation is presented in Figure 3. A three-layered network 
was used consisting of six input units corresponding to the 
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Figure 3. Left: changes in output unit activations of a back-propagation network across training 
epochs for the different trial types of Experiment 3. An epoch consists of one presentation of each 
trial type. The activation of output unit O1 is shown on AB, B, AC, and C trial types. The activation of 
output unit 02 is shown on DE, E, DF, and F trial types. The learning rate was set to .2 and the 
momentum parameter to .9. The remaining free parameters were set to default values. Input biases 
were adjusted to all hidden and output units. The training of the network continued until a learning 
criterion bad been met (tss = .04). Right: output unit activations after the training phase had been 
completed for the different trial types from Block 1. The network's performance during the test stage 
showed that it bad catastrophically forgotten the relationships learned during the first block of the 
learning stage. 
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six cues (symptoms), 10 hidden units to allow an internal 
representation of the input information to be formed, and 
two output units corresponding to the two outcomes (dis- 
eases) used in the training stage. "No disease" was coded as 
an output of zero on both output units. As can be seen, in 
Block 1 of the learning stage the activation values of the O1 
and 02 output units increased across trials up to asymptote 
on AB and E trials, respectively. In contrast, on B and DE 
trials, the activation values of both output units remained 
low across this first block of trials. During Block 2, the 
activation values on the O1 and O2 output units on C and DF 
trials, respectively, increased across trials towards asymp- 
totic values, but only if a very large number of trials was 
presented. The activation values of the output units were low 
on AC and F trials within the second block of trials. 

The main results are the activation values of the output 
units on the different trial types in the test stage (see fight 
panel of Figure 3). The activation of the output unit 
corresponding to outcome O1 was .05 on AB trials, whereas 
on B trials it was .60 on a scale of 0 to 1. Therefore, the 
network predicts outcome O1 more often on B than on AB 
trials, despite the AB ---, O1, B --* no O training presented in 
Phase 1. Similarly, the activation of the output unit corre- 
sponding to outcome 02 was .96 on DE trials, whereas it was 
.33 on E trials. Therefore, the network predicts outcome 02 
more often on DE than on E trials. This pattern of results 
showed that the network performed during the test stage 
according to the contingencies it had learned during Block 2 
of the learning stage and, thus, the relationships pro- 
grammed during Block 1 were catastrophically forgotten. 

Despite these falsified predictions, there are several 
possible solutions to the catastrophic forgetting problem 
within the framework of associative models (Lewandowsky, 
1994). In the General Discussion section we return to this 
issue and explore one particular way of effectively address- 
ing this problem. The solution is based on the creation of a 
semi-distributed representation of the input information by 
the assignment of configural coding units to each input 
pattern together with the inclusion of a generalization 
mechanism based on input similarity (Pearce, 1994). 

Experiment  4 

Returning to the PCM-ALG, the results from our previous 
experiments present difficulties for this model. Experiment 3 
considered a simple way in which the model's predictions 
and the data could be brought into line, but this proved 
unviable. In Experiment 4, we explored a somewhat more 
subtle approach that may make the trial order effect found 
still compatible with the PCM-ALG. 

In Experiments 1-3, trials were always presented as two 
very distinct blocks. Although these blocks were presented 
as a continuous sequence of trials, participants surely 
realized that contingencies changed dramatically in the 
middle of the learning stage. Accordingly, they may have 
reasoned that only the more recent trials should be consid- 
ered when making their contingency judgments. Then, 
participants may well have been operating with a moving 
window that only extends backwards a certain number of 

trials. To put it another way, only the more recent trial types 
may have been included in the window, and only the 
contents of the window contributed to the computation of 
contrasts. The remaining trial types are simply excluded 
from the focal sets over which contrasts are computed. Such 
a mechanism allows the results of the previous experiments 
to be accommodated by the PCM-ALG, because across 
Block 2 the conditional contingency for cue D is greater than 
that for cue A, as described in Experiment 3. Moreover, 
participants do not need to unlearn the Block 1 relationships 
on this account, as they potentially can access all of the trial 
types that have been observed. It is simply that certain trial 
types have been excluded, though not forgotten, from the 
focal sets. Hence, correct responding on the Experiment 3 
test trials would still be possible. 

To control the potential effects of this moving window 
idea on the PCM-ALG's predictions, trials were not pre- 
sented in two separate blocks in the present experiment, but 
were instead presented in a fully intermixed way. Specifi- 
cally, in the con-inh condition, participants saw that the 
positive contingency trials (AB ~ 01, B ---. no O) predomi- 
nated at the start of the learning stage, whereas the negative 
contingency trials (AC ---, no O, C ---. O1) were more numer- 
ous towards the end. Nevertheless, participants could also 
see some negative and positive contingency trials at the start 
and end of the learning stage, respectively. On the other 
hand, in the inh--con condition, negative contingency trials 
(DE ----, no O, E --, 02) were predominant at the start of the 
learning stage, whereas positive contingency ones (DF ---. 02, 
F---, no O) occurred more often at the end of it. Again, 
participants could see both positive and negative contin- 
gency trials at the start and end of the learning stage. Table 8 
displays the actual design used during this learning stage. 

Although the PCM-ALG anticipates the Wial order effects 
observed in the previous studies if this moving-window 
hypothesis is considered, it predicts that participants' judg- 
ments in the present experiment should not be affected by 
trial order. The modifications introduced in the distribution 
of trials across the task do not alter the evidence concerning 
the A ---. Ot and D ---. 02 relationships, which is identical for 
both trial order conditions. As every trial type can occur at 

Table 8 
Design o f  Experiment 4 

No. of trials 
within blocks 

Trial order 
condition 1 2 3 4 Trial types Test cue Judgment 

Con-inh 4 3 2 1 AB - '~  O 1 A ~ O1.9 M = 39.7 
4 3 2 1 B--4 noO 
1 2 3 4 A C - ~  noO 
1 2 3 4 C-- ,  Ol 

Inh-con 4 3 2 1 DE ---* noO D --, 02? M = 52.9 
4 3 2 1 E-- .  02 
1 2 3 4 DF--~02 
1 2 3 4 F --, noO 

Note. Con = contingent; inh = inhibitory. A, B, C, D, E, and F 
are symptoms; O~ and 02 arc diseases 1 and 2, respectively; no O = 
no disease. 
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any point throughout the learning stage, the conditional 
contrasts yield the same values for both trial order condi- 
tions, regardless of  how narrow or wide this temporal 
window is (see the Appendix). Imagine that the window is 
sufficiently restricted to include only trials from the last 
quarter of  the learning stage. Because all trial types occur 
within this last quarter (although in different proportions), 
the conditional contingencies are identical for target cues A 
and D and identical to the previous analysis. The focal sets 
on which the contrasts are computed are independent of  trial 
frequency. For example, let us examine the conditional 
contrasts for cue A (con-inh condition). Withregard  to the 
computation of  ~ P ~  [P(O1]A" C)-  P (011A • C)], trial 
types including cue C were initially infrequent but became 
predominant by the end of the learning stage. Neverthe- 
less, this contrast yields a value of  - 1.0. With regard to the 
computation of A P c  [P(Ol lA .  C) - P ( O 1 / A .  C)], this can only 
be computed i f A B  - -  O1 trial types are included within the 
window. Note, however that the inclusion of  just one trial of  
this trial type will be sufficient to allow this contrast to be 
computed, and it yields the same value as if  many of  them 
are included, that is, a value of  1.0. For situations in which 
all conditional probabilities are either 0 or 1.0, it makes no 
difference whether a single trial or many trials are observed 
of  a given type: The conditional probability is the same after 
one trial as after many. Obviously, the unconditional AP 
measure yields different values for the two trial order 
conditions if only the last quarter of  the training trials are 
included. However, this measure has already been rejected 
as a theory of  human contingency detection on empirical and 
normative grounds for situations involving a varying context 
(see above; Cheng & Holyoak, 1995; Shanks, 1991; Wasser- 
man et al., 1993). 

In contrast, the Rescorla-Wagner theory predicts the same 
recency--density effect on participants' ratings as described 
above. However, as a side effect, this new trial type 
arrangement entails a major modification in the nature of  the 
task that severely affects some of  the model 's  predictions. 
The trial types create a nonlinearly separable discrimination 
problem of the sort that is well known to be problematic for 
the Rescorla-Wagner theory (see Shanks, 1995b). This is 
because there is no set of  associative weights that allow 
participants to make correct predictions for all trial types. 
For example, within the con-inh condition, participants saw 
A B  ~ 01,  B ---, no O, A C  ---, no O, and C ~ O1 trials. I f  
participants are to predict the absence of  the outcome on B 
trials, cue B should have a zero associative strength and, 
thus, cue A an associative strength of  h if  O1 is to be 
predicted on A B  trials. Correspondingly, if  participants 
predict O1 on C trials, cue C should have an associative 
strength of h and, thus, cue A an associative strength of  - k  if 
no outcome is to be predicted on A C  trials. However, cue A 
cannot simultaneously have a positive and a negative 
associative strength for the same outcome. Thus, partici- 
pants should not be able to predict the correct outcomes for 
the different trial types. 

Finally, a test stage was also included after participants 
had made their contingency judgments. The purpose of this 
was to further evaluate whether participants' performance 

suffers from catastrophic forgetting. Because trials have 
been interleaved to some extent across the learning stage, a 
catastrophic forgetting effect is now less likely, as partici- 
pants had the chance to see all trial types at every point 
during the task. 

M e & o d  

Participants and apparatus. A total of 44 psychology under- 
graduates from Universidad de M[daga took part in this experiment 
on a voluntary basis. They had not participated in the previous 
experiments. The same apparatus and similar questionnaires were 
used as in the previous experiments. 

Procedure. The task and the rest of the procedural details were 
as described previously. Again, two trial order conditions were 
presented, con-inh and inh-con. The learning stage consisted of 
160 trials and it was divided into four blocks. Within Block 1, four 
trials of each of the following trial types were presented: AB --. Oi, 
B ~ no O and DE ~ no O, E ---. 02. In addition, one of each of the 
following trial types was also presented: A C  ~ no O, C ---, O1 and 
DF ~ 02, F --4 no O. During Block 2, three and two trials of the 
former and latter trial types were presented, respectively, whereas 
in Block 3, two and three trials of the former and latter trial types 
were presented. Finally, in Block 4, one and four trials of the 
former and latter trial types were included, respectively. The 
counterbalancing procedure was similar to that for previous 
experiments. Participants' judgments were also required at the end 
of the learning stage, and then the test stage took place. 

R e s u l t s  a n d  D i s c u s s i o n  

The percentage of correct diagnoses for the last two trials 
of  each trial type from the learning stage is displayed in 
Figure 4. These mean percentages, though lower than in 
previous experiments, still showed that participants cor- 
rectly learned the programmed contingencies. As can be 
seen, however, the percentages varied greatly across differ- 
ent trial types (from 54.0 to 90.9). Thus, a 2 (trial type: 
predominant in the first half vs. predominant in the second 
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Figure 4. Percentages of correct diagnoses of each trial type in 
the learning (last two occurrences) and test stage of Experiment 4. 
Chance performance is 20%. 
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half of the learning stage) x 2 (type of cue: single vs. 
compound cue) within-subjects ANOVA was conducted on 
these percentages to establish the source of this variability. 
The main effects of both variables, trial type and type of cue, 
were significant, F(1, 43) = 28.71, MSE = 0.03, and 
F(1, 43) = 56.41, MSE = 0.03, respectively. The mean 
percentage of correct responses for those trials predominant 
in the first half was lower than the percentage for trials 
predominant in the second half of the learning stage 
(M = 61.9, SE = 2.4 and M = 75.1, SE = 2.9, respec- 
tively). The fact that trials were presented in a 1:4 ratio in the 
last block of the learning stage may explain why these 
percentages differed. Also, the mean percentage of correct 
diagnoses for single cues (M = 78.7, SE = 1.9) was higher 
than the percentage for compound cues (M = 58.4, 
SE = 3.3). Given that compound cues included the target 
cues, whose predictive value had changed across the task, it 
is not surprising that participants responded more accurately 
to single cues. 

Mean contingency ratings from the inh--con condition 
were higher than mean ratings from the con-inh condition 
(M = 52.9, SE = 5.3 and M = 39.7, SE = 7.1, respec- 
tively). A t test revealed that the difference was significant, 
t(43) = 3.27. Again, participants' judgments were sensitive 
to trial order in a situation in which the PCM-ALG predicts 
no such effect. In this case, trials were not distributed in two 
distinct blocks, yet ratings were affected by trial order, 
which speaks to the sensitivity of the contingency detection 
mechanism to this effect and also to its empirical robustness. 

Figure 4 also shows the mean percentage of correct 
responses for each trial type in the test stage. These resuks 
showed that participants' performance was practically as 
accurate within the test stage as it was at the end of the 
learning stage (M = 66.7 and M = 68.5, respectively). 
Though the contingencies had smoothly changed in the 
learning stage, participants made similar numbers of errors 
on those test trial types more numerous in the first half than 
on test trial types predominant in the second half of the 
learning stage (M = 65.6, SE = 2.6 and M = 67.8, SE = 2.6, 
respectively), and the small difference was not statistically 
significant, t(43) = 0.78. This comparison replicates the 
basic finding observed in the test stage of Experiment 3. 

The pattern of results obtained is problematic for the 
PCM-ALG, even when a hypothetical temporally restricted 
window is adopted. Different ratings were obtained in the 
two trial order conditions. The main problem for the theory 
is that trial types predominant during the first half of the 
training session cannot be excluded from the temporal 
window on which contrasts are supposed to be computed, as 
these trial types are as recent as any other. Hence, no trial 
order effect can be expected on the PCM-ALG. 

On the other hand, though the trial order effect found is 
predicted by the Reseorla-Wagner theory, some of the 
results described thus far axe at variance with this associative 
account. First, participants did not make more errors in the 
test stage on trials predominant early compared to those 
predominant late in training. The theory predicts this differ- 
ence for the same reason that it also predicts the comparable 
catastrophic forgetting effect in Experiment 3, though to a 

lesser extent due to the intermixture of trial types. Second, 
and more directly, participants' performance was well above 
chance at the end of the learning stage. According to the 
theory, the learning task should not even be solvable, as 
described before. In the next section, some possible solu- 
tions to these various problems are discussed. 

General  Discussion 

The series of experiments reported here has provided 
clear evidence about the effect of the order in which trials are 
presented on judgments of predictive relationships. Specifi- 
cally, our studies provide the first demonstration of recency- 
density effects in human contingency judgment. Experiment 
1 revealed that participants' contingency judgments were 
lower in a con-non condition than in a non--con one, 
implying that later information exerted a greater impact on 
judgments than earlier information. Experiments 2-4 repli- 
cated this basic result and extended it to situations in which 
more radical changes in the programmed contingencies were 
made. When the contingencies changed from being positive 
to negative or vice versa, the results provided evidence of a 
more substantial trial order effect. In addition, Experiments 
3 and 4 included a test stage to evaluate whether participants 
forgot trial types presented early during the learning stage. 
The results showed that this was not the case, as a similar 
number of correct diagnostic responses was made during 
this test stage for all trial types. In addition, Experiment 3 
found that participants' diagnostic choices during this test 
stage for trial types originally presented within the first half 
of the learning stage were not affected by the later exposure 
to very different contingencies. Moreover, Experiment 4 
showed that the trial order effects were not due to the fact 
that in Experiments 1-3 we presented the learning stage 
trials in two separate blocks. A trial order effect was 
observed even in a situation in which trials were interleaved 
in a single block, and this finding contradicts the idea that 
individuals compute contrasts across the contents of a 
restricted window of trials. Hence, our results consistently 
revealed that later and more dense trials had the greatest 
impact on individuals' judgments. Recency effects are 
observed in a number of other judgment tasks (Hogarth & 
Einhom, 1992). 

With regard to the scope of the data we have reported, we 
think that these trial order effects should be taken as an 
important empirical phenomenon for which models of the 
psychological processes involved in contingency detection 
must offer an account. 

Implications for  the P C M  

As described in the introduction, we have been concerned 
with testing an algorithmic-level version of the PCM. This 
model, PCM-ALG, makes clear-cut predictions about the 
role of trial order on contingency judgments. Given that trial 
order does not alter the various probabilistic contrasts that 
people compute, it should not modify their contingency 
ratings. In this sense our results clearly contradict the 
model's predictions. 
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In our applications of the model, we have assumed that 
participants' behavior is appropriately modeled by the 
computation of the conditional contingency between the 
target symptom and disease on the basis of the probability of 
the disease in the presence and absence of the symptom. 
However, as mentioned in the introduction, Waldmann and 
Holyoak (1992) have suggested that in tasks such as medical 
diagnosis participants may impose a causal model on the 
situation such that the symptoms are interpreted as effects of 
the disease, and may then base their contingency judgments 
on a calculation of the conditional contingency between the 
target disease and symptom on the basis of the probability of 
the symptom in the presence and absence of the disease. On 
this basis, the calculations of conditional contrasts are 
somewhat different from the ones we have presented. But it 
is important to note that this causal model theory suffers 
exactly the same problems as the version we have consid- 
ered. Because the same trial types are presented in the two 
trial order conditions, the disease-symptom contingencies 
are identical for diseases 1 and 2 and no difference in 
judgments is predicted. Moreover, recent evidence has 
questioned other aspects of the causal model theory (Matute, 
Arcediano, & Miller, 1996; Price & Yates, 1995; Shanks & 
L6pez, 1996; but see Waldmann & Holyoak, 1997). 

The failure of the PCM-ALG to explain the results comes 
about, we think, as a consequence of the sort of questions the 
model is meant to address. A normative analysis prescribes 
the environmental conditions that must be met in order for 
the individual to assert that a contingency exists in a given 
situation. This normative discourse, namely contingency 
theory, provides an independent measure of the circumstances 
in which two events can be regarded as being truly related. 
The PCM-ALG incorporates such a normative analysis, on 
the basis of philosophical and statistical considerations, and 
assumes that people's performance is reasonably well ad- 
justed to this normative standard. As a psychological model, 
the PCM-ALG specifies a mental algorithm to exclusively 
compute such norms. Thus, the application of such an 
algorithm will ensure that people will only detect a relation- 
ship between events when this relationship truly exists. 

Normative considerations constitute, no doubt, an appro- 
priate source of constraints for any psychological theory 
meant to account for behavior. However, there are further 
constraints to which theories must attend and that are 
beyond the scope of a normative framework (see L6pez, 
Cobos, Carlo, & Shanks, in press). These constraints are of a 
psychological rather than a normative nature. Specifically, 
our experiments have shown that people are sensitive to how 
the relevant information is distributed across time. It may 
well be the case that such distribution is not relevant for a 
statistical or normative definition of what a relationship is, 
but it is surely the case that it is psychologically relevant, as 
our results suggest. Similarly, other investigations have also 
shown that people's performance is sensitive to how trials 
are distributed across the task with regard to cue competition 
effects (Davey & Singh, 1988; Lovibond, Siddle, & Bond, 
1988; Martin & Levey, 1991). 

Nevertheless, this further constraint does not in our view 
necessarily constitute an example of irrational behavior or 
behavior poorly adapted to a changing environment. For 

example, consider the experimental conditions in Experi- 
ment 2. In the con-inh condition, participants saw A B  --.  01, 

B --* no O, followed by A C  ~ no O and C ---, O1 trials, 
whereas in the inh-con condition they saw D E - - .  no O, E ---, 
02, followed by D F  --,  02 and F --* no O trials. Though 
statistically or normatively the A ---, Ol and D ---, O2 
relationships are identical, the situation is not obviously the 
same in the two conditions for an individual whose objective 
is to maintain an updated knowledge base about the predic- 
tive value of a cue on a moment-by-moment basis. The 
distribution of trials across the task does not affect the 
statistical relationship itself, but a system sensitive to 
changes in the distribution of trials has an obvious adaptive 
advantage. In this sense, the PCM-ALG as currently formu- 
lated lacks a mechanism able to manifest such sensitivity. 

The diagnosticity of trial order effects to distinguish 
between the contingency-based and the associative model 
crucially depends on the assumption that such effects are due 
to the operation of mental processes specifically related to 
contingency detection. One alternative explanation still 
compatible with the PCM-ALG's predictions was explored 
in Experiments 3 and 4. The results showed that the trial 
order effect was not due to the forgetting or unlearning of 
those trial types presented during the first half of the learning 
stage. There is, however, another alternative interpretation 
of the trial order effects found in Experiments 1-3 also 
compatible with the PCM-ALG's predictions, namely, that 
they arise because of a temporal restriction of the trials on 
which the conditional contrasts are computed. According to 
this hypothesis, conditional contrasts would be computed on 
those trials presented most recently during the learning 
stage, with the initial trials being effectively excluded. The 
results obtained in Experiment 4, though, were at variance 
with the PCM-ALG even if participants were operating on a 
temporally restricted window. Regardless of the size of this 
moving window, the distribution of trial types ensured that 
every trial type should have been included in it and, hence, 
no trial order effect should have been observed, as in this 
case the conditional contrasts yield identical values as in 
Experiment 2. In terms of the PCM-ALG, the inclusion of a 
single trim of those trial types predominant at the start of the 
learning stage within the final window will be sufficient to 
allow the same conditional contrasts to be computed as if all 
trial types were evenly included within such a window. 

In line with our results, it seems that it is the relative 
density of trial types at the end of a learning phase that is the 
crucial factor that leads to trial order effects on contingency 
judgments. Accordingly, it is very difficult to see how a 
normative model that assigns no role to the actual distribu- 
tion across time of the event frequencies that contribute to 
conditional probability estimates can explain this basic 
effect. In a way, it is the tribute that such a model has to pay 
to the normative analysis that inspires it (i.e., contingency 
theory) that determines how an objective relationship be- 
tween events is defined in statistical or probabilistic terms. It 
seems unlikely that the basic units of analysis in the PCM 
and the PCM-ALG, namely accurate estimation of condi- 
tional probabilities, are appropriate at the algorithmic level 
of psychological analysis. 

Of course, the PCM-ALG is only one of many possible 
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implementations of the computational-level theory (the 
PCM), and we must await future theoretical development of 
this theory. Nevertheless, it is hard to see how any model 
that computes conditional contrasts, as the PCM requires, 
can account for trial density effects. We view Cheng's (1997) 
recent Power PC model in a similar light. This computational- 
level model, a development of the PCM, has not yet been 
implemented as a processing model, but as with the PCM, it 
is hard to see how it can account for trial order effects on the 
basis of conditional probabilistic contrasts. 

Implications for  the Rescorla-Wagner Theory 

The sensitivity of people's performance to the distribution 
of trial types across time can be understood in terms of an 
associative account such as the Rescorla-Wagner theory. 
Basically, two conditions are met by the associative theory 
that allow it to predict such a trial order effect. First, the 
learning algorithm is sensitive to event frequencies within a 
fixed period of time. Second, the algorithm is flexible 
enough so as to adapt on a moment-by-moment basis to the 
input information and, accordingly, be capable of generating 
an updated response at any point across the task. 

Another aspect of our results that also agrees with this 
particular associative account is the pattern of evolution 
across trials of participants' diagnostic responses. Specifi- 
cally, the differences between the proportion of times the 
target diseases were predicted on compound and single cue 
trial types allowed us to indirectly track how the predictive 
value of each target cue evolved across trials. Again, this 
result speaks in favor of a dynamic system that updates the 
predictive value of cues on a moment-by-moment basis. 

Nevertheless, the results from the test stages of Experi- 
ments 3 and 4 contradict the predictions made by the 
associative theory. The Rescorla-Wagner theory assumes 
that once the predictive values of the target cues have been 
updated according to the most recent and frequent informa- 
tion, all previous knowledge about the relationships is 
completely overwritten (the catastrophic forgetting effect). 
As we have shown, this limitation is not restricted to the 
Rescorla-Wagner theory. Other associative models, like 
backpropagation networks, predict the same effect. How- 
ever, participants' performance did not suffer from cata- 
strophic forgetting. With regard to their diagnostic responses 
in the test stage, the percentages of correct responses did not 
depend on whether trial types were initially presented during 
the first or second half of the learning stage. Moreover, 
participants were able to respond according to what they had 
learned during the first half of the learning stage rather than 
only on the basis of what had subsequently been learned 
during the second half. Thus, disease 1 was diagnosed more 
often on AB trials than on B trials, even though participants 
had subsequently learned that cue A predicted the absence of 
this outcome. Correspondingly, disease 2 was diagnosed less 
often on DE than on E trials, even though cue D was 
subsequently established as a reliable predictor of this 
outcome. And yet, this is hardly surprising if it is borne in 
mind that later information altered the predictive value of 
the target single cues but not of specific configurations of 
cues. That is, none of the trials presented in Block 2 of the 

learning stage contradicted the fact that AB, taken as a whole 
configuration of cues, reliably predicted disease I or that DE 
predicted the absence of any disease. 

Another result that contradicts the theory's prediction is, 
as described before, that people were able to learn the 
relationships between the various cues and outcomes ar- 
ranged in Experiment 4. The task constituted an example of 
a nonlinear discrimination in the sense that if each of the 
target cues is coded independently of their accompanying 
cues, the task becomes unsolvable for the Rescorla-Wagner 
model, as no set of weights exists that allow the discrimina- 
tion to be mastered. What, then, is the origin of these 
erroneous predictions? 

The Role of  Configural Cues 

A plausible solution to all of these problems would be to 
allow whole configurations of stimuli to act as unique 
coding units. Let us examine how a configural representa- 
tional system is compatible with those results from the test 
stages of Experiments 3 and 4 that were problematic for an 
elemental theory. The combination of cues A and B in a 
single compound (as in AB trials) would activate a config- 
ural unit (cue X) whose predictive value never decreases 
because no AB ~ no O trials are presented. Moreover, when 
AC trials are presented a different configural unit (cue Y) 
would be activated, and no predictive value is gained by this 
unit, as it is never paired with the outcome. Now, the 
knowledge about cue Y does not catastrophically interfere 
with what participants know about cue X, and thus, disease 1 
diagnoses should be expected during the test stage on AB 
trials. Therefore, the changes that occurred to the contin- 
gency between cue A and the outcome across trials should 
leave relatively intact knowledge about the predictive value 
of cue X. A similar argument can be made with regard to cue 
D in the other trial order condition. In addition, a configural 
account can also help us to understand why people did not 
make more errors on test trials from the first half of the 
learning phase than on trials from the second half, as later 
contingencies should not severely affect knowledge about 
whole configurations. Correspondingly, the task in our 
Experiment 4 should now be solvable if configural represen- 
tations of the stimuli are allowed. 

Configural cues and associative models. Although there 
have been different ways of implementing configural repre- 
sentations in specific associative models (e.g., Gluck, 1991; 
Pearce, 1987, 1994; Rescoda, 1973), only some of them can 
account for trial order effects on judgments. Specifically, a 
theory in which compound stimuli have configural represen- 
tations and in which the constituent elements are also coded 
(Gluck, 1991; Rescorla, 1973) would leave the effect 
unexplained. On this theory, the asymptotic associative 
strengths for cues A and D would be 0.0 (see below). 
Alternative configural explanations such as those presented 
by Pearce (1994) or Kruschke (1992) assume that com- 
pounds of stimuli only have direct configural representations 
and performance is mediated by the degree of similarity 
between the training and test configurations. 

Let us illustrate how Pearce's (1994) configurai model can 
predict both the absence of catastrophic forgetting and the 
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trial order effect on judgments. The model has been imple- 
mented as a connectionist network that includes four layers 
of units: an input layer, two layers of hidden units (an output 
layer and a layer of eonfignral units), and a single unit layer 
that represents the outcome. The activation level of this 
outcome unit determines the system response. The units in 
the input layer can be either at an activation level of 0 or 1, 
depending on whether the element of the stimulus pattern 
the unit is representing is absent or present, respectively. 
Each input unit is connected to a single output unit. The 
intervention of these output units ensures that each stimulus 
pattern activates maximally (an activation level of I) a 
single configural unit. Henceforth, the configural unit can be 
regarded as representing a particular stimulus pattern. In 
addition, each stimulus pattern can activate more than one 
confignral unit through a process of generalization. If we 
assume that configural unit x becomes maximally activated 
when input pattern X is presented, what will be its activation 
value when input pattern Y is presented? According to the 
model, the activation value a~ of configural unit x will be 
proportional to the degree of similarity between the stimulus 
patterns. Pearce (1987, 1994) assumes that the similarity of 
input patterns X and Y is a linear function of the number of 
elements they share, 

ax X = n C ( 5 )  

where nc is the number of input units both patterns share and 
nx and nr are the number of input units that are specific to 
each stimulus pattern. 

Thus, the activation level of the outcome unit when 
pattern X is presented (V~) has a double origin. Part of the 
activation is conveyed by the connection between the 
configural unit maximally activated and the outcome unit 
(w~), and some of its activation comes through the connec- 
tions between other configural units activated through gener- 
alization and the outcome unit, 

n 

Vx = w~, + ~(S~, i  X wi), (6) 
i =1  

where Sx,,. is the squared activation of these other configural 
units (see Equation 5) and w~ represents their connections to 
the outcome unit. 

Associative learning involves modifications only in the 
weight of the connection between the configural unit maxi- 
mally activated (one for each stimulus pattern) and the 
outcome unit. These modifications are governed by Equa- 
tion 7: 

Awx = a x 13 x (X - Vx). (7) 

Note the equivalence between Equations 4 and 7. As in 
the Rescorla-Wagner model, the modification of weights is 
proportional to an error term, et and 13 represent learning 
rates, and k is set to 1 when the outcome is present and to 0 
otherwise. 

According to the model, the combination of cues A and B 
in a single compound will maximally activate a configured 
unit, which increases its associative strength on AB ---* 01 
trials. Moreover, a different configural unit will be activated 
maximally on AC ---, no O trials, but no associative strength 
is gained by this unit as it is never paired with the outcome. 
To illustrate specifically the model's predictions, we have 
simulated the main results of the experiments. The simula- 
tion results were averaged across 10 replications using an 
equal number of randomly selected sequences of trials. 
Different sets of simulations were run using different free 
parameters, but as the results did not substantially vary, we 
only present simulation data in which the product of the free 
parameters (or X 13) was given a value of .5. 

Table 9 presents the mean activation values of outcome 
unit O1 (in the con-inh trial order condition) and 02 (in the 
inh--eon condition) for the different trial types presented in 
the test stages of Experiments 3 and 4 and the activation 
values of the outcome units when the network was presented 
the target cues A and D. 

The results from the simulation of the test stage of Ex- 
periment 3 showed similar proportions of correct diagnoses 
for those trial types originally presented in Blocks 1 and 2 of 
the training session. The activations of the outcome units 
were high for those trial types that were paired with the 
target outcome and low for those trial types that were paired 

Table 9 
Simulation Results for Experiments 3 and 4 Using Pearce's (1994) Configural Model 

Experiment 3 Experiment 4 

Trial order condition Trial types Target cue Trial types Target cues 

Con-inh AB 0.719 A 0.134 AB 0.893 A 
B 0.031 B 0.054 
AC 0.037 AC 0.036 
C 0.946 C 0.948 

Inh-con DE 0.413 D 0.436 DE 0.098 D 
E 0.977 E 0.919 
DF 0.970 DF 0.956 
F 0.026 F 0.033 

0.214 

0.289 

Note. The figures represent the mean activation values of outcome units O1 and 02 after the training 
stage in the con-inh and inh-con conditions, respectively. O1 and 02 are diseases 1 and 2, 
respectively; con = contingent; inh = inhibitory. A, B, C, D, E, and F are symptoms. 
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with the absence of any target disease, regardless of the block 
in which they were originally presented. With regard to the 
stimulation of participants' contingency judgments, the acti- 
vation value of outcome unit 02 when the target cue D is 
presented (M = 0.436,' SE = 0.002) is higher than the acti- 
vation value of outcome unit O1 when the target cue A is 
presented (M = 0.134, SE = 0.009). Thus, the trial order 
effect found in participants' judgments is predicted by 
the model. 

The results from the simulation of Experiment 4 are very 
similar. As can be seen, the model can solve the nonlinear 
discrimination, and the results from the simulation of the test 
stage do not show catastrophic interference. With regard to 
the simulation of participants' contingency ratings, the 
model again predicts a trial order effect, that is, a difference 
between the activation values of the outcome units O1 and 
02 when the target cues A and D are presented (M = 0.214, 
SE = 0.003 and M = 0.289, SE = 0.003, respectively). Nev- 
ertheless, the trial order effect predicted for Experiment 3 is 
of a higher magnitude than for this last experiment. Partici- 
pants' contingency judgments also corroborated this predic- 
tion. Specifically, the absolute difference between partici- 
pants' judgments from the two trial order conditions was 
26.8 (45.0 vs. 18.2) in Experiment 3 and 13.2 (52.9 vs. 39.7) 
in Experiment 4. Correspondingly, the difference in the 
activation of the outcome units when the target cues are 
presented is 30.2 (43.6 vs. 13.4, on a comparable scale from 
0 to 100) in Experiment 3 and 7.5 (28.9 vs. 21.4) in 
Experiment 4. The main difference between the model's 
predictions and the results is the lower magnitude of the trial 
order effect that the model predicts in Experiment 4. 
However, this difference should not be taken as a very 
serious caveat of the model, as it does qualitatively repro- 
duce the general pattern of results, 

Figure 5 reproduces the trial-by-trial data from Experi- 
ment 2, previously shown in Figure 2, together with the 
results of a further simulation based on Pearce's model and 
using the same parameters as before. The model provides an 
excellent fit to the data. 

To conclude, Pearce's confignral model allows us to give 
coherence to the pattern of results we found. The absence of 
catastrophic forgetting and the influence of trial order in 
contingency judgments can both be understood in terms of 
the model. It provides a solution to the catastrophic forget- 
ting problem that involves a trade-off between two empirical 
constraints, namely, the fact that new information does not 
completely overwrite prior knowledge and the ability to 
adapt to the new incoming information through a process of 
generalization. This particular solution (not the only one--- 
see Lewandowsky, 1994, for further discussion) is based on 
the creation of semidistributed representations of the incom- 
ing information by means of the assignment of exclusive 
confignral representations to each new input pattern and the 
operation of a generalization mechanism based on pattern 
similarity. 

Because many configural learning phenomena can be 
explained by a version of the Rescorla-Wagner theory that 
retains the basic elemental coding scheme for cues but that 
supplements it with additional input representations for 
configurations of cues (see Gluck, 1991; Shanks, Charles, 
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Figure 5. Solid lines: differences (Differ.; cue A) across the 
learning stage between the proportion of times disease 1 is 
predicted on AB versus B and AC versus C trials and differences 
(cue D) between the proportion of times disease 2 is predicted on 
DE versus E and DF versus F trials in Experiment 2. These are the 
same data as shown in Figure 2. Dashed lines: predicted changes in 
the differences of the activation values of the outcome units on AB 
and B and AC and C trial types (cue A), and on DE and E and DF 
and F trial types (cue D) across the learning stage, according to 
Pearce's (1994) theory. 

Darby, & Azmi, 1997), it is important to note that the present 
results cannot easily be accommodated by such a model. The 
clearest problem emerges in Experiment 3. According to this 
account, the trial types relevant to cue A in that experiment 
are functionally ABX ---* 01, B ---, no O in Block 1 and 
A C Y  ---, no O, C ----, O1 in Block 2, where X and Y are 
configural cues created by the combinations of A and B, and 
A and C, respectively. The configural cues are assumed to 
function just like the other cues in the updating of associa- 
tive weights. According to the configural-cue version of the 
Rescorla-Wagner theory, cue A must lose associative strength 
on the A C Y  trials of Block 2 and, hence, the proportion of 
outcome predictions in the test stage to ABX should be lower 
than at the end of Block 1. Conversely, there should be an 
increase in the proportion of outcome predictions on DE 
trials. Table 7 provides some support for these predictions, 
but also suggests that the effect is not due to the Block 2 
trials, because the Block 2 trial types themselves suffer a 
roughly comparable level of performance decrement in the 
test stage. This analysis is supported by Shanks, Darby, and 
Charles (in press) and by Shanks et al. (1997), who included 
appropriate control groups to show that Block 2 trial types in 
fact have no detectable impact at all on responding to Block 
1 trial types in experimental designs of this sort. Thus it does 
not seem as if a model that combines elemental and 
configural representations is adequate; instead, the data 
require an entirely configural model, such as that developed 
by Pearce (1994). 

Configural cues and the PCM-ALG. As was the case for 
associative models, it is possible to conceive of a configural 
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version of the PCM-ALG. Would such a model be able to 
deal with our trial order findings? The answer is a clear 
"no." The weakness of the PCM-ALG is that its basic 
coding units are conditional probabilities computed across 
focal sets in which all trial types are evenly represented, and 
such probabilities are inherently independent of trial order. It 
does not matter whether participants compute the probabil- 
ity of an outcome given a single symptom, or the probability 
of an outcome given a configuration of symptoms: In both 
cases, the resulting probability will be independent of the 
order of the trials across which it is computed. 

Concluding Comments 

To sum up, the results reported here clearly show the 
limitations of the PCM-ALG as an account of how contin- 
gency judgments are made. The lack of sensitivity to the 
distribution of the relevant information across trials repre- 
sents a critical shortcoming, and this result represents a 
major limitation of any psychological theory that merely 
imposes normative or logical constraints on theorizing about 
psychological mechanisms. Moreover, the results showed 
the limitations of elemental associative theories such as the 
Rescorla-Wagner theory, but these results do not invalidate 
associationist theories as a general framework for understand- 
ing how people detect predictive relationships in their 
changing environment, as Pearce's (1994) configural model 
was able to provide a good account, within the associationist 
framework, of all of our main findings. We conclude that 
processing models based on associationist principles are 
capable of providing an excellent theory of human contin- 
gency judgment. 
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Appendix 

Contingency Calculations for the Probabilistic Contrast Model, PCM-ALG 

Exper imen t  I 

Cues B, C, E, and F are all individually associated to some 
degree with their respective outcomes and so will be selected as 
conditionalizing cues. Ideally, participants compute the contrast for 
a target cue conditional on the absence of all conditionalizing cues, 
but this is not possible here because A and D are never seen in 
isolation. Thus, contrasts must be computed conditionalized on the 
presence or absence of the known predictors. The contingency AP 
between cue A and outcome O~ conditional on the presence of B is 
8/10 - 2/10 = .6, and on its absence 8110 - 8/130 = .74, whereas 
the contingency conditional on the presence of C is 8/10 - 8/10 = 
0 and on its absence 8/10 - 2/130 = .78. Correspondingly, the 
contingency between cue D and outcome 02 conditional on the 
presence of E is 8/10 - 8/10 = 0 and on its absence 8/10 - 
2/130 = .78, whereas the contingency conditional on the presence 
of F is 8/10 - 2/10 = .6 and on its absence 8110 - 81130 = .74. 
Thus, the set of contrasts is the same forA and D. 

Exper iments  2 and 3 

Cues C and E are the conditionalizing cues. Across the whole 
experiment, the contingency between cue A and outcome O~ 
conditional on the presence of C is 0 - 1 = - 1 ,  whereas the 
contingency conditional on C's absence is 1 - 0 = 1. Correspond- 
in#y, the contingency between cue D and outcome 02 conditional 
on the presence of E is 0 - 1 = - 1 ,  whereas the contingency 
conditional on E's absence is 1 - 0 = 1. Thus, the pair of contrasts 
is again the same forA and D. 

Across Block 2, however, the A --, O1 contingency ( - 1 ,  
conditional on the presence of  C) is greater than the D --, 02 
contingency (1, conditional on the presence of F). 

Exper imen t  4 

Across the whole learning phase, the contrasts for A and D are 
the same as in Experiments 2 and 3. But what if  only trials falling 
within a restricted temporal window are included? Assume that the 
window only includes trials from the last quarter of  the learning 
phase (the argument is similar'for other window sizes). Cues C and 
E are again the conditionalizing cues. Using the trial frequencies 

shown in Table 8, it can be seen that the contingency between cue A 
and outcome O~ conditional on the presence of  C is 0/4 - 414 = 
- 1 ,  calculated across the AC and C trial types, whereas the 
contingency conditional on C s  absence is 

a t ,  = P ( O , I A  .-C) - P ( O , / ~ .  -C) = 111 - 0 = l ,  

calculated across the remaining trials. For D, the corresponding 
contrasts are 0/1 - 1/1 = - 1 conditional on the presence of  E and 
4/4 - 0 = 1 conditional on its absence. Again, the pair of  contrasts 
is the same forA and D. 

Cheng and Holyoak (1995, p. 286) proposed that in some 
circumstances participants may rely on unconditional contingen- 
cies, and the unconditional AP values are indeed different for cues 
A and D in the present experiment. For example, across the last 
block of trials the unconditional AP is 1/5 - 4/15 = - 0 . 0 6  for A 
and 415 - 1/15 = 0.75 for D, and the direction of this difference is 
consistent with participants' judgments. However, the circum- 
stances specified by Cheng and Holyoak for the use of uncondi- 
tional contingencies do not apply in the present experiment. 
According to their theory, unconditional contingencies are incorpo- 
rated in the judgment process only if some of the contrasts 
conditional on the presence and absence of the conditionalizing 
cues cannot be computed, or if  ceiling effects are present. In the 
present experiment, as C is the only conditionalizing cue for A and 
A's contingency conditional on both the presence and absence of C 
can be computed (and similarly for D), there is no need for the use 
of unconditional contingencies. Also, there are no ceiling effects. 
Thus, for participants to rely on unconditional contingency would, 
according to the PCM, be highly nonnormative in the present 
circumstances, and the theory predicts that participants should not 
do so. Further empirical evidence against the idea that the judgment 
process combines conditional and unconditional contrasts has been 
presented by Shanks (1993a). 
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