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1/f scaling has been observed throughout human physiology and behavior, but its origins and meaning
remain a matter of debate. Some argue that it is a byproduct of ongoing processes in the brain or body
and therefore of limited relevance to psychological theory. Others argue that 1/f scaling reflects a
fundamental aspect of all physiological and cognitive functions, namely, that they emerge in the balance
of independent versus interdependent component activities. In 4 experiments, series of key-press
responses were used to test between these 2 alternative explanations. The critical design feature was to
take 2 measures of each key-press response: reaction time and key-contact duration. These measures
resulted in 2 parallel series of intrinsic fluctuations for each series of key-press responses. Intrinsic
fluctuations exhibited 1/f scaling in both reaction times and key-contact durations, yet the 2 measures
were uncorrelated with each other and separately perturbable. These and other findings indicate that 1/f
scaling is too pervasive to be idiosyncratic and of limited relevance. It is instead argued that 1/f scaling
reflects the coordinative, metastable basis of cognitive function.
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function

Almost daily, new reports appear of brain areas for mental
faculties. Apparently any kind of thing that a person can do—
recognize familiar proper nouns (Addis, Mclntosh, Moscovitch,
Crawley, & McAndrews, 2004), analyze the positions of pieces on
a chess board (Atherton, Zhuang, Bart, Hu, & He, 2003), respond
to unfair economic proposals (Sanfey, Rilling, Aronson, Nystrom,
& Cohen, 2003), puzzle over moral dilemmas (Greene, Sommer-
ville, Nystrom, Darley, & Cohen, 2001), appreciate jokes (Moran,
Wig, Adams, Janata, & Kelley, 2004), ejaculate (Holstege et al.,
2003), whatever—Ilives in a different spot or spots in the central
nervous system. Skeptical scientists find this troubling (Uttal,
2001), including skeptics who practice neuroimaging (e.g., Fuster,
2003). At conferences one too often hears the old joke about the
drunk looking for lost keys under the lamppost because the light is
better there. The joke and similar sentiments apologize for the
widespread use of subtractive and correlational methods in neuro-
imaging. These dissociative and associative methods too easily
(inevitably) parse brain activity or behavior into hypothetical fac-
ulties (Van Orden, Pennington, & Stone, 2001). The methods have
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well-known logical shortcomings that make it difficult to justify
isolation or localization of function, regardless of whether the data
are brain images or behavior (Bub, 2000; Shallice, 1988; Uttal,
2001).

But shortcomings aside, suppose one accepts the patterns of
activation inferred from neuroimaging data as reflective of loca-
tions where neural resources are more or less engaged by cognitive
performances. Even then, cognitive functions are difficult to lo-
calize because cognitive performances appear in neuroimages as
numerous patches of activation distributed across the brain (Basar,
2004; Friston, Phillips, Chawla, & Buchel, 2000; Maestu et al.,
2003). In fact, as a general rule, activation has been found to
become more widespread as task difficulty increases (Carpenter,
Just, Keller, Eddy, & Thulborn, 1999; Jonides et al., 1997; Pe-
tersen, van Mier, Fiez, & Raichle, 1998). Evidence for widespread
activation naturally leads one to ask whether it might reflect
widespread networks of neural processing (Damasio & Damasio,
1994; Posner & Rothbart, 1994). This question has been pursued
with neuroimaging methods that attempt to measure the “func-
tional connectivity” of brain regions (Horwitz, 2003; Patel, Bow-
man, & Rilling, 2006; Sun, Miller, & D’Esposito, 2005), and
complementary anatomical methods have been made more acces-
sible by recent technological advances (Norris, 2006; Symms,
Jager, Schmierer, & Yousry, 2004).

It should come as no surprise that evidence for functional
networks has been easy to find. After all, it is generally accepted
that different areas of the brain must coordinate themselves to
support cognition and behavior (see Bressler, 2002; Bressler &
Kelso, 2001), and electrophysiological evidence for coordination
has been available for some time now (Freeman, 1975; Mayville,
Bressler, Fuchs, & Kelso, 1999; Wallenstein, Kelso, & Bressler,
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1995). One can even look to behavior itself for more transparent
evidence of coordination. Consider how walking, for instance,
requires a clear and strong functional connectivity among the
limbs and their anatomical components (given that connectivity
corresponds to dependencies among component activities). This
connectivity can be measured directly in the regular relations
among degrees of freedom in movements, and coordination in
simple model tasks has been studied rigorously for decades (Bern-
stein, 1967; Turvey, 1990; von Holst, 1939/1973). It is only
common sense that coordinations in motor activity should have
corresponding coordinations in neural activity, and this common
sense has been verified in the laboratory (Kelso, 1995; Lagarde,
Tognoli, & Kelso, 2006; Mayville, Jantzen, Fuchs, Steinberg, &
Kelso, 2002).

What does the coordination of brain and body tell us? Consider
that not only walking but virtually all behavioral and cognitive
performances are fundamentally phenomena of coordination, for
what kind of performance is the product of one component work-
ing in isolation? To wit, locomotion requires the coordination of
perceptual and motor systems (e.g., Loomis, Dasilva, Fujita, &
Fukusima, 1992; Warren, 2006), and the notion that social inter-
actions are like dances is more than a fanciful metaphor (Schmidt,
Christianson, Carello, & Baron, 1994; Shockley, Santana, &
Fowler, 2003). Even more strictly cerebral performances like solv-
ing a puzzle can be viewed as coordinations of mental activity,
although the components to be coordinated are less obvious in
these cases. In this regard it is interesting to note that the growing
paradigm of embodied cognition is based on the idea that bodily
functions, which are transparent phenomena of coordination, are
internalized to support more abstract cognitive functions (Gibbs,
2006; Lakoff & Johnson, 1980; Varela, Thompson, & Rosch,
1991). Thus embodied cognition may entail a fundamental com-
mitment to coordination.

The coordinative basis of cognition is problematic for functional
localization because, in its fullest sense, coordination entails emer-
gence (Kugler, Kelso, & Turvey, 1980, 1982). It means that
components interact so completely that one can no longer parse
their individual contributions in the collective activity of the
whole. Each component may contribute its own potentials and
constraints in shaping this collective activity, but the activity of
each component is strongly interdependent with the activities of
potentially many other components (Bressler & Kelso, 2001). For
instance, the eyes and hands and visual cortex and motor cortex are
all functionally distinct, but these distinctions are blurred in mea-
sures of activity by strong mutual dependencies among compo-
nents. There are also mutual dependencies between an organism’s
components and its environment that create an organism—
environment system (Gibson, 1979). The consequence of such
pervasive dependencies is that isolated physiological activity can-
not be used to isolate component functions because activities and
functions are always realized in the context of the coordinated
whole.

Thus the coordination of brain and body may entail an emergent
basis of behavioral and cognitive function (Pattee, 1976). This
general and admittedly sweeping statement raises questions about
its testability and meaningfulness. Is it too vague to be tested? Is
there actually a face of emergent coordination that can be recog-
nized and observed throughout human behavior and its physiolog-
ical underpinnings? Can experiments be designed to test whether

this face truly reflects a general principle of coordination, as
opposed to some quirk or byproduct of processes that are mostly
irrelevant to behavioral and cognitive function?

We propose that the emergent basis of behavioral and cognitive
functions can indeed be tested, and this is the primary aim of the
current study. Our reasoning begins with an overwhelming and
ubiquitous empirical fact. Across dozens of observations of neural
and behavioral phenomena, and literally thousands of observations
across the sciences, researchers have found that different kinds of
physical, chemical, biological, psychological, and social systems
all exhibit the same kind of fluctuation whose statistical character
has proven to be as puzzling as the fluctuation is ubiquitous. The
fluctuations of all of these kinds of systems have been found to
follow a lawful scaling relation known as 1/f noise, which is also
known as the more aptly named 1/f scaling.

The statistical character of 1/f scaling and its connection with
emergent coordination is explained in the next section, but suffice
it to say here that the origins of 1/f fluctuations in nature remain a
matter of debate despite decades of research and thousands of
studies (a bibliography can be found at http://www.nslij-
genetics.org/wli/1fnoise). Some researchers have argued that 1/f
fluctuations reflect a general and essential principle of emergent
pattern formation in complex systems (Bak, 1996; Bassingth-
waighte, Liebovitch, & West, 1994; Camazine et al., 2003;
Gisiger, 2001; West & Deering, 1995), including cognitive sys-
tems (Gilden, 2001; Kelso, 1995; Van Orden, Holden, & Turvey,
2003).

Others find it hard to believe that so many different kinds of
systems, with such different components, would all have a com-
mon basis of operation. The alternative is to believe that each
system has some idiosyncratic source of 1/f fluctuations (e.g., see
Baillie & King, 1996; Ivanov, Amaral, Goldberger, & Stanley,
1998; Pressing, 1999; Wagenmakers, Farrell, & Ratcliff, 2004,
2005). In psychological science, two idiosyncratic hypotheses rep-
resent the majority of these alternative explanations. The first is
that, whatever the myriad sources of fluctuation are that impinge
on psychological measurements, they happen to combine into a 1/f
scaling relation. The second is that some ongoing process like
vigilance, cognitive control, or mental set happens to generate 1/f
fluctuations. These hypotheses differ from emergent coordination
in that they restrict the purview of 1/f scaling and thereby diminish
its general relevance to cognitive science.

In the present study we aimed to provide more discriminating
evidence than heretofore available on the origins of 1/f scaling in
cognitive performances. In four experiments, we used simple and
choice response tasks to test the generality of 1/f scaling in human
behavior. The results show that 1/f scaling is too general to fit
within the restricted purviews of idiosyncratic accounts, whereas
emergent coordination accommodates the results naturally. Thus
the pervasiveness of 1/f scaling in cognitive performance is evi-
dence that cognitive functions are generally, perhaps universally,
formed as emergent patterns of physiological and behavioral ac-
tivity.

Emergent Coordination and 1/f Scaling

The connection between emergent coordination and 1/f scaling
has its roots in von Holst’s (1939/1973) classic studies of coordi-
nation in a wide range of biological organisms. These studies
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identified two modes of activity among anatomical components.
These modes are complementary and arise in general when com-
ponents have preferred patterns of activity that are diversified
across the system in question. To illustrate, two of von Holst’s
primary biological models were the lipfish and the centipede. In
the lipfish the components are fins, the activities are oscillations of
the fins, and each fin has a preferred frequency of oscillation. The
centipede is similar except the components are oscillating legs.

In one mode, each component may be found to produce its
preferred oscillatory pattern of activity regardless of the other
components. Von Holst (1939/1973) referred to this tendency
towards independence of components as the maintenance ten-
dency. The opposing mode is characterized by a tendency for
components to produce in unison a single, common pattern of
activity. Von Holst referred to this tendency as the magnet effect.
Importantly, neither extreme creates the coordination used for
lipfish swimming or centipede walking. Instead, locomotion is
accomplished by a balance of these opposing tendencies that gives
rise to what von Holst referred to as relative coordination. The
components work together to create a globally coherent pattern of
activity, yet each component maintains its potential for indepen-
dence.

The balance of relative coordination allows components to
flexibly reorganize themselves into a variety of stable patterns of
activity. Von Holst (1939/1973) demonstrated this flexibility in the
centipede by removing some number of its legs and observing how
the remaining legs maintained functionality (Van Den Berg, 2000).
He found that locomotion was transformed to the insect gait when
three pairs of legs were left and the quadrupedal gait when two
pairs of legs were left. These alternate modes of locomotion do not
appear to be hard-coded motor programs in the centipede’s ner-
vous system that come on-line when a certain number of legs are
lost. They instead appear to be a generic potential of the structural
and dynamical relations among its physiological and anatomical
components. Removing legs alters system constraints, causing the
relative coordination of components to reorganize and thereby
reimplement the function of locomotion in their new context.

Von Holst’s (1939/1973) hypothesis of relative coordination has
since been vigorously extended and elaborated to explain a wide
variety of human movement patterns (Kelso & Clark, 1982;
Schmidt, Beek, Treffner, & Turvey, 1991; Schwartz, Amazeen, &
Turvey, 1995; Turvey, 1990), and more recently patterns of human
neural activity as well (Bressler & Kelso, 2001; Friston, 1997; Le
Van Quyen, 2003; Linkenkaer-Hansen, Nikouline, Palva, & II-
moniemi, 2001). In these later works, relative coordination is
replaced with the concept of metastability that originates from
principles of thermodynamics. Metastability generalizes the bal-
ance between independence and interdependence beyond oscilla-
tors to non-linear components of all kinds. It formalizes this
balance in terms of a complex system near its critical point
between ordered and disordered phases.

Critical points are well-known phenomena of thermodynamics,
and models of criticality have been applied to complex systems
throughout nature. We illustrate the defining features of a critical
point using a model reported by Usher, Stemmler, and Olami
(1995) that demonstrates the connections between metastability,
emergent pattern formation, and 1/f scaling. The authors presented
their model as a simulation of center—surround receptive fields that
are commonplace in research on neural mechanisms of perceptual

processing. Neuronal units in the model had excitatory (center) and
inhibitory (surround) inputs that came from neighboring units, as
well as external inputs.

Simulations showed that sufficiently weak external inputs did
not allow stable patterns of activity to form across the neuronal
grid, and thus activities fell into a disordered (fluid) phase. Suffi-
ciently strong external inputs created a fixed pattern of evenly
spaced clusters (reflecting the center—surround structure), and thus
activities fell into an ordered (crystalline) phase. The transition
between phases was not a smooth function of input strength.
Instead there was an abrupt transition between phases (i.e., the
critical point) in which metastable patterns could form. At the
critical point, neuronal neighbor interactions were sufficiently
strong to allow patterns to form, but also sufficiently weak to allow
patterns to fluctuate intrinsically and change in response to exter-
nal inputs.

Intrinsic pattern fluctuations had corresponding fluctuations in
individual neuronal activities, and Usher et al. (1995) showed that
these fluctuations followed a 1/f scaling relation. 1/f fluctuations
are statistically special in many respects (see Wagenmakers et al.,
2004), but here we just point out that they are scale-invariant: A
time series plot of 1/f fluctuations has the same “look and feel” as
one zooms in or out to see more fine-grained or coarse-grained
features of the fluctuations. The 1/f scaling relation is typically
expressed in the frequency domain, however, rather than the time
domain. A time series can be transformed into the frequency
domain by Fourier analysis which represents the series as a set of
sine waves, each with an associated frequency and power. For 1/f
fluctuations, power and frequency are inversely related (hence the
name //f scaling). The scaling relation is parameterized by an
exponent o (1/f*), where o« = 1 for ideal 1/f scaling.

The center—surround model is just one example from decades of
research showing that complex systems near their critical points
universally exhibit scaling laws, including 1/f scaling (for reviews,
see Bak, 1996; Solé¢ & Goodwin, 2000; Sornette, 2004). This
groundwork is the basis for interpreting evidence of 1/f scaling in
behavioral and neural activities as evidence for the metastable
basis of cognitive function. Such evidence has been found in
measures of mental rotation and translation (Gilden, 1997), visual
search (Aks, Zelinsky, & Sprott, 2002), simple classifications
(Kelly, Heathcote, Heath, & Longstaff, 2001), lexical decision
(Gilden, 1997), word naming (Van Orden, Holden, & Turvey,
2003), and color and shape discrimination (Gilden, 2001).

In these and other examples, 1/f scaling was found in the
intrinsic fluctuations of performance. Empirical intrinsic fluctua-
tions are analogous to intrinsic pattern fluctuations in the center—
surround model: They both express dynamics that are attributable
primarily, if not solely, to the system itself. Such intrinsic dynam-
ics are expressed most clearly in the model when measurements
are unperturbed by changes to external inputs. Empirically speak-
ing, constancy is achieved by taking the same measurement re-
peatedly without changing the experimental or environmental con-
ditions. One of the clearest examples in human behavior was
provided by Gilden, Thornton, and Mallon (1995). They asked
participants to estimate from memory the same temporal interval
(e.g., 1 s) or the same spatial interval (1 in.) over and over again,
without feedback. Spectral analyses showed a clear 1/f scaling
relation in the intrinsic fluctuations of interval estimates.
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In summary, we hypothesize that cognitive functions are ex-
pressed as metastable patterns of neural and behavioral activity.
These patterns are able to form because interactions among neural
and bodily components tend to be near critical points between
ordered and disordered phases of activity. The 1/f signature of
metastable pattern formation is universal to intrinsic pattern dy-
namics, which are expressed as intrinsic fluctuations of cognitive
performances. Intrinsic fluctuations are elicited experimentally in
repeated behaviors, which on the surface may seem far removed
from the cognitive performances that researchers are typically
interested in. However, note that intrinsic fluctuations can, in
principle, be elicited from any kind of behavior, including all
behaviors that experimentalists use to express cognitive perfor-
mances. Moreover, repeated behaviors involve the same physio-
logical and anatomical components as more typical cognitive
performances. These points strongly suggest that intrinsic fluctu-
ations are not separate from cognitive functions. Instead it appears
that intrinsic fluctuations can be elicited from the interactions of
any and all system components involved in the emergence of
cognitive functions.

Experiments 1 and 2: Multilevel Alternatives to Emergent
Coordination

While 1/f scaling is relatively new to the psychological sciences,
the concept of intrinsic fluctuation is not. Experimentalists have
long realized that behavior fluctuates “on its own” over time, no
matter what is done to hold conditions constant. However, it is
traditionally assumed that such fluctuations are irrelevant to cog-
nition and other psychological processes. The rationale is that
behaviors are always subject to many streams of random pertur-
bations (e.g., Klein, 1997). Some perturbations may come from
subtle changes in the environment, and others may come from flux
within the system itself. In most statistical models, these assumed
perturbations are approximated as independent samples of mea-
surement error.

However, there are always physiological and cognitive pro-
cesses unfolding more slowly than the chosen pace of measure-
ment, regardless of whether repeated measurements are taken once
per second or once per hour. Some of these processes may slowly
unfold on the scale of ultradian or circadian rhythms, for example
(Dijk, Duffy, & Czeisler, 1992). Others may unfold on the faster
time scales of hormonal, respiratory, cardiac, vascular, autonomic,
and cellular processes. All may impinge on measures of cognitive
performance, creating both “random” and slowly changing contri-
butions to measured values (Newell, 1990; Simon, 1973). Such
contributions will create trends across measurements, such as runs
of relatively high or low values (Bills, 1935).

So, a more complicated multilevel account combines all of the
above sources of fluctuation in repeated behaviors (Bills, 1943).
Although a multilevel account may seem appropriate for intrinsic
fluctuations, the problem is that mixtures of independent processes
across multiple timescales are unlikely to yield the 1/f scaling
relation that characterizes intrinsic fluctuations (Hausdorff &
Peng, 1996). Such mixtures are more likely to yield a blend of
independent and correlated contributions to measurements that
deviate from the 1/f scaling relation. In fact there has been some
debate about whether observations are better explained as such
blends rather than true 1/f scaling, but the evidence for 1/f scaling

is now clear (Farrell, Wagenmakers, & Ratcliff, 2006; Thornton &
Gilden, 2005; Van Orden, Holden, & Turvey, 2005; Wagenmakers
et al., 2004).

Evidence for 1/f scaling has led some researchers to simply
stipulate that multilevel processes combine to mimic a 1/f scaling
relation (e.g., Amaral et al., 2001; Beran, 1994; Granger & Joyeux,
1980; Pressing, 1999; Wagenmakers et al., 2004). A psychological
version of this hypothesis is that unconscious, subconscious, and
conscious processes combine as a 1/f scaling relation in measure-
ments of human behavior (Ward, 2002). Such hypotheses provide
no theoretical explanation for why the mixture of timescales
should line up in a 1/f scaling relation, but they are consistent with
the evidence, at least in human performance data.

We designed Experiments 1 and 2 to put multilevel accounts to
the test by investigating the generality of 1/f scaling in cognitive
performance. Previous studies have tested for 1/f scaling in only
one dependent measure at a time, whereas we examined two
parallel measures of key-press responses: reaction time and key-
contact duration, the latter being the brief duration of time that the
key makes contact with its sensor for a typical key stroke. The
question is whether one or both dependent measures may exhibit
1/f scaling in their intrinsic fluctuations, and if both, whether the
1/f fluctuations in each measure are correlated with each other.

The most straightforward and natural prediction of multilevel
accounts is that reaction times and key-contact durations should
exhibit correlated 1/f fluctuations. This prediction stems from the
assumption that, whatever physiological or cognitive processes
impinge on key-presses and key-releases to create 1/f fluctuations,
they will impinge on both aspects of performance in a correlated
manner. This is most intuitive and obvious for processes that
unfold over the course of minutes and hours rather than seconds or
milliseconds. For instance, suppose that fluctuations in vigilance
create slow fluctuations of change across dozens of key-press
responses spanning minutes or even tens of minutes of measure-
ment time. All other things being equal, if these fluctuations
influence performance at all, then their influence should create
correlations in the fluctuations of different measures of perfor-
mance. Therefore, if vigilance helps to create 1/f fluctuations in
key-press responses, then it should help to create the same 1/f
fluctuations in reaction times and key-contact durations.

Emergent coordination, by contrast, leads one to predict distinct
1/f fluctuations for distinct measures of system behavior. Consider
again the model of criticality reported by Usher et al. (1995).
Metastable patterns of activity were not uniform across the neu-
ronal system, and hence 1/f fluctuations were not uniform across
its neuronal components. Thus even if reaction times and key-
contact durations are measures of the same underlying system near
its critical point, they should exhibit distinct 1/f fluctuations pro-
vided that they reflect the activities of distinct sets of system
components. For instance, the neural and muscular groups that
most directly influence reaction times are different from those that
influence key-contact durations. Also, in the present experiments,
keys were not pressed so successively close in time or with such
force as to impose correlations on the kinematics of key-presses
and -releases. Therefore, the intrinsic fluctuations in reaction times
were free to vary independently of key-contact durations.

The multilevel and coordinative accounts also make divergent
predictions with respect to the introduction of random perturba-
tions to measurements. First of all, both accounts agree that ran-
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dom perturbations should interfere with the expression of intrinsic
fluctuations, thereby weakening the 1/f scaling relation. However,
the multilevel accounts predict that any perturbation should jointly
affect both reaction times and key-contact durations. Because the
two measures are yoked in real time (key-contact duration begins
as reaction time ends), any perturbation to one should affect both
in terms of their ability to express the combined 1/f effect of
multilevel processes. By contrast, emergent coordination predicts
perturbations to selectively affect one or the other dependent
measure, provided that their intrinsic fluctuations are free to vary
independently of one another.

In Experiment 1, we manipulated the relative presence or ab-
sence of perturbations by making the timing of simple response
cues either unpredictable or predictable, respectively. In Experi-
ment 2, we manipulated the relative presence or absence of per-
turbations by making the identity of choice response cues either
unpredictable or predictable, respectively. Predictable cues create
relatively constant experimental conditions from one trial to the
next because each new trial contains no new information. Unpre-
dictable cues create perturbations because conditions change ran-
domly from one trial to the next.

The predictions of each account as outlined above were the
same for both experiments. The multilevel accounts predict cor-
related 1/f fluctuations in reaction times and key-contact durations,
and they predict 1/f fluctuations in both measures to be clearest
when cues are predictable. By contrast, emergent coordination
predicts uncorrelated and independently perturbable 1/f fluctua-
tions in reaction times versus key-contact durations.

Experiment 1 Method

Participants. Eighteen student participants were recruited
from George Mason University. Sixteen were undergraduates who
participated for course credit, and 2 were graduate students who
were compensated for their participation. Eleven were female, 17
were right-handed, and all had normal or corrected vision.

Apparatus. An IBM PC computer running Windows 2000 was
used. The experiment-running software used Microsoft DirectX
for timing, stimulus presentation, and keyboard input. A 17-in.
cathode ray tube monitor running at a 70-Hz refresh rate was used
to present stimuli, and a PS/2 keyboard was used to collect
responses.

Procedure. Each participant was seated in a quiet experimen-
tal room about 2 feet (0.61 m) in front of a computer monitor
placed on a table with its keyboard. Participants were instructed to
rest their arm on the table and place their index finger on or next
to the space bar. For each trial, a large white X appeared period-
ically on the monitor. Participants were instructed to hit the space
bar key as soon as they saw each X response cue. No mention was
made of how long the space bar should be held down. Participants
were instructed to wait for each cue to appear before responding
and were warned that a loud beep would sound if the space bar was
pressed prior to a cue’s appearance.

Each cue was displayed for 57 ms in the center of the computer
screen, =7 ms due to monitor refresh (all stimulus displays in-
cluded *=7-ms variability due to monitor refresh). Immediately
following each cue, a pair of dashes was displayed in the center of
the monitor and remained visible until the participant pressed the
space bar in response. The time before the next cue appeared was

linked to the release of the space bar (participants were not told
this, nor was it noticeable). In the fixed-cue condition, cues ap-
peared 1,000 ms from the release of the space bar. In the variable-
cue condition, release—cue intervals were sampled from an expo-
nential distribution with a mean of 1,000 ms, a minimum of 1 ms,
and a maximum of 12,000 ms. The exponential distribution created
a flat hazard function within the lower and upper bounds, which
meant that the probability of receiving a cue was constant as a
function of wait time from the previous cue (Simpson, Braun,
Bargen, & Newman, 2000).

Each participant was presented with one experimental block of
1,100 fixed cues and one experimental block of 1,100 variable
cues. Each block took about 25 min to complete. The order of
blocks was counterbalanced across participants. Each participant
was given a short break in between blocks, and each participant
was told whether the upcoming block of cues was predictable or
unpredictable. A short practice block was given prior to each
experimental block. A reaction time and a key-contact duration
was recorded for each response to each cue. Reaction time was the
time from the appearance of the response cue X until the space bar
made contact with its sensor. Key-contact duration was the time
that passed from contact to release of the space bar. Delays in
detection times of contact and release were estimated to be 0—7 ms.

Experiment 1 Results and Discussion

Data preparation. The data were prepared for analyses as
follows. First, anticipatory responses and responses with latencies
over 1,000 ms were removed. For the remaining responses, a mean
and standard deviation were calculated for each series of reaction
times, for each participant in each condition. The same was done
for each series of key-contact durations. Responses with reaction
times or key-contact durations that were outside of three standard
deviations from their respective mean were then trimmed. The last
1,024 data points in each trimmed data series were standardized (Z
scores) and selected for analysis, because some analyses required
that the number of data points be equal to a power of 2. To gauge
the effects of trimming on spectral portraits of 1/f scaling, we
created artificial data series of 1/f scaling and removed data points
at random. For percentages of removal on the scale of trimming
done herein (no more than 1%), spectral slopes were virtually
unaffected.

Data analysis. The goal of our analyses was to measure the
extent of 1/f scaling in each data series using techniques that
classify noises. There are many such techniques, and each has its
strengths and vulnerabilities (Eke, Herman, Kocsis, & Kozak,
2002; Rangarajan & Ding, 2000). We employed three methods of
analysis in order to provide convergent support for our statistical
conclusions and to best protect those conclusions from the vulner-
abilities of any single analysis (Delignieres, Torre, & Lemoine,
2005; Holden, 2005). All three of the methods provide an esti-
mated scaling exponent that roughly characterizes the given data
set. More exact estimates are difficult to determine (Thornton &
Gilden, 2005) but were unnecessary for our purposes because no
current theory of 1/f scaling in cognitive performance makes exact
predictions about the values of scaling exponents. At best, the
current theories may predict the class of noise to be observed (i.e.,
the range in which exponents should fall) and the direction of
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effect that an experimental manipulation will have on the scaling
exponent. The methods we used are well-established for these
purposes.

Using spectral methods, power densities were estimated using a
126-frequency window-averaging technique as in Van Orden,
Holden, and Turvey (2003). Each series was first linearly de-
trended, and then we estimated its spectral slope by fitting the
power spectral density estimates of the lowest 63 frequencies
(lowest 50%) with a regression line in log—log coordinates (data
were not bandpass filtered but were passed through a triangular
window prior to spectral analysis). Ideal 1/f scaling gives a slope
equal to —1, whereas ideal white noise gives a slope equal to 0.
Empirical 1/f scaling will appear as a slope between —1 and 0.
Power estimates in the upper frequencies were not used because
they can be affected by limitations in the measurement protocol.
These limitations include error in the measurement device as well
as behavioral fluctuations that occur at frequencies higher than
those detectable by the protocol, which become aliased. The two
other methods that we employed were detrended fluctuation anal-
ysis (Peng, Havlin, Stanley, & Goldberger, 1995) and standardized
dispersion analysis (Bassingthwaighte et al., 1994). These methods
are derived from fractal theory and essentially describe how the
patterns of variability in the series scale as a function of sample
size. Detrended fluctuation analysis is known to be reliable and
robust (Eke et al., 2002) and does not require the arbitrary setting
of parameters, as does spectral analysis. Dispersion analysis is also
highly reliable, but linear and quadratic trends may bias its output.
We therefore removed both linear and quadratic trends for disper-
sion analyses.

The three methods are complementary in that the strengths of
each tend to compensate for the weaknesses of the others. For
instance, spectral techniques are susceptible to a range of statistical
artifacts and require significant preprocessing as a consequence
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(see Press, Teukolsky, Vetterling, & Flannery, 1992). Nonetheless
they give a clear picture of 1/f scaling in the low frequency region
of the spectral plot (Van Orden et al., 2005). Dispersion analysis is
generally more reliable than spectral analysis, but its outcome may
sometimes be biased by simple long-term trends (these trends are
not a problem for spectral analysis; Holden, 2005). Detrended
fluctuation analysis is a fractal method that can be applied to
nonstationary signals. It is not susceptible to most statistical arti-
facts or to long-term trends, but it can falsely classify certain types
of signals as fractal (Rangarajan & Ding, 2000). By using all three
methods together, we ensured the reliability of our conclusions. To
simplify reporting, we converted the outputs of the dispersion and
detrended fluctuation analysis into spectral slopes (Eke et al.,
2002).

Time series illustrations. To convey a better sense of the task
and resulting behavior, we have illustrated a time series of fixed
cues and compared this with a time series of variable cues in
Figure 1. Time is to the right along the horizontal axis. Each X
represents a cue, and each down-arrow represents the downward
press of the response key. Each trailing up-arrow represents the
subsequent release of the key. In the upper diagram, the space from
each up-arrow to the following X is shown to be constant, repre-
senting the fixed release—cue intervals. In the lower diagram, these
spaces vary in width, representing the variable release—cue inter-
vals.

Reaction times are marked by the wider brackets, and key-
contact durations are marked by the narrower brackets. These
widths appear unchanging in the diagrams; the actual fluctuations
are plotted in the two time series below each diagram. Reaction
times are pulled out and illustrated on the left, and key-contact
durations are pulled out to the right. All the time series come from
1 participant’s trimmed and normalized data. Data from the same
participant’s blocks of fixed and variable cue trials (1,024 points

Key-Contact Durations
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Diagram of 1 participant’s data from Experiment 1, shown with timelines that illustrate sequences

of fixed (top) and variable (bottom) release—cue intervals. Each X represents a cue; each down-arrow represents
the downward press of the response key; and each trailing up-arrow represents the subsequent release of the key.
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each) are plotted above and below, respectively, with reaction time
(left) or key-contact duration (right) on the y-axis. 1/f scaling in
trial-to-trial fluctuations can be seen as undulations in the plotted
time series that vary in height (amplitude) and width (frequency).
Notice the relative lack of large-amplitude, low-frequency undu-
lations in the series of reaction times for the variable cue condition
compared with the other three conditions. This visible effect of
variable cues shows up as a shallower spectral slope in the power
spectrum results that are reported next.

Spectral analyses. In Figure 2, two power spectra are plotted
in log—log coordinates, one for reaction times and one for key-
contact durations. Each point represents the estimated power at a
given frequency, averaged across participants, in responses to
fixed or variable cues. A regression line was fit for each type of
cue to the averaged log power estimates in the lower half of the log
frequency range. The slope of the regression line provides a rough
estimate of the 1/f scaling exponent. As noted earlier, power
estimates in the higher frequencies were avoided because they are
muddied by aliasing, measurement error, and other limitations of
the experimental protocol. Figure 2 shows a clear change in slope
in the spectral density estimates for reaction times to fixed versus
variable cues, but no such change for key-contact durations. In
Table 1, this effect is shown in the averages of spectral slopes,
along with their standard errors and supporting #-test results. Re-
sults from all three methods of analysis are shown in terms of
spectral slopes for purposes of comparison.

The outcomes of each of the three methods supported the
outcome of every other. 1/f scaling was apparent in all conditions,
as evidenced by the consistently negative slopes and the persistent
linearity at the lowest measured frequencies. But more relevant to
the research question, the estimated 1/f scaling exponent for reac-
tion times was closer to the zero slope of white noise when cues
were variable as opposed to fixed. By contrast, the effect of cue
predictability on 1/f scaling in key-contact durations was substan-
tially less.

Correlations and means. ~Correlation coefficients were calcu-
lated for each participant’s time series and then averaged across
participants. The mean coefficients for blocks of variable and fixed
cues were 0.00 and —0.22, respectively (this weak negative cor-
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relation in the predictable cue condition failed to replicate in any
condition of the remaining experiments). Finally, the perturbations
introduced by variable cues were accompanied by slower reaction
times overall compared with fixed cues: M = 311 ms versus 173
ms, respectively, #(1, 17) > 1,000. By contrast, there was no a
priori reason to expect a difference in mean key-contact durations.
In fact there was a small but reliable effect opposite to that for
reaction times: key-contact durations for variable versus fixed cues
averaged 114 ms versus 130 ms, respectively, #(1, 17) = 5.2, p <
.001.

Summary. Results showed clear evidence of 1/f scaling in the
fluctuations of reaction times as well as key-contact durations
when cues were timed regularly (predictably). The critical finding
was that, for a given series of key-press responses, 1/f fluctuations
in reaction times were not reliably correlated with 1/f fluctuations
in key-contact durations. Another finding further supported the
apparent independence of these two measures: Unpredictable cues
caused the estimated 1/f scaling exponent to decrease in reaction
times but not key-contact durations.

The apparent independence of fluctuations in reaction times and
key-contact durations does not fit with the multilevel accounts of
1/f fluctuations. The reason is that these accounts lead one to
expect reaction times and key-contact durations to provide yoked
samples of physiological or cognitive processes that combine
coincidentally to produce 1/f fluctuations. By contrast, the findings
are naturally accommodated by emergent coordination because 1/f
fluctuations are theorized as a general property of metastability
that is evident wherever intrinsic fluctuations are measured, in-
cluding parallel and uncorrelated measures of intrinsic fluctuation.

In Experiment 2, a perturbation of trial information was used
instead of a perturbation of trial timing. Specifically, the timing of
cues was always fixed, and predictability was manipulated in terms
of the identity of cues in a choice response task. Cues in this case
indicated which key to press, right or left. Predictable cues fol-
lowed a simple alternating pattern that allowed participants to
anticipate the identity of the response key on every trial. Unpre-
dictable cues were chosen at random. Thus the conditions and
predictions are essentially the same as in Experiment 1.
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Spectral plots for reaction times (left) and key-contact durations (right) from Experiment 1, each

plotted separately for blocks of fixed versus variable release—cue intervals. Average slopes of regression lines

are shown with their respective standard errors.
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Table 1
Spectral Slope Results for Experiment 1

Spectral DFA Dispersion
Measure Fix. Var. Var. Fix. Var.
Reaction times
M —0.53 —0.24 —0.44 -0.19 —0.39 —0.19
SE 0.06 0.03 0.06 0.02 0.05 0.02
t 3.78 4.32 4.26
p .002 <.001 .001
Key-contact durations
M —0.62 —0.65 —0.49 —0.57 —0.45 —0.49
SE 0.05 0.04 0.04 0.04 0.03 0.03
t 0.81 2.08 1.50
p 432 .053 152

Note. t and p are paired-samples #-test results. Spectral = spectral analysis; DFA = detrended fluctuation
analysis; dispersion = dispersion analysis; fix. = fixed release—cue intervals; var. = variable release—cue

intervals.

Experiment 2 Method

Participants.  Eighteen undergraduate students from George
Mason University participated in the experiment for course credit.
Twelve were female, 16 were right-handed, and all had normal or
corrected vision.

Apparatus and procedure. The apparatus and procedure were
the same as in Experiment 1, except for the following differences.
The response cue was either < or >, instead of an X. Participants
were instructed to press the left-arrow key for the former, and the
right-arrow key for the latter, always using the index finger of their
dominant hand. In the predictable-cue condition, the cue identity
followed a simple, constant pattern that repeated over trials. The
pattern was left-left-right-right-left-left-right-right and so on. In
the unpredictable-cue condition, right or left cues were chosen at
random from trial to trial, with equal probability. Release—cue
intervals were fixed at 1,000 ms in both conditions.

Experiment 2 Results and Discussion

The methods of data preparation and analysis were the same as
in Experiment 1. A time series of patterned cues is illustrated and
compared with a time series of random cues in Figure 3. Results of
the spectral analyses are presented in Figure 4 and Table 2. Results
were essentially parallel to those of Experiment 1. 1/f fluctuations
again appeared to be present in all conditions, but spectral slopes
for reaction times were reliably more shallow and closer to white
noise when cues were random and unpredictable as opposed to
patterned and predictable. The effect of cue predictability on
spectral slopes for key-contact durations was again marginal at
best. Fluctuations in reaction times and key-contact durations were
again relatively independent, as evidenced by weak correlation
coefficients for blocks of random cues (mean r = .13) as well as
patterned cues (mean r = —.05). Finally, the random cue condition
induced slower reaction times (M = 478 ms) compared with
patterned cues (M = 277 ms), #(1, 17) > 1,000. There was no such
difference in key-contact durations, with means of 126 ms and 124
ms for random and patterned cues, respectively, #(1, 17) = 0.57.

The results of Experiment 2 replicated and extended those of
Experiment 1. Predictability was manipulated in terms of response
choice instead of response timing, yet the pattern of effects re-
mained the same. These findings once again do not fit with
multilevel accounts of 1/f fluctuations. Multilevel accounts hold
that 1/f scaling has a singular collective source, but how could
reaction times and key-contact durations fail to provide correlated
samples from this collective source? Moreover, how could pertur-
bations to reaction times fail to interfere with the expression of this
collective source in key-contact durations as well? To illustrate the
problem, consider how implausible it is that slow fluctuations in
vigilance could have uncorrelated effects on the downward versus
upward movement components of key-press responses. To be
uncorrelated in this case would mean that some periods of high
vigilance, for example, would cause reaction times and key-
contact durations to decrease, whereas other periods of high vig-
ilance would have divergent effects on these dependent measures.
This makes no apparent sense.

By contrast, emergent coordination leads one to expect the
observed pattern of results. Series of key-press responses, like any
other behavioral act, should yield intrinsic fluctuations under con-
stant measurement conditions. Intrinsic fluctuations should ex-
press the 1/f signature of metastability that is hypothesized to be
universal to physiological and behavioral activity. As shown in
Usher et al.’s (1995) model, all components involved in metastable
pattern formation will produce 1/f fluctuations and different com-
ponents may produce distinct, uncorrelated streams of 1/f fluctu-
ations. Reaction times and key-contact durations are presumably
influenced by different sets of neural and muscular components
and hence are expected to produce uncorrelated and separately
perturbable 1/f fluctuations. This is precisely what was found in
Experiments 1 and 2.

Experiments 3 and 4: Two-Source Alternatives to
Emergent Coordination

From a reductive point of view, the results of Experiments 1 and
2 would appear to indicate that there are two distinct sources of 1/f
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Figure 3. Diagram of 1 participant’s data from Experiment 2. Response data from a block of patterned cue
sequences are plotted on top, and data from a block of random cue sequences are plotted on the bottom. Each
L represents a left-arrow cue, and each R represents a right-arrow cue. Each down-arrow represents the
downward press of the response key, and each trailing up-arrow represents the subsequent release of the key.
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fluctuations, one that is expressed in reaction times and another
that is expressed in key-contact durations. A multilevel account,
for example, would therefore have to posit two distinct collections
of processes that each combine in a 1/f scaling relation. One
collection would need to affect reaction times but not key-contact
durations, and another collection would need to have the opposite
effect. This kind of multilevel account appears highly unlikely, so
we abandon it here.

What other kind of idiosyncratic account might explain our
results thus far? Before addressing this question, we wish to point
out that, to our knowledge, no one has previously proposed sep-
arate processes for these two measures. They are being considered
now only to cope with the finding of uncorrelated and separately
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perturbable 1/f fluctuations. Thus the reader might ponder whether
an ad hoc, idiosyncratic account can or should be pursued. The
answer to “can it be pursued” will always be “yes” because there
is no end to ad hoc explanations of scientific phenomena (Einstein
& Infeld, 1938/1966; Quine, 1961). The answer to “should it be
pursued” depends on whether some plausible ad hoc story might
prove its value through reliable and surprising predictions, thereby
gaining purchase on explanation (cf. Lakatos, 1970). The problem
now is that there is no intuitive reason to assign separate, idiosyn-
cratic sources of 1/f scaling to reaction times versus key-contact
durations. Emergent coordination may also appear to be ad hoc
because it presumes separate components underlying reaction
times and key-contact durations. However, the prediction of 1/f
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Figure 4. Spectral plots for reaction times (left) and key-contact durations (right) from Experiment 2, each
plotted separately for blocks of patterned versus random cue sequences. Average slopes of regression lines are
shown with their respective standard errors.
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Table 2
Spectral Slope Results for Experiment 2

Spectral DFA Dispersion
Measure Patt. Rand. Patt. Rand. Patt. Rand.
Reaction times
M —0.58 —0.22 —0.53 —0.18 —0.48 —0.15
SE 0.05 0.02 0.04 0.02 0.03 0.03
t 6.85 inf. inf.
p <.001 <.001 <.001
Key-contact durations
M —0.58 —0.48 —0.51 —0.46 -0.50 —-0.41
SE 0.04 0.04 0.03 0.04 0.02 0.04
t 1.97 1.23 2.12
P .065 235 .049

Note. t and p are paired-samples -test results. Spectral = spectral analysis; DFA = detrended fluctuation
analysis; dispersion = dispersion analysis; patt. = patterned cues; rand. = random cues; inf. = approached

infinity.

fluctuations and the potential for uncorrelated 1/f fluctuations are
both firmly grounded in theories of metastability and criticality.

By contrast, a two-source account would have to posit two
independently motivated sources of 1/f fluctuations in reaction
times and key-contact durations. Perhaps the most plausible (albeit
ad hoc) two-source account is to associate reaction times with
controlled strategic or cognitive processes (e.g., decision processes
and the like) and key-contact durations with automatic motor
processes (e.g., biomechanical processes and the like). Despite its
plausibility, this runs into immediate problems. For example, one
would have to explain why cognitive processes do not impinge
upon key-contact durations, despite previous studies showing that
cognitive factors can have their effects throughout the kinematics
of response behavior (Abrams & Balota, 1991; Kawamoto, Kello,
Jones, & Bame, 1998; Kello, 2004). One also confronts general
critiques of explanations that invoke idiosyncratic strategic or
controlled processes that cannot be falsified (Besner, 1984; Brad-
ley & Forster, 1987).

The latter problem is the biggest problem. The account so far
simply posits one source of 1/f scaling in reaction times and
another in key-contact durations and gives them some plausible
names. For these names to be useful, the account needs to provide
some insight into why controlled processes and motor processes
would each produce their own patterns of 1/f scaling. If the answer
is that 1/f scaling is a general property of all cognitive and
behavioral processes, then one has come upon the hypothesis of
emergent coordination. The alternative to emergent coordination in
this case is that there is something peculiar about the conditions of
intrinsic fluctuation that infuses 1/f scaling throughout the behav-
ior being measured.

The most conspicuous peculiarity in research to date on 1/f
scaling in cognitive performance is that participants are always
asked to repeat a given behavior many times. This protocol is
justified by the need to measure intrinsic fluctuations as clearly as
possible, but it is also justifiable to ask whether there might be
something peculiar to long periods of repetition that create 1/f
fluctuations. For instance, repetition might create a behavioral

situation in which each next act is generated as a function of the
previous act with respect to system variables that control the act,
including uncorrelated variables. This iterative map could be for-
malized as a set of autoregressive functions, and autoregressive
functions can be formulated to generate 1/f fluctuations (Beran,
1994; Granger & Joyeux, 1980). Thus the separate 1/f fluctuations
in reaction times and key-contact durations may reflect separate
iterative maps created by repetition.

Experiments 3 and 4 were designed to test the repetition account
of 1/f fluctuations in cognitive performance. If 1/f scaling is the
result of producing repeated behaviors, then eliminating repetition
should weaken or eliminate 1/f scaling. In Experiment 3, predict-
able and unpredictable conditions were created with an equal lack
of repetition in both conditions. Specifically, left and right re-
sponse cues were chosen at random in both conditions, but cues
were made predictable in one condition by previewing them 1,000
ms prior to the elicitation of each response. Previewing allowed
each response, left or right, to be anticipated prior to the time of
response execution. The repeated behavior account predicts no
effect of previewing on 1/f scaling because responses were not
repeated in either condition.

Emergent coordination, by contrast, associates 1/f scaling with
intrinsic fluctuations, and this association leads to a different
prediction. Previewing allows intrinsic fluctuations to manifest
clearly in key-press responses for the same reason as in Experi-
ments 1 and 2: The response cue itself provides no new informa-
tion because the response has already been specified when it
appears. Therefore previewing should provide a clearer picture of
1/f scaling in reaction times compared with unpreviewed cues.
And because the cues have no impact on key-contact durations,
they should be unaffected by the previewing manipulation.

Experiment 3 Method

Participants. Eighteen undergraduate students from George
Mason University participated in the experiment for course credit.
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Ten were female, 16 were right-handed, and all had normal or
corrected vision.

Apparatus and procedure. The apparatus and procedure were
the same as in Experiment 2, except for the following differences.
Cues were chosen at random in both the previewed and unpre-
viewed conditions. The difference was that previewed cues were
presented 1,000 ms prior to a signal to respond. Specifically, a <
or > cue was displayed upon release of the key from the previous
response. After 1,000 ms, a dash was displayed to either side of the
cue. Participants were instructed to respond according to the cue as
soon as the dashes appeared (i.e., the signal to respond), but no
sooner. The dashes remained on the screen until the participant
responded. The unpreviewed cues were presented simultaneously
with the signal to respond.

Experiment 3 Results and Discussion

The methods of data preparation and analysis were the same as
in Experiments 1 and 2. Results of the spectral analyses, presented
in Figure 5 and Table 3, were essentially the same as those of
Experiments 1 and 2. 1/f scaling again appeared to be present in all
conditions, but spectral slopes for reaction time data were reliably
shallower when cues were unpreviewed (unpredictable) as op-
posed to previewed (effectively predictable). By contrast, preview-
ing had no effect on the prevalence of 1/f fluctuations in key-
contact durations.

Fluctuations in reaction times and key-contact durations were
again independent of each other, as evidenced by the weak corre-
lation coefficients for blocks of unpreviewed cues (mean r = .07),
as well as previewed cues (mean » = —.08). Finally, reaction times
to unpreviewed cues were slower (M = 500 ms) than those to
previewed cues (M = 313 ms), #(1, 17) > 1,000. There was no
such difference in key-contact durations, with means of 121 ms
and 128 ms for unpreviewed and previewed cues, respectively, #(1,
17) = 1.52, p > .15. This pattern of means is analogous to that
found in Experiments 1 and 2.

The results of Experiment 3 failed to corroborate the repeated
behavior account. The prediction was that 1/f scaling should be
equally weak or absent in both conditions because neither of them
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included repetitive patterns of responding; the response direction
was always changed randomly from trial to trial. Nonetheless the
1/f scaling relation in reaction times was weakened only when cues
were unpreviewed, which implicates predictability as the driving
factor, analogous to Experiments 1 and 2. Key-contact durations
were dissociated from reaction times, which is also analogous to
Experiments 1 and 2.

Experiment 4 provided a second test of the repeated behavior
account that complements Experiment 3. In a repeated pattern
condition, participants were instructed to generate responses from
memory in the pattern of left—left-right-right and so on, as in the
predictable condition of Experiment 2. In a random choice condi-
tion, participants were instructed to generate sequences of left and
right responses by their own choice, as if they were simulating an
unbiased coin toss on each trial. Thus random choice responses
were not repeated in a predictable pattern, yet they were “predict-
able” to participants in the sense that they did not have to respond
to an unpredictable cue.

The repeated behavior account predicts that 1/f fluctuations in
reaction times should manifest most clearly in the repeated pat-
terned condition but less so or not at all in the random choice
condition. By contrast, the association of 1/f scaling with intrinsic
fluctuations predicts that 1/f scaling should be equally prevalent in
both conditions because the same behavior is produced for each
response cue within each condition and no perturbations are intro-
duced by extrinsic changes from one cue to the next.

Experiment 4 Method

Participants. FEighteen undergraduate students from George
Mason University participated in the experiment for course credit.
Twelve were female, 16 were right-handed, and all had normal or
corrected vision.

Apparatus and procedure. The apparatus and procedures were
the same as in Experiment 1, except for the following differences.
Release—cue intervals were fixed at 1,000 ms in both the predict-
able and unpredictable conditions. In the repeated pattern condi-
tion, participants were instructed to press the left- and right-arrow
keys in the repeating sequence of left-left-right-right. Participants
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Figure 5. Spectral plots for reaction times (left) and key-contact durations (right) from Experiment 3, each
plotted separately for blocks of previewed versus unpreviewed random cue sequences. Average slopes of
regression lines are shown with their respective standard errors.
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Table 3
Spectral Slope Results for Experiment 3
Spectral DFA Dispersion
Measure Prev. Unprev. Prev. Unprev. Prev. Unprev.
Reaction times
M —0.50 —0.25 —0.47 —-0.22 —0.41 —-0.22
SE 0.07 0.03 0.07 0.03 0.06 0.02
t 3.58 3.96 3.63
p .002 .001 .002
Key-contact durations
M —0.57 —0.53 —0.53 —0.48 —0.48 —0.45
SE 0.04 0.04 0.03 0.04 0.03 0.03
t 1.05 0.94 0.68
p 308 361 .507
Note. t and p are paired-samples #-test results. Spectral = spectral analysis; DFA = detrended fluctuation

analysis; dispersion = dispersion analysis; prev. =
unpreviewed cues.

were instructed to give each key-press response after each re-
sponse cue X appeared. In the random choice condition, partici-
pants were asked to press the left and right keys at random, one
key-press response per response cue. Participants were instructed
that random meant as if an unbiased coin was flipped to determine
the direction of each response.

Experiment 4 Results and Discussion

The methods of data preparation and analysis were the same as
in Experiments 1-3. In addition, sequences of responses in the
random condition were inspected to ensure that they did not follow
any obvious pattern (such as alternating patterns or very long
stretches of left or right responses). Analyses indicated that par-
ticipants were biased to switch responses more often than expected
for an independent coin toss. This switching bias is well-
established in the literature (see Nickerson, 2002), and it is not
relevant for the current purposes, so we did not pursue it further.
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random and previewed cues; unprev. = random and

Results of the spectral analyses are presented in Figure 6 and
Table 4. As in previous experiments, 1/f scaling was evident in all
conditions. But unlike previous experiments, there was no detect-
able difference between conditions in spectral slopes for reaction
times. As for correlations and means, fluctuations in reaction times
and key-contact durations were again apparently independent, as
evidenced by the weak correlation coefficients for blocks of ran-
dom sequences (mean r = .07), as well as repeated sequences
(mean r = .17). Consistent with the fact that neither random nor
repeated sequences were perturbed by the response cues, mean
reaction times and key-contact durations were comparable be-
tween the two sequence types: Mean reaction times were 271 ms
and 283 ms for random and patterned sequences, respectively, #(1,
17) = .48, p > .7. Mean key-contact durations were 114 ms for
both types of sequences.

The data again failed to corroborate the repeated behavior
account, which predicts that the 1/f scaling relation in reaction
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Figure 6. Spectral plots for reaction times (left) and key-contact durations (right) from Experiment 4, each
plotted separately for blocks of self-generated patterned versus random cue sequences. Average slopes of
regression lines are shown with their respective standard errors.
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Table 4
Spectral Slope Results for Experiment 4

Spectral DFA Dispersion
Measure Patt. Rand. Patt. Rand. Patt. Rand.
Reaction times
M —0.66 —0.59 —0.50 —0.49 —0.43 —0.42
SE 0.05 0.06 0.04 0.05 0.04 0.04
t 1.38 0.27 0.17
p .19 .79 .87
Key-contact durations
M —0.57 —0.56 —0.52 —0.50 —0.47 —0.44
SE 0.04 0.03 0.03 0.04 0.03 0.03
t 0.26 0.44 1.11
p .80 .67 28

Note. t and p are paired-samples #-test results. Spectral = spectral analysis; DFA = detrended fluctuation
analysis; dispersion = dispersion analysis; patt. = self-generated patterned sequences; rand. = self-generated

random sequences.

times will weaken in the random choice condition compared with
the repeated pattern condition. To the contrary, 1/f fluctuations
were equally robust in the two conditions, and the mean spectral
slopes were on par with the predictable conditions of Experiments
1-3. This result is consistent with the general association of 1/f
scaling with intrinsic fluctuations.

General Discussion

The purpose of the current study was to investigate the rele-
vance of 1/f scaling to cognitive function. Widespread findings of
1/f scaling in cognitive performance call for explanation. We and
others have explained 1/f scaling as a fundamental property of how
cognitive functions emerge from the coordinated interactions of
system components (Gilden, 2001; Kelso, 1995; Van Orden,
Holden, & Turvey, 2003). The most prevalent alternative expla-
nation is that 1/f scaling is a byproduct of processes irrelevant to
most theories of cognition.

The alternative explanation is the commonly accepted one in
cognitive neuroscience. It has been known for some time that
“1/f-like noise” is ubiquitous in fMRI measurement series (Agu-
irre, Zarahn, & Desposito, 1997; Bullmore et al., 2001; Zarahn,
Aguirre, & Desposito, 1997). 1/f-like noise is a nuisance to most
cognitive neuroscientists because 1/f fluctuations are autocorre-
lated (due to greater power in lower frequencies) and therefore
violate the standard assumption of independent measurements.
Much effort has been spent on developing pre-whitening and
pre-coloring techniques to work around these autocorrelations
(e.g., Bullmore et al., 1996; Friston et al., 1995; Locascio, Jen-
nings, Moore, & Corkin, 1997). By comparison, little effort has
been spent on investigating the meaning of 1/f fluctuations in
fMRI data.

One reason for this lack of effort is that 1/f scaling is not easily
related to the currently dominant paradigm of functional localiza-
tion. The problem is that 1/f fluctuations appear to pervade the
brain, making them uninformative for localizing specific cognitive
functions to specific brain areas and mechanisms. Thus the local-

ization paradigm leads one to treat 1/f-like noise in fMRI data as
uninteresting to psychological science. This bias leads one to
search for non-psychological explanations. For instance, it was
found that physical byproducts of neuroimaging can create arti-
factual 1/f-like noise (Smith et al., 1999) in fMRI measurements.
This artifactual source has led some researchers to dismiss 1/f
fluctuations altogether as irrelevant to cognition.

However, recent studies have shown that 1/f fluctuations in
fMRI measurements are not just artifactual, because their appear-
ance changes as a function of cognitive variables (e.g., C. M.
Anderson, Lowen, & Renshaw, 2006; Maxim et al., 2005). More-
over, 1/f fluctuations have been found in electrophysiological
measures that are not subject to fMRI artifacts (Bhattacharya,
Edwards, Mamelak, & Schuman, 2005; Leopold, Murayama, &
Logothetis, 2003; Le Van Quyen, 2003; Linkenkaer-Hansen et al.,
2001). So it appears that 1/f fluctuations also originate from neural
activity that is relevant to cognitive function, but their expression
is obscured in fMRI data by artifactual sources of 1/f-like noise.

In this context, the behavioral measures and manipulations used
in the present study are informative. The keyboard and computer
produce negligible amounts of noise compared with the strength of
the behavioral signal, and the behavioral signal is more transpar-
ently related to perceptual, motor, and cognitive function. This
transparency enables us to interpret the data as evidence that 1/f
scaling is general to the intrinsic fluctuations of cognitive perfor-
mances. The generality of 1/f scaling makes it difficult to fit within
the confines of at least some idiosyncratic accounts, including
idiosyncrasies of physiology.

The first such account that we examined was that 1/f scaling has
a singular source in cognitive performance. In physiological terms
this source might be the multitude of ongoing processes that could
combine to impinge on any given measure of behavioral or neural
activity. 1/f scaling would be mostly irrelevant to brain and cog-
nitive function if it originates as a coincidence of combining the
fluctuations of many non-coordinated processes. However, such
multilevel accounts are cast into doubt by the finding of parallel
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yet uncorrelated and separately perturbable measurements of 1/f
fluctuations in reaction times versus key-contact durations.

The second idiosyncratic account that we examined was that 1/f
fluctuations are peculiar to the repetition of behavioral acts for
long periods of time. Repeated acts are used to elicit intrinsic
fluctuations, but they may have the unintended consequence of
creating iterative, autoregressive maps that produce 1/f fluctua-
tions (Beran, 1994; Granger & Joyeux, 1980). However, the hy-
pothesis that 1/f fluctuations are created by repetition per se is cast
into doubt by the dissociation of 1/f fluctuations from repetition in
Experiments 3 and 4.

In general our results fail to corroborate the extant idiosyncratic
accounts of 1/f scaling in cognitive performances. Nonetheless,
one may still claim that, for some unknown reason, controlled and
automatic processes separately produce 1/f fluctuations in reaction
times and key-contact durations under conditions of intrinsic fluc-
tuation. As slippery as this claim is, we can show it to be prob-
lematic given the data. The problem is that the association of
reaction times with controlled processes entails an association of
1/f scaling with higher “cognitive workload” relative to automatic
processes. This association forces one to predict a consistent
relationship between 1/f scaling and workload, but the results to
date are contradictory in this regard.

To start with, the results from Experiments 1-3 suggest that the
1/f scaling relation is relatively weakened under high workload,
assuming that unpredictable cues require attentive responses and
greater workload compared with predictable cues. However, this
relationship was contradicted in Experiment 4 because the 1/f
scaling relation was not weakened when participants simulated
unpredictable responses. Simulating randomness has been shown
to be a high workload task (Baddeley, 1996; Gilhooly, Logie, &
Wynn, 1999; Oomen & Postma, 2002; Vandierendonck, De
Vooght, & Van der Goten, 1998), arguably even higher than
responding to unpredictable cues.

The workload explanation is made even more tenuous when we
consider an experiment in which Chen and his colleagues (Chen,
Ding, & Kelso, 2001; see also Ding, Chen, & Kelso, 2002)
examined tapping data for 1/f scaling. The data consisted of timing
errors compared to a metronome that sets the pace for tapping.
Timing errors were subjected to spectral analysis, and different
power spectra were observed for syncopated versus synchronized
tapping. Syncopated tapping, between the beats of a metronome,
yielded more robust 1/f scaling than synchronized tapping, which
is on the beat. Chen et al. (2001) attributed the steeper slope to the
increased task difficulty of tapping between the beats. Thus, ap-
parently, more difficult tasks may yield clearer signals of 1/f
scaling and less difficult tasks may yield clearer signals of 1/f
scaling (Experiments 1-3; see also Clayton & Frey, 1997; Gilden
et al., 1995; Wagenmakers et al., 2004; Ward, 2002), and task
difficulty may have no effect on the appearance of 1/f scaling (as
we found in Experiment 4). We can conclude only that there is no
apparent association between a dimension of controlled or strate-
gic processing and 1/f scaling (see also Van Orden, Moreno, &
Holden, 2003).

Of course we cannot rule out all possible accounts that would
assign structurally and functionally distinct sources of 1/f scaling
to reaction times versus key-contact durations; there are far too
many to count let alone test. The challenge is not to create an ad
hoc account for every new observation of 1/f scaling (that can

always be done). For instance, it is no problem to simply state that
1/f memory traces are laid down for all intrinsic fluctuations. The
problem with this kind of account is that it gives no insight into the
phenomena. It leaves one with the challenge of formulating a
general theory to answer the question of why.

Toward Theories of Emergent Cognitive Function

According to emergent coordination, 1/f scaling is not restricted
to some domain-specific process or measure of cognition. Nor is it
a widespread byproduct of physiology that is irrelevant to cogni-
tion. 1/f scaling is instead a general property of metastability (Bak,
Chen, & Creutz, 1989; Kelso, 1995; Usher et al., 1995). Metasta-
bility emerges when interactions among the components of a
system are balanced between two extremes. One extreme is weak
component interactions that cannot support coordinated patterns of
activity across components. The other extreme is strong interac-
tions that do not allow patterns to flexibly reorganize in response
to changing conditions.

In this theoretical framework, cognitive functions emerge as
metastable patterns of neural and bodily activity. Unlike the fix-
edness of hard-coded algorithms that reside in isolable locales of
neural hardware, the flexibility of metastable patterns makes them
exquisitely and inherently sensitive to context (Bressler & Kelso,
2001). Thus cognitive functions are theorized as being inherently
defined by their task parameters, environmental constraints, and so
on. The continuous unfolding of metastable patterns creates intrin-
sic fluctuations that universally exhibit the 1/f scaling relation. As
conditions deviate from intrinsic fluctuation, patterns are increas-
ingly shaped by whatever context-specific factors are responsible
for the deviations.

Context-specific factors must therefore be minimized or re-
moved from measurements in order to reveal the generic 1/f
signature of metastability. However, by focusing on intrinsic fluc-
tuations in the current study, we certainly do not mean to belittle
the importance of metastable patterns that are shaped by context-
specific factors. Indeed these are the cognitive performances hy-
pothesized to emerge from the generic, scale-invariant state of
metastability.

Take speech, for instance. Speech production appears to be
metastable in that, at any given time, many different articulations
are simultaneously available and ready to be produced. Short
articulatory patterns like those associated with individual pho-
nemes emerge and submerge over the course of tens of millisec-
onds, whereas longer patterns (consonant clusters, syllables, etc.)
emerge and submerge over longer timescales. Each articulatory
degree of freedom must maintain its identity while simultaneously
playing different roles across different speech gestures.

Decades of speech research has shown that phonemes are inti-
mately and inextricably defined by the contexts of their articula-
tory and acoustic expressions (e.g., via coarticulation and assimi-
lation; Fowler & Saltzman, 1993). Therefore, measures of running
speech reflect these context-specific effects as variations that are
particular to the utterances being measured. To measure the ge-
neric signature of metastability that underlies the context-specific
patterns of articulatory gestures, one must measure fluctuations
that are not specific to any particular speech context. Such context-
general fluctuations can be measured by holding context as con-
stant as possible from one measurement to the next.
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For speech this means instructing a participant to repeat an
utterance many times in order to elicit intrinsic fluctuations from
one utterance to the next. G. Anderson and Kello (2006) did just
that by instructing participants to repeat the word bucket many
times. The authors took over 100 acoustic measures of each word
utterance and analyzed the fluctuations in those measures from one
bucket to the next. Across 10 participants, every single measure
was found to fluctuate in the 1/f scaling relation, including dozens
of parallel yet uncorrelated 1/f fluctuations.

The findings of 1/f scaling throughout the intrinsic fluctuations
of speech, and in two key response measures in the current study,
are parsimoniously explained by emergent coordination and its
theoretical basis in metastability: 1/f scaling is prevalent wherever
intrinsic fluctuations are measured, and less so wherever measure-
ments are perturbed. In fact, to our knowledge, all measures to date
of 1/f scaling in brain and behavior have been more or less taken
under conditions of intrinsic fluctuation. This has even been shown
for neural activity (Linkenkaer-Hansen, Nikulin, Palva, Kaila, &
Ilmoniemi, 2004).

1/f scaling is the focus of the current study, but it is not the only
source of evidence for metastability and emergent coordination.
The anatomical organization of the human nervous system may
generally be characterized by a balance between segregation and
integration of neural pathways (Tononi, Sporns, & Edelman,
1994). This balance is thought to allow cortical and subcortical
areas to maintain some locality of processing while at the same
time participating in globally coordinated patterns of activation. In
other words, the balance of segregation and integration may allow
metastable patterns to form (Sporns, 2004). This notion is sup-
ported by a model that generates metastable patterns of activity at
the balance of segregating and integrating pathways (Friston,
1997) and by electrophysiological data resembling metastable pat-
terns in neural activity (Fingelkurts & Fingelkurts, 2004; Freeman
& Holmes, 2005).

More generally, metastability provides a useful framework for
theorizing about brain and cognitive function. For instance, it
provides tools that may help conceptualize, and eventually formal-
ize, the brain’s ability to reorganize and reimplement functions
after losing neural tissue due to trauma or disease. Recall von
Holst’s (1939/1973) centipede and its ability to reimplement the
function of locomotion after losing some number of legs. Loco-
motion is accomplished using modes of coordination that are
appropriate to the remaining number of legs, even though the
centipede does not appear to have separately stored motor pro-
grams for these modes. They are instead inherent to the structural
and dynamical relations among components of the centipede’s
anatomy and physiology. Metastability may help to relate the
centipede and other biological models of emergent coordination
with the development and recovery of brain and cognitive func-
tion.

It also appears that the 1/f scaling signature of metastability is
associated with healthy physiological and cognitive function. The
healthy, resting heart exhibits 1/f scaling in its intrinsic fluctua-
tions as measured in series of inter-beat intervals (Goldberger,
1990; Goldberger, Rigney, & West, 1990). The same is true for
healthy, self-paced walking in terms of inter-stride intervals (Haus-
dorff, Peng, Ladin, Wei, & Goldberger, 1995; Ivanov, Rosenblum,
et al., 1998; Viswanatha, Peng, Stanley, & Goldberger, 1997).
However, inter-beat intervals deviate from the 1/f scaling relation

for the elderly and patients with pathological heart conditions
(Peng, Havlin, Hausdorff, et al., 1995), and inter-stride intervals
similarly deviate for the elderly and patients with movement
disorders (Hausdorff et al., 2001, 1997). More recently it was
found that fluctuations in fMRI measurements of resting state
activation for Alzheimer’s patients deviate from the 1/f scaling
relation (Maxim et al., 2005). All together, these findings suggest
that metastable patterns of activity are a sign of functionally
effective and robust coordination.

The next step is to develop theories and models of specific
cognitive functions that are formulated as emergent, metastable
patterns of coordination. One direction to take is to investigate
whether there is computational power in metastability that is of use
to cognitive function and possibly other biological functions as
well. For instance, Kwok and Smith (2005) built a self-organizing
neural network to solve combinatorial optimization problems like
the famous traveling salesman problem. The model had a param-
eter that governed the order and disorder of component activities,
and model performance was optimal when this parameter was set
at the critical point between ordered and disordered phases. The
metastable patterns that emerged near this point enabled the model
to more effectively search the problem space for globally optimal
solutions. Metastability also produced 1/f fluctuations in the mod-
el’s component activities. Although it remains to be seen whether
this model will prove to be useful in developing simulations of
cognitive function, the work demonstrates the computational
power of metastability and the functionality of emergent coordi-
nation.
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