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A multiple regression analysis of sequential effects in magnitude estimation
and absolute identification is presented as an alternative to the approach used
by Lockhead and his students. The new analysis indicates that sequential
effects do not extend over more than one trial. This is in agreement with the
response ratio hypothesis. A more detailed multiple regression analysis of
these sequential effects indicates that the magnitude of the correlation be-
tween successive responses is heavily dependent on the decibel difference
between successive signals. This is not in agreement with the response ratio
hypothesis, and the hypothesis is reformulated to take account of this finding.
This modification of the model is tested by comparing distributions of nor-
malized responses to theoretical distributions suggested by the model and to

a possible alternative distribution.

Once one tries to examine more than the
central tendency (mean, median, or geo-
metric mean, as the case may be) of re-
sponses in absolute identification, category,
or magnitude estimation procedures, one
must not ignore the possibility that the re-
sponses have been contaminated by factors
other than simple variability in the internal
representations of the stimuli. Sequential
effects and response drift are two such
factors. We were led to the present study
and analysis of these factors not because
we were interested in them per se, but
because they impeded our attempts to com-
pare the distributions of responses in mag-
nitude estimation with predictions derived
from timing and counting models (Green
& Luce, 1974; Luce & Green, 1972).

The existence of substantial sequential
effects in absolute identification of loudness
has been known for some time (Helson,
1948; Garner, 1953; Parducci, 1956; Pol-
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lack, 1964). More recently, these effects
have been studied in detail by Lockhead
and his students (Holland & Lockhead,
1968; Ward, 1972; Ward & Lockhead,
1970, 1971). Furthermore, Cross (1973)
and Ward (1973) have established com-
parable results for magnitude estimation.
One striking—and appalling—result of
the Lockhead analysis is that sequential ef-
fects appear to extend over as many as five
trials. This was shown as follows: Suppose
stimulus s, is presented on the current trial
of an absolute identification experiment,
and that #;;(k) is the average numerical re-
sponse to stimulus s;, conditional on stimu-
lus s; having been presented k trials earlier.
Then 7,;(k) — s: represents the average re-
sponse deviation due to the earlier stimulus.
Such loudness data (Ward & Lockhead,
1971, Figure 1), averaged over the 10
stimulus values (¢) and grouped into suc-
cessive pairs of jvalues (1 + 2, ...,9 + 10)
for various values of %, are shown in the
left panel of Figure 1. An extreme stimu-
lus on the immediately preceding trial
“attracts’”’ the response by about half a
response category. Stimuli on Trials 2, 3, 4,
and 5 before the trial under consideration
also affect the response but in the opposite
direction. Similar results are also found
when the analogous analysis is performed,
conditional on the previous responses, as
shown in the right panel of Figure 1. The
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FIGURE 1. Sequential stimulus and response effects in absolute identification observed in the
Lockhead analysis. (From ‘Response System Processes in Absolute Judgment” by L. M. Ward
and G. R. Lockhead, Perception & Psychophysics, 1971, 9, Figure 1, p. 73. Copyright 1971 by The
Psychonomic Society, Inc. Reprinted by permission.)

major features of these graphs have been
replicated a number of times and will also
be evident in our data.

H accepted at face value, the depth of the
effect is disturbing. Apparently, one must
take into account stimuli and responses
occurring as many as five trials back in
order to correct each response for sequen-
tial effects, in which case the correction
task is formidable. However, it is by no
means obvious that such depth is real.
Assume, for example, that there are sequen-
tial stimulus and response effects that
extend only to the preceding trial. In the
Lockhead analysis, these effects would
appear to propagate over a number of
trials because the stimulus and response
on trial # — 2 would affect the response
on trial » — 1, which would in turn affect
the response on trial #. It is impossible
to know whether events on trial # — 2 are
having a direct influence on the response

“on trial # unless the experimenter factors

out the effects of the response on trial
n — 1. The method of analysis underlying
Figure 1 does not do this. One of the goals
of this article is to compare other analyses
of sequential effects—for example, linear
multiple regression—and to determine if
such long-term effects still appear to exist
in these analyses. We shall argue that such
effects are largely a result of the mode of
analysis and that sequential effects ac-
tually extend only to the preceding trial.
The model for magnitude estimation
proposed by Cross (1973), which nicely
summarizes much of his data, and a gen-
eralization of this model, called the re-
sponse ratio hypothesis by Luce and Green
(1974), postulate a dependency only on the
events of the preceding trial and no direct
dependency on earlier trials. In particular,
let R, denote the random variable repre-
senting the response on trial #, S, be the
random variable representing the stimulus
presented on trial #, and X (s) and X*(s)
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be hypothetical, independent internal rep-
resentations of Signal s. Then, the response
ratio hypothesis asserts that the ratio of
the responses on trials # and » — 1 pre-
serves the ratio of the corresponding repre-
sentations of the stimuli presented on
these trials:

Ra Sn
Re _ (o X(S0)

137»~1 X*(Sn—l) !

where Cis constant. Luce and Green assume
that each stimulus S, receives two in-
dependent representations, X and X*, the
first of which is used in determining the
response on trial # and the second on trial
n + 1. This assumption is crucial, for if
the same representation is used on both
trials, then no sequential effects arise, since
by induction,

Ra = C*1X(Su) R

Luce and Green were forced by the existence
of sequential effects to employ the next
simplest assumption, namely, Equation 1.

The response ratio hypothesis simply
postulates that the subjects do what they
are told to do in a magnitude estimation
experiment : preserve in their responses the
subjective ratios of the stimuli on successive
trials. If so, there may be both response
and stimulus sequential effects from the
immediately preceding trial but no direct
effects from earlier trials.

The analyses we will present in greatest
detail are based on magnitude estimations
of loudness from a series of three experi-
ments. The initial purpose of the experi-
ments was to develop a method that would
reduce long-term sequential effects and
thereby allow us to compare the distri-
bution of response ratios with the predic-
tions of the timing model.

(1

METHOD

In all three experiments, the signals were 1,000-Hz
tones of 500-msec duration. They were presented
binaurally, in quiet, via SW-2 Superex headphones
to observers who were tested individually in a
sound-treated room. The observers responded by
typing integer numbers on a Video Systems terminal
(essentially a typewriter keyboard and small TV
screen) connected to a PDP-15 computer. The
procedure was self-paced, with each trial initiated

by the response to the previous trial. Runs consisted
of 60 trials. Observers completed between 10 and
15 runs in a 2-hour session. There were approxi-
mately 60 trials per signal per observer in each ex-
periment. The same four observers were tested in
all three experiments. They were paid $2.25 per hour.,

Experiment 1: Magnitude Estimation

The 27 signals ranged from 36-88 dB (SP’L) in
2-dB steps. Observers were instructed to assign
numbers to the different tones so that the ratios of
the numbers were the same as the ratios of the
loudnesses. At the beginning of the first session,
after the procedure had been explained, they were
asked to do several trials of magnitude production
for 2:1 ratios within the signal range to be used in
the experiment. The first several runs of magnitude
estimates were also considered part of the training
procedure, and the data were discarded.

Experiment 2: Ratio Estimation with Frase
Tones

In this experiment, the 16 signals ranged from
36-50 dB (SPL) and 74-88 dB (SPL) in 2-dB
steps. The purpose of the 24-dB gap was to affect
the distribution of differences between successive
stimuli. The signals were presented in pairs, with a
500-msec interval of quiet between the two members
of a pair. The observers were instructed to enter
a ratio corresponding to the loudness ratio of the
two tones, and they were encouraged to use the
same number scale they had used in Experiment 1
when entering the components of the ratio. That
is, they entered a magnitude estimate of the first
tone as the numerator and an estimate of the second
tone as the denominator. In an effort to isolate the
tone pairs and to eliminate the influence of preceding
tone pairs on present responses, a series of five
‘“‘erase’ tones, randomly selected from the entire
signal range, was presented between trials. The
individual erase tones were 400 msec in duration
and were separated by 100-msec gaps.

Experiment 3: Magnitude Estimation

Experiment 3 replicated Experiment 1. Its pur-
pose was to demonstrate that any change in the
magnitude of the sequential effects observed in
Experiment 2 resulted from the change in procedure,
not from increased practice.

CORRELATION RESULTS

As we show below, the procedure used in
Experiment 2 succeeded in eliminating
sequential effects between pairs of tones.
However, in the course of a multiple
regression analysis of sequential effects in
all three experiments, we found that the
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TABLE 1
INCREMENT IN MULTIPLE CORRELATION PRODUCED BY ADDING ADDITIONAL VARIABLE
Stimulus
Subject and experiment In In Ina In-3 In_s In_s ”
Subject 1
Experiment 1 739 .030 002 .000 .000 .000 1,046
Experiment 3 755 037 .004 .000 .001 000 1,369
Subject 2
Experiment 1 834 .010 .000 .001 .000 .001 715
Experiment 3 .819 .000 000 001 .000 .000 1,232
Subject 3
Experiment 1 631 035 .004 .001 .000 .001 1,353
Experiment 3 751 046 .003 .000 .002 .001 1,383
Subject 4
Experiment 1 824 045 002 .000 000 .000 1,477
Experiment 3 .766 .030 .001 .001 .000 .000 1,661
M 765 .029 .002 .001 .000 .000
a .066 .016 .002 .000 .000 .001
Response
In Rn-y Rz Ras Ra_y Rn_s
Subject 1
Experiment 1 739 071 .003 .002 .000 001 1,046
Experiment 3 755 058 .002 .000. 001 .001 1,369
Subject 2
Experiment 1 .834 023 .001 .000 .000 .000 715
Experiment 3 819 .003 001 .000 .000 .000 1,232
Subject 3
Experiment .631 135 .005 .001 .000 .001 1,353
Experiment 3 751 .085 .001 .000 .000 .001 1,383
Subject 4
Experiment 1 .824 .062 .000 .001 .000 .000 1,477
Experiment 3 766 .053 .000 .000 .000 000 1,661
M 765 061 002 .000 .000 .000
a .066 040 .002 .001 .000 001

Nole. I = signal intensity; R = response.

depth of the effects in the regular magnitude
estimation experiments was much less than
we had been led to believe. We therefore
shifted our emphasis from Experiment 2 to
the analysis of the control Experiments
1 and 3.

Linear Regression Model

A convenient way to explore the depth
of sequential effects in magnitude esti-
mation is to employ a simple linear regres-
sion model on some function of the re-
sponses and the signals. We shall use as the
dependent variable the logarithm of the
response on the present trial, log R.; as

independent variables we will use (a) the
logarithm of the signal intensity on the
present trial, log I,; (b) the logarithm of
the previous signal intensities, log [n—:
(¢=1,2,...); and (c) the logarithm of
the previous responses, log R..x (k =1,
2, ...). We use the logarithm for three
reasons. First, the variability of magnitude
estimates is roughly proportional to their
expected value. Second, the response ratio
hypothesis (Equation 1) strongly suggests
using the logarithm of the responses. And
third, if, as in the timing model, 1/X (s)
is distributed as a gamma of order 2 and
intensity u(s), then the variance of log X (s)
can be shown to be {(2,k — 1)/I(k — 1),
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TABLE 2
PARAMETERS OF REGRESSION EQUATION 3

Parameter Multiple correlation
Subject and experiment ¥ o B8 é R R2
Subject 1
Experiment 1 314 —.077 451 —.428 907 872
Experiment 3 .299 —.025 .305 —.408 .903 815
Subject 2
Experiment 1 .265 —.071 374 —.358 931 867
Experiment 3 .289 —.058 219 —~.476 910 .828
Subject 3
Experiment 1 230 —.083 .607 —.365 .892 796
Experiment 3 WAR) -.045 427 —.480 918 842
Subject 4
Experiment 1 .298 —.027 331 -.276 942 .887
Experiment 3 235 -.032 344 336 907 822
M 273 —.052 .382 —.307 914 841
o .032 .023 116 .268 .016 .032
Results from Logue (1976; n= 26)
M .250 -~.060 407 —~.553
7 072 .088 .289 639

Note., v = regression coefficient associated with stimulus intensity on the present trial; @ = regression coefficient associated with
stimulus intensity on the previous trial; 8 = regression coefficient associated with the logarithm of the response on the previous

trial; 8 = the additive constant.

where { is the Riemann zeta function and
I' is the gamma function. The important
point is that the variance depends only on
the order of the gamma, not on u, which
in turn is a direct function of signal
intensity.

The basic linear regression equation can
be written as follows:

M
log Ru = vlog In + 2 ailog Ju-i

i=1

N
+ X Belog Rus +6+¢ (2)

k=1

where v, a; and £ are the regression
coefficients, & is a constant related to the
average response magnitude used by the
subject, and ¢ is the usual Gaussian error
term.

Multiple correlations were computed by
varying either the number of previous
stimuli used in the regression equation
(varying M in Equation 2 and eliminating
all of the log R, terms) or by varying
the number of previous responses (varying
N in Equation 2 and eliminating all of the

log I.—; terms). Table 1 presents these
multiple correlations for different numbers
of previous stimuli and of previous re-
sponses by showing the increment added
to the correlation with each additional
variable. In summary, adding the im-
mediately previous signal or response
produces a small but significant increment
in the multiple correlation, except for the
second observer. Adding stimuli or re-
sponses more distant than the previous
trial adds virtually nothing for any
observer.

Parameters of Regression Equation

Events on the present trial and on the im-
mediately preceding trial seem to en-
compass all the useful information we can
obtain for predicting the present response.
Thus, we may reduce Equation 2 to

log Ry = ylog [» + alog In
+Blog Rot +8+e (3)

Table 2 presents the parameters for the
various observers. Although the observers
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exhibit some variability, the average values
are representative.

Cross (1973) has proposed a similar
regression analysis, but he omits the
log R.1 term in Equation 3. He finds that
a, the coefficient of log .1, is positive with
a value of .055. This contrasts with our
negative value of —.052. When we omit the
log R.—: term in analyzing our data we
also obtain a positive «, with a mean
value of .050. Thus, if we use the equation
suggested by Cross, we find an assimilation
effect for {,_;, whereas if we use Equation
3, we find a contrast effect. Cross urges
writing the following:

Ra = LY (In-1/12)%,

in which case he calls ¥’ the ‘“‘true ex-
ponent,” Clearly, ¥' = v + «, so for our
data ¢’ = .333.

These observers listened to many more
stimulus presentations than is typical of
magnitude estimation experiments. There-
fore, it is conceivable that they might have
developed unusual or idiosyncratic methods
of dealing with the task—that producing
600-900 responses a day might have led to
a peculiar pattern of results. Fortunately,
at about the time these data were collected,
a more orthodox magnitude estimation
experiment was in progress nearby (Logue,
1976). In that experiment, 26 observers
estimated the magnitudes of 13 tones
spaced 5-dB apart from 30-90 dB (SPL).
They estimated each tone twice, as is
common practice. Logue kindly provided
us with her data, which we analyzed using
Equation 3. The means and standard
deviations of the parameters over observers
are listed in the last two rows of Table 2.
The pattern resembles ours. This corre-
spondence, as well as that between our
results and results obtained in other

_laboratories, leads us to believe that there -

is a basic pattern to the sequential effects
in magnitude estimation.

We conducted similar analyses of the
data from Experiment 2 for ratio esti-
mation with erase tones. The relations
among the two signals and two responses
constituting a single trial (separated from
the previous trial by the erase tones) were

in agreement with Tables 1 and 2. The
responses within a trial were correlated
(r = .27), as were the magnitude of the
first signal and the response to the second
signal (r = .21), but no significant corre-
lation was observed between the magnitude
of the second signal and the response to the
first. Also, no significant correlation existed
between the response to the first signal on a
given trial and either the intensity of the
immediately preceding signal (presented
on the previous trial) or the response to
that signal. Thus, the erase tones had the
desired effect of eliminating sequential
effects due to both signals and responses.

In our view, however, the ratio procedure
is difficult from the observer's point of view
as well as inefficient compared with the
simpler magnitude estimation procedure
using a single stimulus and a single response
on each trial. If all sequential effects stem
only from events on the previous trial,
then estimating them by these simple
regression techniques and correcting for
them probably is to be preferred to using
the ratio procedure.

Lockhead’'s Analysis Reconsidered

Our regression analysis provides a much
simpler picture of the structure of sequential
effects than does the analysis described by
Lockhead and his students. The obvious
question is whether there are differences in
the two sets of data or whether it is simply
a difference in the analyses. This is difficult
to answer because our experiments are
not really comparable to the magnitude
estimation experiment described by Ward
(1973). Ward used 10 signals covering a
36-dB range, whereas we used 27 spanning
a 52-dB range. We reanalyzed the magni-
tude estimation data from Experiments 1
and 3 following the procedure described by
Ward. This procedure called for computing
r+;(k), the geometric mean of all responses
to all stimuli on the current trial, condi-
tional on stimulus s; having occurred & trials
earlier. To normalize this matrix for plot-
ting, we divided all values of 7-;(k) by
r.. (k).

Our data and those from Ward (1973) are
presented in Figure 2. T'o make the number
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FIGURE 2. Sequential stimulus effects observed in a Lockhead analysis of magnitude estimation
data collected by Ward (1973, Table 1). (A geometric mean response, r.;(k), is computed for the
responses to all signals, s, that were preceded K trials earlier by signal s;. These mean responscs
are then normalized by dividing by r.. (k), which is the overall mean response, To reduce the num-
ber of points, geometric means of these ratios have been computed for adjacent stimulus categories.

These have been labeled 7.;(k) /7. . (k).

of curves manageable and the data com-
parable, we have averaged (a) successive
pairs of s; values (1 4+ 2, ..., 9 4+ 10) for
Ward's data (see left panel of Figure 2) and
(b) successive groups of five or six s; values
(1-6, 7-11, 1216, 17-21, 22-27) for our
data (see right panel of Figure 2). The
two panels show a similar pattern, although
the sequential effects in our data are not
as large as those observed by Ward (1973).

Ward and Lockhead (1971) and Holland
and Lockhead (1968) have demonstrated
comparable effects in absolute identification
data using a similar analysis (see Figure 1).
We had absolute identification data avail-
able (Luce, Green, & Weber, 1976) col-
lected under various conditions. One of
these was 10 1,000-Hz tones, spaced evenly
over an 11.25-dB range centered on 60 dB
(SPL). This is close to their range of 10 dB.
There were four observers, each of whom
listened for an average of 1,500 trials. The
regression analyses look wvery similar to

those presented above for magnitude esti-
mation data. There are small effects of
Ry1 and [,—1 on R,. By taking these
effects into account, the. proportion of the
variance accounted for in R, can be in-
creased from .726 for a prediction based
on .S, alone to .741 for a prediction based
on Sa, Sa—1, and R.-;. The use of addi-
tional stimuli or responses from ftrials
n — 2 to n — 5 only increases the variance
accounted for to .738. When we apply the
analysis used by Ward and Lockhead
(1971) to our data, however, we observe
the same pattern that they saw of ap-
parently extended sequential effects. Our
data are presented in Figure 3; the data
from Ward and Lockhead are presented
in Figure 1. The agreement is striking. We
conclude, therefore, that similar sequential
effects are operating in magnitude esti-
mation and absolute identification and that
in both cases they are confined entirely to
the events of the previous trial.
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FIGURE 3. Sequential stimulus and response effects in a Lockhead analysis of absolute identifica-
tion data collected by Luce, Green, and Weber (1976). (The pattern is very similar to that ob-
served by Ward and Lockhead, 1971; see Figure 1.)

Incidentally, the size of the effects seen
in Figure 3 depends heavily on the range
of stimuli used. Small ranges produce larger
effects and larger ranges produce smaller
effects.

Correlation Between Successive Responses

We were motivated in much of this
analysis by the response ratio hypothesis
(Equation 1); however, the linear regres-
sion (Equation 3) suggests a serious prob-
lem for the response ratio hypothesis
because the regression coefficient, 8, is not
near 1. One cannot be certain of this because
the form of the signal terms differs in
Equation 1 and Equation 3. Taking loga-
rithms of Equation 1, we obtain the relation

log Rn = log Ru1

+ log [X (Sa)/K*(Sa-2)] + log €,
which suggests a regression model of the
form
IOg Bn =4 log @n—l

+ A(':Sm ;Sn—-l) +e (4)

If the response ratio hypothesis is correct,
we should find 8 = 1.

There are difficulties in estimating the
slope constant, 8, in Equation 4, since we
should compute it separately for data where
X(82)/X*(Sa-1) is the same. Data based
on several different signal pairs in general
have different intercepts, and that attenu-
ates the regression coefficient. To avoid
this problem, we computed 272 regression
slopes, 1 for each distinct pair of signal
values. The weighted average of 8 was
569 == .1 for the four subjects and two
experiments.

In the course of this analysis, it became
apparent that the regression coefficient
depended strongly on the decibel difference
of the signal pairs. This finding can be
demonstrated most easily if we compute
what might be called a normalized regres-
sion coefficient. We select successive re-
sponses and divide them by k#[.”’, where &
and v’ are estimated for each individual
subject. (v’ is simply estimated from power
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function fits to average data and is not v
of Equation 3.) The logarithm of the ratio
R./kI." has nearly a zero mean and a
variance roughly constant and independent
of stimulus intensity. We now compute the
following regression equation:

En—l

k«ZnHI’Y,

kL.

log = g log +3d+e (5)
for various ratios, I, 1/l Since the in-
dependent and dependent wvariables in
Equation 5 have nearly the same variance,
the regression coefficient 8 is also very
nearly the correlation coefficient.

We computed the value of 8 for each
observer in each of the two experiments and
for 15 groupings of the signal differences in
dB. The means and standard deviations

of these values are displayed in Figure 4.

As in the previous analysis, the average
value of B across all of the categories is
clearly less than 1. Furthermore, the devia-
tion of the response from its expected
value is highly correlated with the devia-
tion on the previous trial when the change
is small, but there is practically no corre-
lation when the change is large. All four
observers, in both experiments, showed the
same phenomenon. This pattern of results
is not consistent with the version of the
response ratio hypothesis stated in Equa-
tion 1.

Theoretical Discussion

In an attempt to account for various
phenomena, including aspects of absolute
identification (Luce, Green, & Weber,
1976) and the dependence of o(Rn/Rn-1)/
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E(R./Rn-1) on the ratio of successive signal
intensities, we have been led to suppose
there is a roving attention band that is
about 10-15 dB wide and that has the
following property (Luce & Green, 1974).
Signals that happen to fall within the band
are represented by a sample of neural
events (times between pulses, for example)
that is from 5-10 times as large as the
sample resulting from signals that fall
outside the band. Moreover, when the
signals are randomly selected, there is
evidence that observers tend to locate the
band near the intensity of the last signal.

In order to account for our odd pattern
of correlations, it is sufficient to suppose
that the response ratio hypothesis holds
for successive pairs of signals that both lie
within the attention interval; but that
when at least one lies outside the band,
the response to .S. is based on X (S.), not
on R,_1X(S,)/X*(Ss-1). This would de-
stroy the correlation between R, and R,_,
when S, is far from S._;; of course it would
be less than 1 when they are close, since
Sa—1 may not have been in the attention
interval, and it is not known if the tendency
to locate the band at the previous signal is
any more than a tendency.

We have not yet thought of a sensitive
way to test this hypothesis. We will, how-
ever, examine our data further on the
assumption that it is correct.

DIsSTRIBUTION OF MAGNITUDE
EsTiMATION RESPONSES

Beta Fits

We return now to our original motiva-
tion, namely, to consider the distribution
of magnitude estimates. If the response
ratio hypothesis is true and if 1/X(s) is
gamma, distributed, as in the timing model,
then the ratio of successive responses
should be distributed according to a beta
distribution of the second kind, with
parameters k(s) and k(s’) [or an F distri-
bution with 2k(s) and 2k(s’) degrees of
freedom; see Green and Luce, 1974].
According to the timing model, &(s) and
k(s’) are the numbers of interarrival times
or sample sizes for the present and previous
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signals, respectively. As we have just
discussed, the pattern of correlation—
especially the strong dependence upon the
ratio of successive intensities—rules out
the response ratio hypothesis in the most
general terms. Nevertheless, we have
suggested that the response ratio hy-
pothesis may still apply to those successive
trials on which the signals both fall within
the attention band. The ratios might then
be distributed as a beta distribution.
Unfortunately, we know of no good way
to assure ourselves that this is the case,
and so our analysis must be viewed more
as a means of obtaining a rough estimate
of the parameter values than as a test of
the theory. The situation is further compli-
cated by the fact that simulations of beta
distributions and attempts to recover their
parameters indicate that the functions
relating X2 to the parameters are very
shallow and contain many local minima.
To bring order out of this chaos, we con-
sidered only a limited range of possibilities
for k(s) and £(s’).

We proceeded as follows. We first con-
sidered all of the data, regardless of the
decibel difference between successive sig-
nals, We assumed that on the average
the two sample sizes would be equal. We
found the value of k(s’) = k(s) that re-
sulted in a minimum X2 when the distri-
bution of response ratios was compared to a
beta distribution (we used 26 categories
with cut points every 59, plus cut points
at 19, 2.5%, 7.5%, 92.5%, 97.5%, and
999,). We then considered two categories of
trials (a) where the previous signal was
within 6 dB of the present one and (b)
where the difference exceeded 12 dB. If
we assume the attention band is positioned
at the intensity corresponding to the last
signal, then the present signal should be
within the attention band for trials in the
first category and outside the attention
band for trials in the second. We could not
say anything about the previous signal, so
we assumed that its sample size was given
by the value of k(s’) for the unrestricted
case.

We then found the value of k(s) > k(s")
that minimized X? for trials in the first
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TABLE 3
BETA ANALYSIS
No Sorting AL6 A > 12

Subject and

experiment k(s) = k(s") x2 n k(s) k(s") x? n k(s) k(s) x* n
Subject 1

Experiment 1 5 98.6 1,188 22 5 52.0 299 5 5 822 739

Experiment 3 5 108.2 1,473 25 5 54.6 334 3 5 700 865
Subject 2

Experiment 1 12 36.9 767 33 12 26.6 178 7 12 295 451

Experiment 3 7 72.3 1,381 28 7 658 345 4 7 215 788
Subject 3

Experiment 1 7 56.7 1,572 30 7 39.0 419 6 7 269 867

Experiment 3 9 49.9 1,515 17 9 414 360 5 9 409 887
Subject 4

Experiment 1 8 56.5 1,658 12 8 53.2 408 5 8 318 923

Experiment 3 8 112.2 1,891 14 8 1884 454 8 8 31.8 1,079

Note. Each x?is based on 2§ degrees of freedom. The symbol A indicates the ahsolute difference in decibels between the stimulus on
the present trial and the stimulus on the previous trial; 2 (s) and k (s*) are parameters of the beta distribution, estimates of the sample

size on the present and previous trials, respectively.

category and the value of k(s) < k(s') that
minimized X* for trials in the second
category. Table 3 presents the results. We
see the pattern of a factor of 2-5 in the two
sample sizes, not as large as other estimates.
This discrepancy is probably due to con-
tamination of the present estimates.

Gamma Fit

Another approach is to attempt to fit
the gamma distribution to the distribution
of the reciprocals of the individual re-
sponses, rather than fitting the beta distri~
bution to the ratios of responses. According
to the timing model, the reciprocals of the
responses should be gamma distributed with
k degrees of freedom, where k is the number
of interarrival times. For these fits, we need
to correct each response to remove the
effects of the previous stimulus and re-
sponse. We do this using the regression
equation (Equation 3) and the parameters
indicated in Table 2. The reciprocal of the
corrected response is then normalized by
dividing the response at any stimulus
intensity by the expected value of the
response at that intensity. The composite
distribution obviously has a mean of unity
and should be gamma distributed with a
variance of k.

We used the same strategy in fitting
ganuna distributions as we did in ftting

beta, except that it was not necessary to
restrict the range of parameter values
because there were fewer possibilities and
the functions relating X* to the parameter
value did not generally have local minima.
We first fitted all of the data, regardless of
the relation of the present signal intensity
to the signal intensity on the previous
trial. We then considered the two categories
of trials where the previous signal was
within 6 dB of the present one and where
it differed by more than 12 dB. The values
of k(s) and the corresponding minimum
values of X? are presented in Table 4. We
see the same pattern observed in the beta
analysis. The values of X* are generally
lower in the cases where the difference in
signal levels has been restricted. When the
difference is 6 dB or less, the value of k(s)
is always greater than in the unrestricted
case. This agrees with the assumption that
the sample size is larger. When the differ-
ence in signal levels is greater than 12 dB,
the value of £ (s) that minimizes X is always
less than or equal to the value in the un-
restricted case. The pattern of these
results therefore supports the approach
used in fitting the beta distribution as well
as our assumptions about the attention
band.

Finally, we fitted the same data to a log
normal distribution. The log normal has
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TABLE 4
GAMMA ANALYSIS
N

Subject and 0 sorting AL6 A > 12

experiment k x2 ” k x? n k x? ”
Subject 1

Experiment 1 6 39.3 1,188 8 22.3 299 5 429 739

Experiment 3 7 50.6 1,473 10 27.9 334 7 35.1 865
Subject 2

Experiment 1 9 449 767 15 19.9 178 7 36.6 451

Experiment 3 6 82.8 1,381 1 46.1 345 5 33.0 788
Subject 3

Experiment 1 5 61.8 1,572 9 21.8 419 4 57.2 867

Experiment 3 7 27.9 1,515 11 18.5 360 7 22.8 887
Subject 4

Experiment 1 51.5 1,658 10 24.2 408 6 51.6 923

Experiment 3 8 201.0 1,891 16 1149 454 14 220.6 812

Note, Each x2 is based on 25 degrees of freedom. The symbol A indicates the absolute difference in decibels between the stimu-
lus on the present trial and the stimulus on the previous trial; & is the parameter of the gamma distribution, an estimate of the

sample size on the present trial.

many similarities to the gamma and pre-
serves an important and salient property
of the data, that is, that the mean-to-sigma
ratio is roughly constant and independent
of signal intensity. The fits to the log
normal were in every case poorer than the
fits to the gamma. The average X as-
sociated with the log normal distribution
is about a factor of two larger than the X%
shown in Table 4. Although the log normal
is only one of many alternative hypotheses,
we are encouraged that the gamma appears
to fit better than this reasonable alternative
distribution.

SUMMARY

This article reports data collected in
three magnitude estimation experiments;
it especially emphasizes the nature of the
sequential effects and how to estimate
parameter values associated with them.
Our findings are these: A simple linear
regression model in the logarithm of the
response and in the signal level in decibels
provides a quite adequate characterization
of the sequential dependencies. These
effects are almost exclusively due to the
signal and response on the previous trial;
there do not seem to be any sequential
effects resulting from still earlier trials. A
similar pattern is demonstrated in absolute
identification data. We also present evi-

dence that the magnitude of the correlation
between successive responses depends
heavily upon the decibel difference between
the corresponding signals. This is a new
finding and poses a considerable theoretical
obstacle to the response ratio hypothesis.
Finally, we compare the distribution of
normalized responses with two theoretical
distributions. The parameters that were
estimated using some restricted searches to
minimize X2 are in rough agreement with
our modified response ratio model. The
gamma fits to the reciprocal responses are,
on an absolute scale, relatively good, and
the parameters estimated from these fits
are in qualitative accord with the expec-
tations of the model.

REFERENCES

Cross, D. V. Sequential dependencies and regression
in psychophysical judgments. Perception & Psy-
chophysics, 1973, 14, 547-552.

Garner, W. R, An informational analysis of absolute
judgments of loudness. Journal of Experimental
Psychology, 1953, 46, 373-380.

Green, D. M., & Luce, R. D, Variability of magni-
tude estimates: A timing theory analysis. Per-
ception & Psychophysics, 1974, 15, 291-300,

Helson, H, Adaptation-level as a basis for a quantita-
tive theory of frames of reference. Psychological
Review, 1948, 55, 297-313.

Holland, M. K., & Lockhead, G. R. Sequential
effects in absolute judgments of loudness. Percep-
tion & Psychophysics, 1968, 3, 409-414.,

Logue, A. W. Individual dilferences in magnitude .



104

estimation of loudness. Perception & Psycho-
physics, 1976, 19, 279-280.

Luce, R. D., & Green, D. M. A neural timing theory
for response times and the psychophysics of in-
tensity. Psychological Review, 1972, 79, 14-57.

Luce, R. D., & Green, D. M. The response-ratio
hypothesis for magnitude estimation. Journael of
Mathematical Psychology, 1974, 11, 1-14.

Luce, R. D., Green, D. M., & Weber, D. L.
Attention bands in absolute identification, Per-
ception & Psychophysics, 1976, 20, 49-54,

Parducci, A. Direction of shift in the judgment of
single stimuli. Journal of Experimental Psychology,
1956, 51, 169-178,

Pollack, I. Neutralization of stimulus bias in audi-
tory rating scales. Journal of the Acoustical
Society of America, 1964, 36, 1272-1276.

W. JESTEADT, R. LUCE, AND D. GREEN

Ward, L. M. Category judgments of loudness in the
absence of an experimenter-induced identification
function: Sequential effects and power-function
fit. Journal of Experimental Psychology, 1972, 94,
179-184.

Ward, L. M. Repeated magnitude estimates with a
variable standard: Sequential effects and other
properties. Perception & Psychophysics, 1973, 13,
193-200.

Ward, L. M., & Lockhead, G. R. Sequential effects
and memory in category judgments. Journal of
Experimental Psychology, 1970, 84, 27-34.

Ward, L. M., & Lockhead, G. R. Response system
processes in absolute judgment. Perception &
Psychophysics, 1971, 9, 73-78.

(Received February 10, 1976)



