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Streaks in skilled performance
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Experiments in golf putting and darts demonstrated that skilled performance is streaky. The ten-
dency for outcome sequences to form streaks was greatest when the task difficulty was such that about
half the trials were successful. Mixtures of the two activities were also streaky, even when periodic
interruption made the individual components resemble a random Bernoulli process. Formal models
of sequence structure revealed that waves in hit rate are associated with the appearance of streaks.

There is a common perception shared by athletes, sports
fans, and perhaps anybody who has ever attempted a
skilled activity that there are moments when a person is
“hot,” or “in the zone,” or alternatively is “cold,” or in a
slump. M. Csikszentmihalyi (1975, 1990; M. Csikszent-
mihalyi & I. S. Csikszentmihalyi, 1988) has written ex-
tensively about the notion of flow as a dimension of ex-
perience where the intimate coupling of actor and activity
results in a specific psychological state anecdotally re-
ferred to as being “hot.” Other investigators have been
leery of flow as a description of performance and have
questioned its empirical support. An issue germane to
studies of subjective probability is whether the alleged
signature of the flow state, streaky performance, arises
from some factual aspect of skilled activity or from mis-
taking chance fluctuations as evidence of a heightened
state of ability. Judgments of one’s own and other’s per-
formance would not be controversial if it were not for the
well-documented observation (Tversky & Kahneman,
1971, 1974) that people have systematic biases concern-
ing what a random process looks like, and therefore are not
competent to discriminate chance occurrence from truly
remarkable performance.

Understandings of random processes incorporate a
bias known as the “law of small numbers” (Tversky &
Kahneman, 1971); people expect statistical regularities
that hold only in the long run to also obtain locally in the
short run. The gambler’s fallacy (e.g., the belief that tails
are “due” after a long run of heads) illustrates this type
of thinking. When asked to mimic the flip of a fair coin,
people invariably generate sequences that have too few
long runs of heads and tails, they balance the frequencies
of heads and tail in short runs, and they produce an ex-
cessive number of runs compared with the output from a
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Bernoulli process (Kubovy & Gilden, 1989). Given this
strong cognitive bias, it would not be surprising if peo-
ple mistook a real Bernoulli process for streaky perfor-
mance.

The game of basketball provides a singular opportu-
nity to study the perception of skilled performance, since
fans, coaches, athletes, and announcers all consider streaks
to be a factual part of the game. Gilovich, Vallone, and
Tversky (1985) compared individual shot records of pro-
fessional NBA players with the expectation of a station-
ary Bernoulli process—a process characterized by the
invariance of the probability of a successful field goal.
Evidence for streak shooting (hot or cold) would be a
positive correlation between outcomes of successive
shots. Gilovich et al. (1985) found that individual shoot-
ing records did not support the existence of a “hot hand.”
In fact, the data supported the opposite conclusion; out-
comes were negatively correlated (hits are more likely to
follow misses than hits). This analysis implies that the
widespread belief in streak shooting is due to misper-
ception of chance.

Larkey, Smith, and Kadane (1989) criticized this con-
clusion on the grounds that a Bernoulli process does not
capture important contextual features of event outcome
in basketball. Defensive interference, pauses in the ac-
tion, and variations in the opportunity to manifest the re-
quired skills together contribute to nonstationarity in the
probability of a successful shooting attempt. Larkey et al.
argued that observers of the game are highly sensitive to
context and do not base their judgments of performance
on individual shot records abstracted from the potpourri
of activity that constitutes the spectacle.

Lacking in this discussion has been a consistent ex-
perimental paradigm that permits a rigorous demonstra-
tion of the phenomena. In this regard, basketball is man-
ifestly not the optimal activity for analysis. Indeed, any
game that is sufficiently interesting to draw spectators
may be too complex for a rigorous streak analysis. We have
chosen to study games that do not incorporate the sto-
chastic variables of shooting opportunity and interfer-
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ence, and so are able to enormously simplify the problem
of selecting an appropriate normative model of chance.
In our studies, people simply repeat a set task for a pre-
determined number of trials. Although rote repetition
substantially vitiates the factors that impel people to ex-
ercise their abilities, the Bernoulli process generates the
natural sampling distribution under these conditions.

The primary purpose of this article is to develop an
experimental framework for investigating the existence
of the “hot hand.” We address the relatively straightfor-
ward empirical question of whether the serial execution
of a skilled action is distinguishable from a Bernoulli
process when the playing conditions are identical on all
trials. We selected two motor skills that seemed to offer
the opportunity for streaky performance: golf-ball putting
and dart throwing. These games have the virtues that
there is minimal delay in the action, there is no interfer-
ence, there is an unequivocal criterion of success, and
there is anecdotal evidence that these activities produce
streaks.

INITIAL GOLF PUTTING STUDY

Method

Subjects. Forty subjects were recruited by advertisement. They re-
ceived $5 per session plus 5 cents per hit.

Stimuli. A standard 12-ft putting green, putter, and regulation golf
balls were used.

Design and Procedure. Each subject completed one session of 300
putts following a brief practice session of 25 putts. Putting was initi-
ated for all subjects at the far end of the putting green. The experi-
menter was placed near the hole and continuously resupplied the sub-
ject with fresh balls. Trials were self-paced. Hits and misses were
encoded as 1s and 0s, respectively.

Analysis. There are a number of sequence statistics that measure de-
viation from the output of a Bernoulli process. Gilovich et al. (1985)
used conditional probabilities, run counts, and serial correlations to
characterize the basketball sequences in their studies. These measures
are not independent. For a given hit rate, sequences with fewer runs than
expected under the null hypothesis of Bernoulli trials must have more
internal repetition than expected, and consequently a positive serial
correlation. In addition, for such sequences, p(k|h) > p(h)—the prob-
ability of a hit following a hit is greater than the probability of a hit.

Unlike the serial correlation between successive trials, denoted here
as r|,, and the contingent probability difference, Ap = p(h|h) — p(h),
the hit rate influences the expected number of runs. A sequence with a
hit rate near 1.0, for example, must have very few runs, although this
does not mean that the sequence is streaky. Removal of hit rate as a fac-
tor in a runs analysis is accomplished by referring the run count in an
observed sequence to the ensemble of counts calculated from all pos-
sible permutations. The sampling distribution of run counts is approx-
imately normal with mean 2Np(1—p)+1, where N is the number of trials
and p is the probability of a hit. Deviations from normality are suffi-
ciently large for p # .5 for us to use the exact hypergeometric distri-
bution (Hays, 1988) to compute the probability of observing R, or
fewer, runs. For the purposes of statistical testing and displaying our re-
sults, we have converted this probability to a z score by inverting the
cumulative Gaussian distribution—a quantity that we refer to as the
runs z score. The runs z score is a measure of outcome clustering that
is independent of both sequence length and hit rate, and its expectation
for a Bernoulli process is zero.

Although r,, Ap, and the runs z score are related measures of se-
quence structure, they are not identical. The Fisher Z associated with r,
and the runs z score are numerically indistinguishable to three signifi-
cant digits. Ap, however, is not a function of the runs z score. Simple
regressions of these two variables captures only about 50% of the vari-
ance for the sequences discussed in this article. The reason for this is
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that the first-order transition probability p(h|h) is not as sensitive to
global structure as is the serial correlation or run count. It is necessary
to look at the first-, second-, and third-order transition probabilities to
begin to adequately characterize a sequence. Often sequences with
large disparities in their runs z scores differ only subtly in their transi-
tion probabilities. Transition probabilities are more useful as measures
of local sequence structure, and for this reason we shall use the runs
z score to characterize the departure from a Bernoulli process.

Runs z scores are subjected to two types of statistical tests, depend-
ing on the type of null hypothesis that is being considered. In every ex-
periment reported here, we shall test whether the ensemble of outcome
sequences is distinguishable from a Bernoulli process. The null hy-
pothesis that sequences are samples from a Bernoulli process entails
(1) each sequence’s being independent (as are parts of sequences) from
all others, and (2) the ensemble of runs z scores having a mean of zero.
In testing this null, we simply form the distribution of observed runs
z scores and ascertain whether the mean is significantly less than zero
(we are only interested in the case where there are fewer runs than ex-
pected). Each sequence in such an analysis forms a separate degree of
freedom by virtue of the mutual independence required by the null. We
also test whether the runs z scores at different hit rates have different
means. Here the null hypothesis has nothing to do with whether or not
the sequences are Bernoulli, and we shall resort to more traditional re-
peated measure analyses where the different subjects comprise the de-
grees of freedom.

Results

The results for this experiment are shown in Figure 1.
The distribution of runs z scores had a mean of —.49, which
is distinguishable from a Gaussian with a mean of zero,
the expected distribution derived from the null hypothesis
of sampling from a Bernoulli process [#(39) = —2.69,
p <.005]. Most people showed some amount of streakiness
in golf putting (25 0of 40 had z < 0; p = .077). In addition,
there were a number of people who had runs z scores that
were sufficiently negative for them to be regarded as streak
performers. Of the sequences, 12.5% had runs z scores
less than —2, where only 2.3% are expected to have
z scores this negative. These data also suggest that there
is a suppression of streaky performance if the task diffi-
culty exceeds the person’s competence—that is, if the hit
rate was .3 or less.
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Figure 1. z scores for run number versus hit rate for 40 subjects in
a golf putting study. Runs z scores are computed for each sequence in-
dividually on the assumption that successive trials are samples from
a Bernoulli process defined by the average hit rate. Negative runs
z scores indicate that fewer runs were observed than expected.
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GOLF PUTTING STUDY
THREE-LEVEL HIT RATE

A second putting experiment assessed the implied de-
pendence of streakiness on hit rate by systematically
varying the putting distance for each subject.

Method

Subjects. Five subjects were recruited by advertisement. They re-
ceived $5 per session plus 5 cents per hit.

Stimuli. The 12-ft putting green, putter, and balls were the same as
those used in Experiment 1. The only difference in this experiment was
that the subjects often initiated their putts some additional distance be-
yond the end of the putting green on a carpeted floor.

Design and Procedure. Each subject completed three sessions of
300 putts at each of the three levels of difficulty. Prior to each putting
session, we calibrated the putting distance for each subject to achieve
hit rates in the target ranges of .3-.5, .5-.7, and .7-.9. The difficulty
level was chosen at random for each block of trials with the constraint
that each subject complete three blocks at each level. Otherwise, the
procedure was identical to that of the first putting experiment.

Results

The ensemble of sequences generated in this experi-
ment had a mean runs z score of —.59. This is significantly
smaller than zero [#(44) = —3.94, p <.0001], implying
a runs deficit relative to the expectation of a Bernoulli
process. There was additional structuring by hit rate ob-
served in the runs z scores. Box plots of runs z score by
difficulty level are shown in Figure 2. As anticipated, we
found a suppression of streakiness in the low-hit-rate
condition; the distribution of runs z scores in the range
[.3—.5] had a median closer to zero, the expected value for
independent trials. There also appeared to be a comple-
mentary and weaker suppression when the task was rel-
atively easy. A repeated measures analysis showed that
the U-shaped trend evident in Figure 2 was significant
[F(1,8) = 9.558, p <.02].

The existence of a quadratic trend in runs z score with
hit rate is a potentially important result. Outcome se-
quences are streakiest when the difficulty of the task is
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Figure 2. Box plots of runs z score versus hit rate in a golf putting
study. The data are grouped according to the level of difficulty. Hor-
izontal lines in the box plots mark the 10th, 25th, S0th, 75th, and 90th
percentiles. Outliers are plotted as individual points.

commensurate with the ability of the performer. In the in-
struction of a skill, there is the commonsensible idea that
learning is facilitated when difficulty is matched to abil-
ity, and it is surprising to see this notion instantiated in a
formal measure of streak magnitude. We have assessed
the generality of this result by repeating the three levels
of hit-rate design in dart throwing. Darts is one “sport”
where there is a folklore of streak shooting, although the
documentation for this is presently limited to eyewitness
accounts.

DART THROWING STUDY:
THREE-LEVEL HIT RATE

Method

Subjects. Eight subjects were recruited by advertisement. They re-
ceived $5 per session plus 5 cents per hit. All of them considered them-
selves to be well-practiced and highly trained.

Stimuli. A standard Nodor dart board was placed at the regulation
height of 5 ft 8 in. Subjects threw darts from a distance of 8 ft measured
from the back of the board. The target for the calibration phase was a
series of concentric alternating black and white rings that were '4-in.
thick. During the test phase, the target was a filled black circle on a uni-
form white field. These targets were taped onto the Nodor dart board
and were replaced after each set of 25 darts to facilitate accurate count-
ing of hits.

Design and Procedure. We determined the dart throwing ability of
each subject during an initial phase in which they threw 300 darts at a
special calibration target. These data served to define individual cali-
bration functions tabulating the number of hits within a radius, r, on a
grid spaced at '4-in. intervals. The appropriate sizes of targets for
achieving hit rates in the ranges, [.3-.5], [.5-.7], and [.7-.9], were in-
terpolated from splines of the calibration functions. In the subsequent
experimental sessions, hit-rate levels were chosen at random and sub-
jects were given targets consistent with their calibrated abilities. The
subjects completed one session of 300 throws at each of the three lev-
els of difficulty. Trials were self-paced, as in the golf study, but safety
dictated that the subjects retrieve their own darts. The subjects used ei-
ther 3 or 5 darts depending on whether they brought their own or used
those supplied.

Results

The data from this experiment are summarized as box
plots of runs z score in Figure 3. A repeated measures
analysis showed that the quadratic trend in runs z score
with hit-rate range was significant [F(1,14) = 7.26, p <
.02]. Dart throwing, however, did not generate solid evi-
dence of streakiness per se. Of the 24 sequences generated
in this experiment, only 1 had a runs z score sufficiently
negative (z= —1.6, p <.05) to be regarded as anomalous.
Chance mixing of outcome is expected to generate about
1 z score in 20 this negative. The mean runs z score was
0.11, not significantly different from zero [#(23) = 0.47,
p = .68].

Discussion

A plausible account of the U-shaped functions must
take into account what a person is doing when the task is too
easy or too hard. At low hit rates, the performer manifestly
does not possess the control to execute the required task.
Successful trials must become increasingly random events
as the hit rate approaches zero. At the other extreme,
when the task is too easy, intermittent distraction may
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Figure 3. Box plots of runs z score versus hit rate in a dart-throwing
study. The data is grouped according to the level of difficulty.

produce random failure. When successes or failures are
truly random, then the runs z scores should approach the
expectation value of zero. In this way, positive sequential
dependency is most likely to manifest itself at interme-
diate hit rates by virtue of the true randomness that ex-
ists near ceiling and floor. Analysis of the dart data sup-
ports this argument. Runs z scores for sequences derived
from the easiest (largest) and most difficult (smallest)
targets were not distinguishable from a Bernoulli process.
For the largest targets, the mean runs z score was 0.29
[#(7) = .63, p = .55]. For the smallest targets, the mean
was 0.62 [#(7) = 1.58, p = .16]. Streaky performance
was evident only for intermediate-size targets, where the
mean runs z score of —.58 was significantly different
from zero [#(7) = —2.88, p <.02]. The golf data are in
partial agreement with this interpretation. At the longest
putting distances, where hit rates were lowest (hit rate <.5),
the mean runs z score of —.11 was not significantly dif-
ferent from zero [#(14) = —1.02, p = .32]. However, un-
like the dart data, the high-hit-rate (hit rate > .7) golf
sequences had a mean runs z score of —.66 that is in-
consistent with output from a Bernoulli process [#(14) =
—2.97, p<.01]. Still, at putting distances where hit rates
were in the range [.5—.7], the mean runs z scores was
—.99, the most negative value obtained in this set of stud-
ies [t(14) = —6.4, p <.0001]. We tentatively interpret the
U-shaped functions as demonstrating that intermittency
may make outcomes more Bernoulli-like at the endpoints
of the hit-rate range.

INTERLEAVED GOLF AND DART TRIALS

Golf putting and dart throwing both generate U-shaped
trends in runs z score with hit rate, but golf putting is
much streakier than dart throwing. The difference in over-
all streakiness may be due to subtle differences in the de-
signs of the respective studies. One way in which the golf
putting and dart studies differed was in the pacing of tri-
als. In the putting experiment, it was possible to contin-
uously supply subjects with golf balls so that there was
no break in activity; in the dart-throwing study, it was not
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possible for the experimenter to continuously supply the
subjects with darts without incurring the danger of being
hit. Subjects in the dart study threw 3 to 5 darts and then
collected them for another round. There was invariably a
5-to 10-sec delay between sets. Such delays render out-
come sequences more Bernoulli-like in signal detection
(Gilden & Gray Wilson, 1995) and may have caused a
general suppression of streaks in dart throwing.

Time delay in the exercise of motor skills is relevant not
only for understanding streaks in our dart-throwing ex-
periment, but also for explaining the negative results re-
ported by Gilovich et al. (1985) in the context of free-throw
shooting. Gilovich et al. did not report the pacing of their
free-throw study, and they may not have recognized the
importance of allowing trials to be self-paced. We have
assessed the importance of interruptions in motor activ-
ity by mixing golf trials with dart trials. In this design,
dart throwing serves to interrupt golf putting and vice
versa. We conjectured that interruptions would make
both tasks resemble a Bernoulli process.

Method

Subjects. Four subjects were recruited by advertisement. They were
paid $5 per session.

Stimuli. The equipment was the same as that used in the earlier
studies.

Design and Procedure. The subjects alternated activities in sets of
5 trials to accommodate the retrieval of golf balls and darts. A block
consisted of 150 trials of each activity, and each subject completed 10
blocks. Half of the subjects began with darts, and half began with golf.
Prior to the collection of data, we calibrated each subject’s scores to
achieve hit rates of about 0.5 in both activities.

Results and Discussion

Separate runs analyses were performed on the golf and
darts parts of the sequences, as well as on the combined
mixture. The mean runs z scores for the golf component,
darts component, and mixture were .027, .01, and —.26,
respectively. The isolated components were in-
distinguishable from the output of a Bernoulli process, but
the combined activity, which is realistically what the sub-
ject experienced, was moderately streaky [£(39) = —1.8,p<
.05]. We have checked that this result is not an artifact of
the two games’ being played at different hit rates. Our cal-
ibrations proved to be quite stable, and the resultant distri-
bution of hit rates was contained in the interval [.4—.65].

The results of this experiment may point the way to an
ecologically sensible assessment of basketball. While a
player is not shooting, he/she may be executing another
activity (rebounding, passing, or whatever) with the élan
that would be termed “in the zone” if it were shooting ac-
tivity. Statistical analyses that concentrate on shooting ac-
tivity may misrepresent the structure of the sport insofar
as shooting opportunities are intermittent even when the
action is continuous.

STREAK CAUSATION
There is some aspect of skilled performance that causes

hits and misses to cluster together in specific regimes of
task difficulty. In this section, we investigate several mod-
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els of sequence structure in an effort to better understand
what might be causing streaks to occur.

Learning is a prime example of hit-rate nonstationar-
ity that could make performance appear to be streaky. A
secular increase of hit rate over a block of trials could re-
sult in a deficit of runs relative to the expectation of a
stationary Bernoulli process operating at the average hit
rate. In this case, streaks would be an artifact of a process
that might well be expected to occur and would be of lit-
tle interest as a phenomenon in itself.

We have evaluated the role of learning in the second golf
study (which showed the clearest evidence for streaki-
ness) by constructing explicit learning curves that relate
hit rate to trial number. While virtually any monotonic
relationship between trial number and hit rate could
serve as a model of learning, we have considered a rep-
resentative and fairly exhaustive set of relations by al-
lowing the hit rate to be a power law of trial number:

B> 0.

This set includes all relations that are everywhere concave
Or convex.

We evaluated the importance of learning by partialing
out the power-law models of hit rate from the outcome
serial correlation in the observed data sequences. To the
extent that a model describes the process whereby serial
correlation arises, the part correlation will be smaller than
the serial correlation. In the limit that the outcome se-
quence has no stochastic component and the learning
model is an exact description, the part correlation van-
ishes. Let r|, represent the serial correlation (the corre-
lation between the data sequence and itself lagged by one
trial), ;) the correlation between the sequence and the
learning model, and ), the correlation between the se-
quence lagged by one trial and the learning model. Then
the part correlation is

hit rate [ (trial number)?#,

P "2~ "M
) .
VI,
If learning is occurring, then both 7, and 5, > 0 and

rpart < Iy

For a given sequence of outcomes, there is generally
some value of that minimizes r,,,,. Using standard nu-
merical techniques, we have computed the minimum r,,,
for all sequences in the second golf study that had posi-
tive sequential dependency. The magnitude of the differ-
ence between the serial and part correlations is an index
of the importance of learning in outcome clustering.

Gilden and Gray Wilson (1995) argued that streaks in
signal detection were unrelated to learning and were due,
rather, to oscillations in hit rate. We conjectured that a
wave model would apply here as well. In wave models,
the hit rate is conceived to vary as

hit rate O sin(2 Tk/L+6),

where £ is the trial number, L is the wave period (measured
as number of'trials), and Ois the phase. A wave in hit rate
can easily produce positive sequential dependency; hits

congregate at the crests, and misses congregate in the
troughs. Here both L and B entered as free parameters in
finding the minimum part correlation for each sequence.

The results from these analyses were straightforward.
The part correlations for every sequence were smaller in
the wave model. On average, the serial correlation for golf
sequences was '}, =.060, while the part correlations were
rpart(wave) = .037 and rpar(learning) = .053. (Although
the magnitude of the serial correlation may not appear to
be large, serial correlations on the order of 0.10 correspond
to runs z scores more negative than —2.0.) Relative to
wave modulation, learning appears to be a rather small ef-
fect in explaining hit-rate structure.

Gilden and Gray Wilson (1995) considered a larger
class of models that included a second-order Markov pro-
cess and a stochastic version of a two-state wave model.
The Markov model explicitly incorporates the idea that
present outcome is correlated with earlier outcomes—
“success breeds success.” The stochastic two-state wave
model (referred to as the intermittent effort model) sim-
ulates the fluctuations in performance that arise when
the operator’s attention drifts to and from the task. This
model treats the hit rate as moving between two states
dependent upon a transition probability. Stochastic oc-
cupation of states generates positive sequential depen-
dency for the same reason the wave model does. Hits
occur preferentially in the high-hit-rate state and misses
in the low-hit-rate state. The primary difference between
the wave and intermittent-effort models is one of deter-
minism. In the wave model, selection of the phase, am-
plitude, and period fixes the hit rate on all trials.

Assessment of the Markov and intermittent-effort mod-
els requires considerably more effort than calculation of
the part correlations. These models are inherently sto-
chastic and require Monte-Carlo simulation. In this tech-
nique, a given hit-rate model prescribes a rule for gener-
ating pseudodata, sequences of binary digits that represent
algorithmic performance. Gilden and Gray Wilson (1995)
measured the local similarity between pseudo and real
data sequences in terms of the probability of encounter-
ing m hits on n consecutive trials. In our signal detection
studies, we found that the wave model generated pseudo-
sequences that had the greatest resemblance to the data.
We have repeated the same analyses on the golf data with
the same result. Wave modulation of hit rate with a pe-
riod of about 20 trials (20-50 sec given the pacing of tri-
als) and an amplitude of 0.2 produces sequences that re-
semble golf data both globally (the runs z score) and
locally (probability of m hits on n consecutive trials).

GENERAL DISCUSSION

Our finding that streaky performance in motor skills exists in labo-
ratory studies does not contradict the main arguments of Gilovich et al.
(1985) insofar as their work concerned the cognitive illusion of streaks
in the full context of a basketball game. The work presented here does
challenge the general claim, implicit in Gilovich et al., that streaks are al-
ways an illusion. To the contrary, we have found evidence not only for
streaky performance, but also for a U-shaped function relating streak
magnitude and hit rate. The difference between our results and those of



Gilovich et al. (1985) may be due to the pacing of trials. Delay between
trials does tend to make outcomes independent. We have observed this
in our first dart-throwing study, in the mixed golf and dart study, and
generally in signal detection (Gilden & Gray Wilson, 1995).

We have also attempted to characterize the form of hit-rate nonsta-
tionarity that is associated with streaky performance. Two determinis-
tic models (learning and wave modulation) and two stochastic models
(Markov and intermittent effort) of hit rate have been considered. Wave
modulation of hit rate provided the best description of observed se-
quence structure within this group of models. This result is consistent
with our analysis of streaks in signal detection tasks (Gilden & Gray
Wilson, 1995), and may point to a common etiology.

Our work is hardly the first to suggest that there are oscillations in
performance. Circadian rhythms, for example, modulate performance
quite generally (Hockey, 1986, reviews this field), but on time scales
measured in hours. On the short time scales, 10-100 sec, implied by our
models of outcome sequences, there is evidence for fluctuations in
threshold that dates back to the beginning of psychophysical research
(see Guilford, 1927, for a review). Guilford’s account of threshold vari-
ability centered on retinal adaptation and eye movements, constructs
that have no clear relevance to the exercise of motor skills. Threshold
effects and adaptation of motor neurons may play a role in streak for-
mation, although development of such a theory will require a more
complete understanding of what is involved in skilled action.

Wave-like structures have not been reported in the domains of vig-
ilance and controlled attention (see reviews by Davies & Parasuraman,
1982; Parasuraman, 1986). This may be due to several factors. Our in-
ferences rely upon correlation minimization and Monte-Carlo simula-
tion, numerical methods that are not common in the treatment of psy-
chological data. In addition, our experimental design permits
particularly sensitive tests of hit-rate models. Finally, we stress that the
attentional demands made by skilled action are difficult to evaluate.
Golf and darts implicate both controlled and automatic processes, and
it is part of the lore of streak shooting that it occurs on those occasions
when performance feels effortless.
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