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Abstract—The nature of reaction time variability is analyzed in a
suite of four experiments involving tasks, methodologies, and types of
perceptual judgment commonly encountered in cognitive psychology

In every case, a substannal fraction of the tral-by-tnal variabiity in
reaction ime latency is shown to be well described by a particular
type of fluctuation known as 1/ noise These results suggest that the
time it takes 1o make and register a speeded decision reflects a kind
of dynamic complexity that is seen in natural systems that self-
organize at the boundary between order and chaos

Reacion time measurement has proven to be an endunng and
effectuve tool 1n empincal studies of the nature of mental representa-
tion and cognitive process There may be no area within cogniive
science that has not been explored using methodologies that incorpo-
rate reaction time as a metric of thinking activity In fact, reaction time
1s of such paramount importance that 1t has also been studied in 1ts
own nght 1n order to better understand its measurement properties and
the types of inferences 1t allows 1n the evaluation of theones and
models (Townsend, 1990, Townsend & Ashby, 1983, Van Zandt &
Ratchiff, 1995) Despite the practical and theoretical significance of
this form of measurement, analyses of typical data sets suggest that
much of what 1s in fact being measured has not been noticed In this
article, I show that reaction time fluctuations, which often account for
90% or more of the vanance within a given observer's data, may
exhibit the umque correlational structure of a 1/f noise, and so find an
interpretation within the theory of complex systems

The 1ssues and analyses presented here require an appreciation that
fluctuations come 1n vanetes, and that these vaneties have different
meanings The most common varnety of fluctuation has uncorrelated
increments and 1s referred to as white noise Its power spectrum is flat
with frequency (1 e , 1t falls off as 1/f°), sigmfying that there 1s equal
power on all scales White noise 1s the vanety generally encountered
In measurement, 1t 1s what random-number generators produce, 1t may
appear 1n space or tume, and 1t 1s what scholars generally are refernng
to when they speak of noise or random fluctuation All other noises
are essentially defined by the degree of correlation among their 1n-
crements A common type of correlated fluctuation anses as the suc-
cessive sum of independent increments and 1s referred to as brown
noise Brown noises have spectra that fall off as 1/f* and are fre-
quently encountered as the fractals descnbing terrestnal landforms
(Feder, 1988) Poised in the middle between white and brown noise 1s
a statistically rare type of fluctuation whose power spectrum falls off
inversely with frequency and 1s referred to vanously as flicker, pink,
or 1/fnoise ! In the past quarter century, 1/f noise has been discovered
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1 There 1s some potential confusion concerming what 1/f noise denotes In
the vision literature, investigators have recently taken to refemng to brown
notses as 1/f because they apparently prefer to 1dentify noises by their ampli-
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in the temporal fluctuations of an extraordinanly diverse number of
physical and biological systems (Press, 1978, see articles in Handel &
Chung, 1993, and references therein) Examples of its occurrence
include fluctuations in tide and nver heights, quasar light emussions,
heart beat, and resistivity 1n solid-state devices I have recently re-
ported evidence for 1/f fluctuations 1n the patterning of successive
judgments of spatial and temporal mtervals (Gilden, Thornton, &
Mallon, 1995) The fact that systems with no obvious connection can
generate such a particular (and peculiar) temporal fluctuation has
made the etiology of 1/f noise a central problem 1n theoretical physics
Thas effort has led to a deeper understanding of what kinds of systems
produce 1/f noise, and there 1s now considerable evidence that 1its
appearance 1s an 1dentifying signature of dynamic complexity (Bak,
1990, 1992, Bak, Chen, & Creutz, 1989, Bak, Tang, & Wiesenfeld,
1987, 1988, Jensen, 1990)

MEASUREMENT OF REACTION
TIME VARIABILITY

I have measured reaction imes 1n a sample of tasks that have been
intensively investigated in the development of cognitive science men-
tal rotation, lexical decision, senial visual search, and parallel visual
search This selection 1s intended merely to illustrate the range of
1ssues that have been fruitfully studied using reaction time as a de-
pendent vanable Moreover, I do not wish to make arguments anent
the cogmitive processes mediating attention, reading, or the imagina-
uon The experiments, instead, have a purpose opposite to that which
normally informs scientific acivity Rather than focusing the inquiry
on the mean reaction times within different treatment conditions, I
subtract out all treatment means from the data in order to describe
what 1s usually regarded as the error I wish to emphasize here that
error 1n this context refers only to deviation from a mean and has no
imphications for accuracy

Methods

Six expenenced psychophysical observers participated 1n each
study No feedback was given on any tnal The studies were per-
formed on a Quadra 950 with a 17-in Apple color momitor at a
viewing distance of approximately 60 cm Reaction time was mea-
sured as the latency between the presentation of a simulus and a key
press Tnals were sequenced so that the key press sigmfying a re-
sponse on a given tnal also reset the imer and mitiated the subsequent
stumulus display Reaction times are accurate to about 4 ms in the
mental rotation and lexical decision studies, and to about 8 ms n the

tude spectra, which are the square roots of the power spectra. The physics
literature 1s quate uniform 1n referring to noises n terms of the power spectra,
and that 1s the conveation that I adopt here
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Fig. 1. Examples of the stimwli used in four reaction time studies: a stimulus from the mental rotation study 1), a stimutas from the lexical
decision study (b), 2 single frame {rom a rotation animation sequence (¢), and a single frame from a ranglation animation sequence {d).

studies of visual search.” Subjects were instracted 1o make their de-
cisions as fast as possible without sacrificing accuracy. Each task was
practiced for at least 200 trials before data were collected. Error rates
in zall studies were maintained below 59% to 10%, and trials on which
errors were committed were not deleted from the data. Examples of
the stimuli employed in the studies are given in Figure 1.

Mental rotation

One of three letters (R, P, F) subtending approximately 2° by 2°
was presented at one of five orientations (0°, 60°, 1207, 240°, 300°) on
each trial. On half of the trials, the lefter was also mirror reversed. The
subject’s task was to decide whether the letter was mirror reversed or
not. Each subject completed 1,056 irials.

Lexical decision

A tist of five real words and pronounceable pseudowords (laken
from Juola, Ward, & McNamara, 1982) was presented on each trial.
They consisted of five letters each and subtended about 19 by 4°, The
five words and pseudowords in each list were stacked vertically, as
shown in Figure §. The number of real words was either one, two,
three, or four in each list. and the subject’s task was to identify this

number. Each subject completed 1,280 frials.

Serial visual search

A trial consisted of the display of one, two, or four disks rotating
at about 1 revolution/s in a field subtending 5% by 5°. Half of the trials
contained at least one clockwise rotation, which was defined as the

2. Although it is pessible to measure reaction time (0 greater precision thun
i do here, the toleranices set by the equipment are of minor importance. Not
enly are the tlerances small compared with the size of observed fluctuations,
but regardiess of the tolerance magnitude, the equipment does not generate
correlated error and is not a spurious source of 1/ Huctaation. 1 have performed
numerous timing experiments that are not expected 10 produce 1/f notse and do
not, Examples inchude synchronized fapping to a metronome and speeded
response 1o the presence of a stinpdus (Gilden ot al,, 1995).
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target. Portions of the stimulus where disks were absent were filled
with random dynamic noise. When the set size was less than four, the
disks were positioned at random in the four locations indicated in
Figure 1. The subject’s task was to decide whether at feast one target
wag present in the display, Each subject completed 1,152 trinds.

Parallel visual search

The design and stirmrus arrangement were the same in this ex-
periment as in the one invelving clockwise rotation search except that
translating gratings were used and the subject’s task was to decide
whether at least one rightward moving grating was present. Grating
speed was about 2%/, and the motion was periodic within the aper-
tures displayed in Figure }. Each subject completed 1,152 trials.

Resulls

Figure 2 presents the results from the fowr reaction dme experi-
ments in terms of separate means and error analyses. The means
analysis, displayed in the top row, is what is generally presented in
experimental work, and it is summarized by the location and magni-
tude of the error bars depicting the standard error of the mean. Note
that these error bars do not describe the real variability observed in the
experiment; they depict only the precision with which the mean can be
placed. In each of these stadies, the mean was highly localized, vet the
treatment effects accounted for relatively small proportions of the
total variance. The average percentage of variance accounted for by
the treatments within individual subjects was 11% in mental rotation,
3% in lexical decision, 17% in clockwise rotation search, and 7% in
rightward translation search, The remaining variance in these studies
was error in the sense that it was not explained by treatment effects,

The mean analyses are not without interest and would normally be
the focus of psychological experimentation. Figure 2a shows the ex-
pected tent-shaped mean reaction time function indicating that people
make wirror inversion judgments by mentally rotating the letter to its
upright position (Finke & Shepard, 1986; Shepard & Cooper, 1982).
Figure 2b shows that the time required to count real words is a non-
monotonic Tunction of the number of real words in the list. Although
this experiment was originally contrived simply 1 generate lexical
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Fig. 2. Results from the four reaction time studies The top panels show the means for studies of mental rotation (a), lexical decision (b), senal
search (rotation direction) (c), and parallel search (translauon direction) (d) Error bars depict the standard errors of the mean In (c) and (d),
the number alongside each track denotes the number of targets, the dashed lines are for tnals in which ail shmuli were targets Each panel on
the bottom shows the average spectral power densities, S, of the tnal-by-tnal residual error, error,, for the expennment whose means are shown
directly above The curves in (al) through (d1) illustrate best fits to the spectral power densities from the dual-source noise model described

n the text and 1n Table 1

decision fluctuations, this result 1s interesting in 1tself for 1t suggests
that the information entropy of the hists influences reaction ume (1 e,
if we let real word = I and pseudoword = 0, reaction ume 1s roughly
proportional to the number of disanguishable permutations in the
binary strings representung the five decisions that are made on a tral)
In other words, reaction time 1n ths task appears to be proporuonal to
the uncertainty of the list conceived of as a pattern with alternatives
(Gamer, 1962) Figure 2c¢ shows the mean reaction times for clock-
wise rotation search The dashed line (for trials m which all stimuli
were targets) has a slope of zero, evidence that targets are 1solated
mmdividually 1n a senal search (van der Heyden, 1975, see Townsend,
1990, for a discussion of the subtleties in dishnguishing senal from
parallel processes) Figure 2d shows the mean reaction times for right-
ward translation search The dashed line here has a significantly nega-
tive slope (F12, 10] = 51, p < 03), indicaung that multple targets
influence the decision that a target 1s present, evidence that translation
direction search 1s conducted 1n parallel These results on rotation and
translation search are consistent with earhier studies of perceptual
segmentation on the basis of motion direction (Julesz & Hesse, 1970,
Nakayama & Silverman, 1986)

The focus of these studies 1s on the tme development of fluctua-
tions about the cell means within the natural ordering of tnals The
reaction tume latency on the nth trial within a given sequence of tnals
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may be decomposed into two components a part reflecting the ex-
penmental design and a part denoting that any individual latency
contains error

RT, = p(treatment cell), + error,,

In this equation, *‘j.(treatment cell),’’ refers to the cell mean appro-
pnate to the tnal 1n question and 1s computed as the average latency
over all tnals in the sequence belonging to that cell, ‘‘error,’” 1s the
deviation from the cell mean that occurred on the nth tnal The values
of u(treatment cell), varied randomly throughout the sequence be-
cause treatments were randomly interleaved in the expenmental de-
signs This equation serves merely to define the error term and 1s
standard 1n the formulation of regression models (Hays, 1988)

The man results from these expeniments denive from a Fourer
analysis of the residual error, where tnal succession defines the data
ordening The spectral power density, S,, was estimated for each
detrended error sequence, error,,, using overlapping samples of N =
2m data ponts (Press, Teukolsky, Vetterling, & Flannery, 1992) at the
frequencies f, = (k— 1)/(2m), fork = 1,2,3, , m. A block of tnals
completed by a given subject defines a sequence n this analysis
Trends up to second order were filtered from each data sequence 50 as
to remove spurnious low-frequency power that may derive from global
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effects such as perceptual learning over the course of a trial block.
Leakage from adjacent frequency bins was minimized by multiplying
the error series by a Bartlett window, Individual differences in the
overall spectral trends with frequency were not important in any of the
studies presented here, and the bottom panels of Figure 2 show the
average spectral densities for the four experiments, all plotted on the
| same scale and with equal weight given o all sequences. Note that in
this treatment, frequency has the units of inverse trial number.
FHigures 2al through 2d1 show that the residual error terms have
power spectra that rise monotonically opward at low frequencies.
Such spectra mmply that the residual error fluctuations are positively
correlated on all scales of trial number, and that each level of structure
is nested within structore of larger scale. Only in this way can the
spectral density comtinzously increase with scale. In contrast, it the
ervors were uncorrelated, then the spectral densities would be inde-
pendent of frequency or scale. It should be noted that in these experi-
menis, it was not strictly necessary 1o subiract the cell means from the
data. Treatment effects accounted for so bittle of the vamation in
observed latencies that essentially the same power spectra were veal-
ized when the Fourier transform was computed from the raw resction
time data.

ANALYSIS OF REACTION TIME FLUCTUATION

Spectral analysis is distinguished from the type of analysis gener-
ated by an experimental design in several important respects. Fore-
most, expertmental designs rarely account for all of the variance, but
a spectral analysis necessarily does. The integrated spectral power
density mathematicatly sums to the total variance. In this sense, the
discovered structure displayed in Figure 2 gives a complete account of
the error fluctuations. However, this last statement would have been
true regardless of what was produced by the Fourier analysis, so 1t has
no theoretical content in itself and clearly requires further definition.
The apparently lawiul behavior of the power specitra suggests that
such definition may exist, that there s some deeper principie that
explains why the spectra have the common shape that they do. The
point of view that T develop here identifies these ervor sequences with
a pattern of variation found within a cerfain class of dynamic systems
that is well-represented in natare. In other words, I attempt to establish
that the error fluctuations are part of a adfural kind.

I have constructed a dusl-source model of reaction time in which
the error term comprises two kinds of fluctuation. One 1s associated
with processes of perception, discrimination, and choice, and gener-
ates a signal with spectral power proportional to 1/, o > 0. Evidence
for this association comes from studies of reaction time to the mere
presence of a stimulus, ¥ the stimulus does not have to be identified,
then the reaction time fluctuations are uncorrelated (Gilden et al.,
1995}, The second type of thictuation is a white (1/f*) noise defined
by independent samples from a normal distribution. There may be
several sources of white noise that collectively appear in reaction
time. Motor fluctuations in key-press response naturally occur and
have been successfully modeled as additively contributing white noise
to reaction time (Gilden ot al., 1993, Wing, 1980; Wing & Kristof-
ferson, 1973). Cognitive activity associated with perception and judg-
ment may also contribute a component of white noise. Although the
relative amplitudes of these two white components cannot be deter-
mined because they cannot be distinguished i terms of their spectra,
we can identify a colored (1/f™) source of fluctuation associated with
the decision pathway.
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The model of reaction time error groups all sources of white varis-
tion together and represents the error on the ath rial as being embed-
ded in an ordered sequence of the following form:

errar, = (3{f), + B N(O.1),

where {1/f™), is the nth term in a ' noise scaled o have zero mean
and unit variance, N(0,1} denotes a sample from the pormal distribu-
tion with zero mean and unit variance, and § ks a constant free pa-
rameter that determines the relative contributions of the two types of
variability. For each experiment, 1 have spectrally synthesized a con-
tinuous family of 1/f™ noises and compated the values of & and § that
provide the best fit to the average spectral densities in the least squares
sense. The optimal models are shown as curves m the bottom panels
of Figure 2.

Explicit fitting parameters for the dual-source model are given i
Table 1. In each case, the model provides an excellent #it 1o the data
(#* = 92 in all cases), and the colored source of fluctuation has a
common exponent, &, close to unity; that iz, the cognitive component
may be considered a 1/f noise. Furthermore, the model demonstrates
that the 1/f source always makes a substantial conbribution to reaction
time variability, a contribution that exceeds that of the treatment ef-
fects by generally a factor of 3 or more. The proportion of residual
vartance in the model due to Lf noise is given by 141 + B and is
fisted in the finad column of Table 1. Given that the treatments ac-
cotnted for about 10% of individval subject variability, it is evident
that 25% or more of the average variability in reaction time measure-
ment may arise from f-type flactvations independent of the particu-
far decision that is being rendered.

PHYSICAL INTERPRETATIONS

Thus far, I have given a purely empirical demonstration that the
errop terms in feaction fime latency are comelated as a mixture of
white and 1/f noise independent of decision domain. Recognizing that
the error terms dominate the data and appear to have a urdversal form,
wes have a real problem to consider, and I focus now on what these
noises can tell us about cognition. Cognitive psychology is not framed
within a formalization that can guide us 1n this marter. The processes
and mechanisms that are preswmed in theorles of memory, attention,
and lexical decision, for example, have not contemplated scenarios in
which the important structure is contained in the error, Perhaps the
only relevance that these results have for current cognitive theory is
the adjustment of Fisher’s F statistic to encompass sampling distri-
butions with correlated ervor. T do not consider this implementation 1o

Table 1. Theoreticel models
Maodel Variance explained
parameters
R, ’2 § If}f‘a
Experiment o 3 {model) proportion

Mental rotation 7 2.0 94 20
Lexical decision 9 2.0 95 20
Serial search A 14 2 33
Paralle] search A 1.3 93 34
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exhaust the issues raised by the findings. [n order &0 make progress,
we must look to disciplines that have the reguisite formalism and
referential structure to discuss cognitive activity abstractly as a dy-
pamic system,

Chuos theory provides both the language and the practical tech-
miques for investigating the anderlying stracture in noise. In this do-
main, the prirmary issue is whether the error is produced by a relatively
simple deterministic mechanism. IF so, then the arror sequences may
be embedded as an orbit in an attracting set of low dimensionality, and
we might be able to model the ercor in terms of meaningful psyche-
togical constructs. Analyses of this sort are rife in economics, biology,

physics, astronomy, and medicine, and the methods for asceriaining
the existence of (strange) attractors are well known. [ have pursued
this ine of nvéstigation o some depth by estimating the correlation
dimension. testing for false nearest neighbors, and predicting my data
wsing nonlinear forecasting methods (Abarbanel, Brown, Sidorowich,
& Tstmring, 1993; Sugihara & May, 1990; Tsonis & Elsner, 19923,
These analyses are somewhat difficult to do in practice because cor-
related noise can masquerade as ap ativacting set by virtue of the fact
that correlations per se cause data 10 ocoupy restricted regions of the
appropriate embedding spaces. In fact, early reports of strange attrac-
fors in psychological data (e.g.. in electroencephalograms) are now
regarded as erroneous identifications of what is probably correlated
noise (Theiler, Bubank, Longtin, Galdrikian, & Farmer, 1992). A
careful analysis reguires the construction of surrogate data sets that
mitnic various statistical aspects of the data to be modeled, and yet are
themselves not examples of orbits on strange attractors {Theiler et al,,
1992y T have constructed sorrogate data sequences that share the
power spectrum of the observed data seguences and have found the
surrogates and the date 1o be indistinguishable on all measures: cor-
relation dimension, unfolding of nearest neighbors, and nonlinear pre-
dictability. There appears {0 be no simple deterministic mechanism
that creates the observed stricture in reaction time latency.

This negative vesalt does not imply that mental chronometry can-
not be understood 11 erms of & physical mechanism. [t simply means
that mental chronometry cannot be redoced 0 a set of processes
whose action is definite, and that we must inguire generally into what
types of stochastic systems produce 1 noise. This tumns out o be a
rather deep problem in theoretical physics. Although one can easily
create recipes, algorithms, for prodacing 1Y nolse, it s much more
difficuit to render a prescription for their occurrence in nature.

Physieal theories of 1f noise often begin with the patent obser-
vation that natural systems fluctuate when subjected 10 random
perturbations about an equilibriom state (Dutta & Horn, 1981). Un-
der quite general couditions, the fluctnations accompanying the re-
wrn Lo eguilibnum follow a Langevin eguation. Solutions 1o the Lan-
gevin equation have a Debye-Loveniz power spectrum that goes as
St = (1 + 7w, where @ = 2mfis the cireular frequency and T
is the time-scale for the system to reestablish equilibrinm. This spec-
ram is decidedly not 1/ but rather is white (147 at Tow frequencies
and brown (/%) @ high frequencies. Tn order for 17 noise to be
realized perturbatively, there must be additional structure imposed on
the system architecture. Consider, then. a system composed of an
ensemnble of independently relaxing subsvstems that collectively add
into a fluctuating output that forms the measured signal. For the
summed output o have a Uf specirum over a significant range of
frequency, the ensemble must satisty two constraints: The relaxation

timescales have & large range, T,/ Ta, = 1000, and the probabiiity
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density of relaxation times varies as L/t This particular distribution
function is guile special because it has the physical significance of
being scale free; the collection as a whole is not characterized by any
time or length scale. The phenomenon of scale freedom is well
kaerown and is observed in thermodynamic systems undergoing a phase
transition, Bak has suggested that we view the waosition between
erder and chaos in thermodynamic terms (Bak, 1990, 1992; Bak et ab,
1987, 1988}, and has identified a class of complex systems that nate-
radly self-organize and mainin themselves in this scale-free critical
state. When pertwbed, self-organized critical systems floctuate and
produce 1/ noise.

Neural models based on self-organizing metastable systems have
shown that simulated neurons can exhibit self-similar firing rates be-
tween 20 and 800 ms leading to LY power spegtra (Usher, Stemmler,
Koch, & Olami, 1994; Usher, Stemmier, & Olami, 1995). These re-
sulis are consistent with fractal firing patterns observed in single-unit
vecording (Teich, 1992} It is. however, not clear how these physi-
ological data can explain 1 fluctuations i reaction time lafency as o
percepinal decision is not Hkely to mirror the behavior of single new-
rons, The same simulations that prodheced 1/ spectra in single uniis
also showed that firing patierns in the aggregate were highly nonfrac-
tal (Usher et al., 1994, displaying rather a prominent 46-Hz peak in
the collective power spectrum, renminiscent of oscillations observed in
primary visual cortex of awake monkey (Eckhom, Frien, Baues,
Woelbern, & Harald, 1993), That fluctuations in cognitive activity
resemble those seen in complex physical systems at least suggests a
common sct of constraints. The notion that the formal structere of
cognition has evolved to internalize natural constraints has been pro-
posed by Shepard (1981, 1984, 1994}, and the demonstrated existence
of f Mluctuations in reaction thme may provide a sabstantive example
of how such embodiments occur.
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