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Researchers in psychology are paying increasing atten-
tion to temporal correlations in performance on cognitive 
tasks. Recently, Thornton and Gilden (2005) introduced 
a spectral method for analyzing psychological time se-
ries; in particular, this method is tailored to distinguish 
transient serial correlations from the persistent corre-
lations characterized by 1/f noise. Thornton and Gilden 
applied their method to word-naming data to support the 
claimed ubiquity of 1/f noise in psychological time series. 
We argue that a previously presented method for distin-
guishing transient and persistent correlations (e.g., Wa-
genmakers, Farrell, & Ratcliff, 2004) compares favorably 
with the new method presented by Thornton and Gilden. 
We apply Thornton and Gilden’s method to time series 
from a range of cognitive tasks and show that 1/f noise 
is not a ubiquitous property of psychological time series. 
Finally, we assess the theoretical developments in this 
area and argue that the development of well-specified 
models of the principles or mechanisms of human cogni-
tion giving rise to 1/f noise is long overdue.

In conducting psychological research, it is essential to 
have models of the processes or principles theorized to 
underlie observed behavior and to have experimental and 
statistical methods sufficient to determine the theoretical 
adequacy of these models. This has become increasingly 
evident in recent work in which the dynamics of human be-
havior have been examined, particularly in investigations 
of the presence of 1/f noise in human cognition (Gilden, 
2001; Gilden & Wilson, 1995; Van Orden, Holden, & Tur-
vey, 2003, 2005; Wagenmakers, Farrell, & Ratcliff, 2004, 
2005). 1/f noise is a particular type of stochastic process 

that possesses the unique characteristic of self-similarity: 
1/f noise looks the same (both visually and statistically) at 
time scales varying over orders of magnitude (e.g., Beran, 
1994). Temporal self-similarity also implies long-range 
dependence: Observations separated by a large number 
of intervening observations in a 1/f time series tend to be 
correlated, and these correlations decrease slowly with 
increasing separation (i.e., the correlations are persistent). 
Finally, the presence of 1/f noise is taken as a signature of 
complexity in time series (Thornton & Gilden, 2005), and 
its presence has been used to argue for the abandonment 
of standard scientific methods employed in psychology in 
favor of a focus on emergent properties (Van Orden et al., 
2003, 2005). A full presentation of the properties and im-
plications of 1/f noise can be found in Wagenmakers et al. 
(2004) and Gilden (2001).

In a recent article, Thornton and Gilden (2005) intro-
duced a new method for detecting 1/f noise in psychologi-
cal time series. Two central claims are made in Thornton 
and Gilden’s presentation of their spectral classifier. One 
claim is that 1/f processes are distinguishable from alter-
native processes that do not possess the characteristics of 
1/f noise but may mimic the statistics of such processes 
(Wagenmakers et al., 2004), given that appropriate statis-
tical methods are used. A second, more contentious claim 
is that applying their spectral classifier reveals that 1/f 
noise generally provides a better description of psycho-
logical time series than do alternative models.1

Although we applaud the adoption of a more rigorous 
method for detecting 1/f noise in psychological time series 
(in line with previous suggestions: Wagenmakers et al., 
2004), we feel that there are several important statistical 
and theoretical issues arising from Thornton and Gilden’s 
(2005) presentation that must be addressed. We will ex-
amine the relationship between Thornton and Gilden’s 
method and model selection methods previously pre-
sented for detecting 1/f noise (Wagenmakers et al., 2004, 
2005) and will argue that the new method presented by 
Thornton and Gilden improves detection little, in com-
parison with that presented by Wagenmakers et al. (2004). 
We then will discuss Thornton and Gilden’s claim of the 
ubiquity of 1/f noise in psychological time series and will 
show, by application of their method to data that we have 
previously collected (Wagenmakers et al., 2004), that 1/f 
noise is not a general property of human behavior. Finally, 
we will address an important issue neglected in Thornton 
and Gilden’s article, that of the lack of theoretical devel-
opment in research on 1/f noise in psychology.

Methods for Detecting 1/f Noise
Thornton and Gilden (2005) focus primarily on the pre-

sentation of a method for distinguishing 1/f noise from 
stochastic processes that are not true 1/f noise but may 
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mimic the statistical properties of 1/f noise—that is, dis-
tinguishing persistent serial correlations from transient 
correlations. The method presented by Thornton and 
Gilden is a spectral classifier, in which the likelihood of a 
time series (or set of time series) is estimated by compar-
ing the power spectrum (the frequency domain representa-
tion) of a time series with a library of spectra derived from 
two candidate models of serial correlations. One model 
considered by Thornton and Gilden is 1/f noise, treated by 
Thornton and Gilden as fBmW: fractional Brownian mo-
tion (fBm)2 with added Gaussian white noise (white noise 
possessing no systematic serial correlations). The added 
white noise is sometimes interpreted as independent vari-
ability in motor processes (e.g., Gilden, 1997). The other 
model they consider is an autoregressive moving average 
model, the ARMA(1, 1) model, in which the value of a 
series at time t depends only on the state of the system at 
time t 2 1; that is,

	 Xt 5 fXt21 1 εt 1 θεt21.	 (1)

For a full description of ARMA models, see Brockwell 
and Davis (1996). The purpose in comparing these two 
models is that although possessing only transient correla-
tions, the temporal statistics of an ARMA(1, 1) time se-
ries can resemble those of 1/f noise (Wagenmakers et al., 
2004). Thornton and Gilden (2005) present some simula-
tion results showing that their method is well suited to 
discriminating series generated from these two specific 
models.

It is clear that the method presented by Thornton and 
Gilden (2005) is more rigorous than a method that has been 
commonly employed. Previous investigations (Gilden, 
1997, 2001; Gilden & Wilson, 1995; Van Orden et al., 
2003) of serial correlations in psychology have fit only 
a single model, a fractal model, and have not considered 
alternative models of the fluctuations in psychological se-
ries. Wagenmakers et al. (2004) showed that this approach 
is inappropriate, since short-range stochastic processes 
not possessing the characteristics of 1/f noise could be 
misidentified as 1/f noise, using standard procedures such 
as spectrum fitting. Accordingly, Wagenmakers et al. 
(2004, 2005) argued that 1/f noise cannot be considered in 
isolation but must be accompanied by examination of al-
ternative models, such as the ARMA model, that can give 
rise to temporal patterns similar to those of 1/f noise but 
that do not possess long-range dependence. It is promising 
to see recognition of this important point in the method 
presented by Thornton and Gilden.

Despite the implication in Thornton and Gilden’s (2005) 
presentation, however, it is not clear that their spectral 
classification method is also superior to a method pre-
viously suggested for distinguishing persistent and tran-
sient correlations. Wagenmakers et al. (2004) presented 
a method in which short-range processes, represented by 
the ARMA model, are compared with an extension of the 
ARMA model that incorporates long-range dependencies 
(see also Beran, Bhansali, & Ocker, 1998). This ARFIMA 
model (fractionally integrated ARMA model; see, e.g., 

Beran, 1994) incorporates an additional parameter that 
scales the extent of long-range dependence. Wagenmakers 
et al. (2004) advocated an approach in which ARMA and 
ARFIMA models were competitively tested in a model 
selection framework. Specifically, Wagenmakers et al. 
(2004) advocated determination of the maximum likeli-
hood of a time series under the ARMA and the ARFIMA 
models and then selection of one of these models, using an 
information metric such as Akaike’s information criterion 
(AIC; Akaike, 1974).

The existence of two methods for the estimation of 1/f 
noise demands a comparison of the approaches. Table 1 
lists the similarities and differences between the spectral 
classifier introduced by Thornton and Gilden (2005) and 
the ARFIMA model selection approach of Wagenmakers 
et al. (2004). Looking first at the similarities, it is apparent 
that the two methods are, for the most part, very similar in 
their approach and application. Both methods, in contrast 
to those employed previously in psychology (e.g., Gilden, 
2001; Gilden & Wilson, 1995), involve the comparison 
of a long-range dependence model with an alternative 
model, such as the ARMA(1, 1) model, that displays only 
short-range dependence. This model selection approach is 
one of the main strengths of the two procedures, since it 
ensures that short-range dependence processes will not be 
misidentified as long-range dependence (see Thornton & 
Gilden, 2005; Wagenmakers et al., 2004). The ARFIMA 
approach can be extended to allow estimation of a long-
range component, such as ARFIMA(0, d, 0) contaminated 
by an independent white noise source (e.g., Crato & Ray, 
2002; Hsu & Breidt, 2003). The ARFIMA(0, d, 0) plus white 
noise time series model is very similar to the fBmW model 
estimated by Thornton and Gilden’s spectral classifier.

A related point is that despite objections leveled at the 
ARFIMA modeling framework by Thornton and Gilden 
(2005), neither method requires the nesting of the short-
range dependence model in a more general long-range 
dependence model or assumption of the ARMA model 
as a null hypothesis. Thornton and Gilden devoted sev-
eral pages to criticism based on the supposed necessity of 
nesting in the ARMA/ARFIMA framework, claiming that 
“the sole utility [of the ARFIMA model] arises from its 
nesting relationship to the ARMA” (p. 29). Wagenmakers 
et al. (2004) did use an approach in which the ARMA(1, 1) 
model was competitively compared with the ARFIMA(1, 
d, 1) model, which can be treated as a nested comparison. 
Our choice of nested models in Wagenmakers et al. (2004) 
was motivated by the belief that psychological series are 
unlikely to be “pure” and that a long-range dependence 
process would likely be contaminated by short-range 
dependencies. However, Wagenmakers et al. (2004) did 
not extend the nesting to statistical comparison: The two 
models were compared using a general model selection 
metric, the AIC (Akaike, 1974), rather than a likelihood 
ratio test naturally suggested by the nested framework. 
More important, as has been shown in Wagenmakers et al. 
(2005; see also Beran et al., 1998), a broad range of non-
nested ARMA and ARFIMA models can be compared in 
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the ARMA/ARFIMA framework; indeed, Thornton and 
Gilden acknowledged in their note 4 that the ARMA/
ARFIMA framework does not require nesting. One of 
the important strengths of the ARMA/ARFIMA approach 
is that a range of ARMA and ARFIMA models can be 
compared for an observed series. Torre, Delignières, and 
Lemoine (in press) have recently shown that the general-
ized model selection approach adopted by Wagenmakers 
et al. (2005) can reliably estimate fractal noise, with few 
false responses to ARMA series.

Finally, both methods can be applied in maximum like-
lihood and Bayesian frameworks. Thornton and Gilden 
(2005) have demonstrated the use of maximum likelihood 
and Bayesian estimation in the spectral classifier; others 
have demonstrated the use of exact maximum likelihood 
(Hauser, 1999; Sowell, 1992), approximate maximum 
likelihood (Haslett & Raftery, 1989), prequential (Wa-
genmakers, Grünwald, & Steyvers, 2006), and Bayesian 
(Hsu & Breidt, 2003; Pai & Ravishanker, 1998) ARFIMA 
modeling.

Table 1 also lists some differences between the two ap-
proaches. Some of these are inessential differences that 
could easily be modified in either approach. For exam-
ple, the ARFIMA model is estimated in the time domain 
(using the autocovariance function), whereas  the spectral 
classifier requires estimation in the frequency domain. 
However, the spectral classifier could easily be adapted 
for analysis in the time domain, and methods exist for es-
timating ARFIMA models in the frequency domain (e.g., 
Fox & Taqqu, 1986). Other differences between the mod-
els are less trivial and generally favor the ARFIMA model-
ing framework on pragmatic grounds. ARFIMA methods 
are available in popular statistics and numerical programs, 
such as Ox (Doornik, 2001), R (Maechler, 2005), and 	
S-Plus, whereas the spectral classifier is not freely avail-
able. Accordingly, we have made code for the procedure 
available on the Web (seis.bristol.ac.uk/~pssaf), as well 
as details of simulations comparing the spectral classi-
fier with the ARFIMA method. The ARFIMA packages 
also easily extend to different lengths of time series and 
higher order models [e.g., ARFIMA (2, d, 2)], whereas the 
spectral classifier requires generation of a new covariance 
library for each new model or series length. Finally, given 
its popularity, the ARFIMA model’s properties are well 

known (e.g., Beran, 1994; Haslett & Raftery, 1989; Sow-
ell, 1992), whereas those of the spectral classifier have yet 
to be rigorously explored.

Is 1/f Noise Ubiquitous in Psychology?
Thornton and Gilden (2005) advance a second claim 

that if one has a method that is able to detect 1/f noise, 
application of such a method to psychological time series 
will reveal 1/f noise to be a general property of human 
behavior. As an example, Thornton and Gilden apply their 
spectral classifier to the word-naming data of Van Orden 
et al. (2003). These data are of particular interest, given 
that Wagenmakers et al. (2005) analyzed the same data, 
using a range of ARMA and ARFIMA models, and found 
inconsistent evidence for the presence of 1/f noise. In con-
trast, Thornton and Gilden found that application of their 
spectral classifier revealed the presence of 1/f noise in the 
majority of series collected by Van Orden et al. (2003).

The claim that 1/f noise is “the best explanation for the 
fluctuations that characterize psychological time series” 
(Thornton & Gilden, 2005, p. 430) is a strong, general 
claim that is easily falsified by examining other sets of 
data. As an example, Table 2 gives the log-likelihood 
(lnL) differences resulting from application of Thornton 
and Gilden’s spectral classifier to the data collected by 
Wagenmakers et al. (2004). Wagenmakers et al. (2004) 
ran 6 participants on three different types of tasks in-
volving responses to numbers (see Wagenmakers et al., 
2004, for methodological details). Wagenmakers et al.’s 
(2004) participants completed a simple reaction time (RT) 
task (press a single key as soon as a number appeared), a 
choice RT task (classifying numbers as odd or even), and 
a time estimation task (press a key 1 sec after onset of a 
stimulus). Wagenmakers et al. (2004) also manipulated 
response–stimulus interval (RSI: short vs. long). Table 2 
shows that in none of the tasks did Thornton and Gilden’s 
method classify more than half the series as fBmW. The 
bottom two rows of the table show that aggregating the 
results across participants by summing lnL differences 
reveals convincing evidence for 1/f noise in only a single 
task: time estimation with a long RSI. For all the other 
series, the summed lnL differences are less than 0 (i.e., 
evidence for the ARMA model), or the odds are only very 
slightly in favor of fBmW. Indeed, in three of these con-

Table 1 
Similarities and Differences Between the ARFIMA Approach Recommended by Wagenmakers,  
Farrell, and Ratcliff (2004) and the Spectral Classifier Proposed by Thornton and Gilden (2005)

Similarities  Differences

LRD model compared with SRD alternative [e.g., ARMA(1, 1)] Fractional model in T&G is LRD  white noise; in ARFIMA, fractional	
  model is LRD with or without SRD

Neither method requires nesting of models Analysis in time domain (ARFIMA) versus frequency domain

Availability of maximum likelihood and Bayesian methods Standard software available for ARFIMA (Ox, R, S); software not freely	
  available for T&G
ARFIMA method generalizes easily to different series length and alternative	
  models incorporating SRD

 	  	 Properties of ARFIMA well known and widely applied; statistical properties	
  of T&G not well explored

Note—LRD, long-range dependence; SRD, short-range dependence.
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ditions (simple RT with a short RSI, choice RT with a 
long RSI, and time estimation with a short RSI) the data 
are at least 18 times more likely under the ARMA model 
than under the fBmW model. Notably, these results are in 
line with those from the ARFIMA method presented in 
Wagenmakers et al. (2004; see their Table 1), who found 
systematic evidence for 1/f noise only in the estimation 
task with a long RSI. 

One possible objection to the analysis above is that the 
conclusions appear to differ from those reached by Wa-
genmakers et al. (2004) in examining the same data set. 
First, it is important to note that these apparent differences 
do not arise due to differences between the spectral classi-
fier and the ARFIMA model. Five of the 17 series classi-
fied as 1/f noise by the ARFIMA method (Wagenmakers 
et al., 2004) are classified as ARMA by the spectral clas-
sifier, and 4 of the 16 series classified as 1/f by the spec-
tral classifier are identified as ARMA by the ARFIMA 
method; the two methods exhibit considerable overlap in 
their classification of series. What differs from the analy-
sis of Wagenmakers et al. (2004) is the use of a group 
analysis. Wagenmakers et al. (2004) were interested only 
in determining whether 1/f noise could be witnessed in 
psychological series; their conclusion was that in some 
tasks, for some participants, 1/f noise might be observed. 
Here, in addressing the stronger claim of the ubiquity of 
1/f noise, we have combined information from several 
participants by aggregating log-likelihoods to draw more 
general conclusions. This aggregation reveals a lack of 
compelling evidence for 1/f noise as a general feature of 
cognitive performance, although it is possible that in some 
cases, individuals may show behavior consistent with 1/f 
noise.

This example shows that 1/f noise is by no means ubiq-
uitous in psychology, even when classification is carried 
out using the method presented by Thornton and Gilden 
(2005). The finding that the evidence for the ARMA 
model was overwhelming in three of the tasks supports 
the argument that in many cases, the ARMA model is a 
more appropriate statistical model of the serial correla-
tions in human performance and that the presence of these 

transient correlations should be considered in developing 
theories of the dynamics of human performance.

The Provenance of 1/f Noise
One issue that remains unaddressed by Thornton and 

Gilden (2005), despite the promise of the title of their ar-
ticle, is the provenance of the serial correlations in psy-
chological time series. It must be asked, given that we 
have several methods for distinguishing 1/f noise from 
potential short-range dependent lures, what types of ex-
periments should we now run in order to advance psy-
chological theory? If it does turn out that 1/f correlations 
are generally observed in cognitive psychology, what does 
this tell us about human cognition?

Thornton and Gilden (2005) reject the ARMA and 
ARFIMA models as being “theoretically beholden to au-
toregression” (p. 418). Although the ARMA/ARFIMA 
framework is intended as a statistical framework, we 
would welcome any framework in which the models of 
serial correlations under analysis are “theoretically be-
holden,” regardless of the creditor. However, we wonder 
whether the fBmW model favored by Thornton and Gilden 
is such a theoretical framework. It is clear that Thornton 
and Gilden think of the underlying processes as “fractal,” 
but it is not clear that calling those processes fractal goes 
any further than describing the statistical properties of 1/f 
noise. Thornton and Gilden discussed several processes 
that generate 1/f -like noise (pp. 411–412), but the charge 
of a lack of psychological realism can be leveled at these 
as convincingly as at autoregressive models (indeed, the 
random-random walk model discussed on their p. 411 is 
an autoregressive model similar to the ARFIMA model). 
We puzzle over the implementation of a psychological 
theory of word naming in which responses arise from “the 
natural fluctuations emanating from metastable systems 
that have converged to a phase transition between order 
and chaos” (Thornton & Gilden, 2005, p. 412).

A comparison can be made between research in 1/f noise 
and research on the power law of practice. The power law 
of practice is the finding that the time taken to do a task 
decreases as a power function with amount of practice 
(see Ritter & Schooler, 2001, for an overview).3 Just as 
is claimed for 1/f noise, this power law of practice has 
been found to be ubiquitous in psychology, applying to a 
diverse range of tasks, including cigar rolling (A. Newell 
& Rosenbloom, 1981) and book writing (Ohlsson, 1992). 
However, observations of a power law of practice have 
been accompanied by a clear theoretical development, 
with several well-formulated explanations being offered 
for this form of speedup, including the accumulation of 
instances (Logan, 1988), chunking (K. M. Newell, 1990), 
and a power function of learning reflecting the statistics 
of the environment (Anderson & Lebiere, 1998). Notably, 
these theories have gone beyond the reduction in mean task 
completion time to account for other learning phenomena, 
such as the power-shaped drop in variability with practice 
(e.g., Anderson & Lebiere, 1998; Logan, 1988). We note 
that the demonstration of 1/f in psychological time series 

Table 2 
Log-Likelihood Differences (lnLfBmW 2 lnLARMA(1, 1)) 

From Application of the Spectral Classifier to Data From 
Wagenmakers, Farrell, and Ratcliff (2004) 

Participant  SS  SL  CS  CL  ES  EL

1 1.35 2.52 1.75 1.86 7.82 2.96
2 1.00 0.56 2.07 2.00 1.11 7.47
3 0.55 1.57 0.30 2.56 0.88 4.41
4 0.93 2.43 0.12 0.07 1.93 10.70
5 0.68 0.05 1.27 1.63 2.47 4.20
6 2.90 0.03 0.83 0.26 0.05 1.99
Sum  1.75 0.90 0.35 2.59 9.32 13.45

Note—The first letter in each condition label designates the task (S, 
simple RT; C, choice RT; E, time estimation); the second letter desig-
nates the RSI condition (S, short; L, long). An lnL difference greater than 
0 indicates that the fBmW model is the best-fitting model. Likelihood 
ratios can be obtained from summed lnL differences by exp(S lnL).
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has not been accompanied by such a theoretical develop-
ment and wonder how such progress can be made.

It is clear from their closing sentence that Thornton and 
Gilden (2005) are aware of the need for the development 
of well-specified and testable theories of temporal cor-
relations in human performance. However, looking back, 
we note that research on 1/f noise in cognitive psychology 
has been ongoing for 10 years now (the first publication 
on this topic being that of Gilden & Wilson, 1995) in the 
absence of theoretical development. Despite the advances 
reflected in the work of Wagenmakers et al. (2004) and 
Thornton and Gilden, the accounts offered for 1/f noise 
(such as self-organized criticality [SOC]) have as much 
currency now as they did 10 years ago (Gilden, 2001; 
Thornton & Gilden, 2005; Van Orden et al., 2003, 2005). 
Although explanations such as SOC, random-random 
walks, and iterative maps incorporating bifurcations may 
be explanations for 1/f noise (Thornton & Gilden, 2005; 
Van Orden et al., 2003, 2005), these theories, which origi-
nate outside psychology, need computational formula-
tion in terms of psychological processes. Meanwhile, we 
question the usefulness of continued investigation of 1/f 
noise in human behavior in the absence of well-specified 
psychological theories. The prospect of 1/f noise being a 
universal feature of human cognition is certainly an ex-
citing one, but this excitement must be accompanied by 
theoretical and empirical development.

REFERENCES

Akaike, H. (1974). A new look at the statistical model identification. 
IEEE Transactions on Automatic Control, 19, 716-723.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of 
thought. Mahwah, NJ: Erlbaum.

Beran, J. (1994). Statistics for long-memory processes. New York: 
Chapman & Hall.

Beran, J., Bhansali, R. J., & Ocker, D. (1998). On unified model 
selection for stationary and non-stationary short- and long-memory 
autoregressive processes. Biometrika, 85, 921-934.

Brockwell, P. J., & Davis, R. A. (1996). Introduction to time series and 
forecasting. New York: Springer.

Crato, N., & Ray, B. K. (2002). Semi-parametric smoothing estimators 
for long-memory processes with added noise. Journal of Statistical 
Planning & Inference, 105, 283-297.

Doornik, J. A. (Ed.) (2001). Ox: An object-oriented matrix language. 
London: Timberlake Consultants.

Eke, A., Herman, P., Bassingthwaighte, J. B., Raymond, G. M., 
Percival, D. B., Cannon, M., et al. (2000). Physiological time se-
ries: Distinguishing fractal noises from motions. European Journal of 
Physiology, 439, 403-415.

Fox, R., & Taqqu, M. S. (1986). Large-sample properties of parameter 
estimates for strongly dependent stationary Gaussian time series. An-
nals of Statistics, 14, 517-532.

Gilden, D. L. (1997). Fluctuations in the time required for elementary 
decisions. Psychological Science, 8, 296-301.

Gilden, D. L. (2001). Cognitive emissions of 1/f noise. Psychological 
Review, 108, 33-56.

Gilden, D. L., & Wilson, S. G. (1995). Streaks in skilled performance. 
Psychonomic Bulletin & Review, 2, 260-265.

Haslett, J., & Raftery, A. E. (1989). Space-time modelling with long-
memory dependence: Assessing Ireland’s wind power resource. Jour-
nal of the Royal Statistical Society, 38, 1-50.

Hauser, M. A. (1999). Maximum likelihood estimators for ARMA and 
ARFIMA models: A Monte Carlo study. Journal of Statistical Plan-
ning & Inference, 80, 229-255.

Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power 
law repealed: The case for an exponential law of practice. Psycho-
nomic Bulletin & Review, 7, 185-207.

Hsu, N. J., & Breidt, F. J. (2003). Bayesian analysis of fractionally 
integrated ARMA with additive noise. Journal of Forecasting, 22, 
491-514.

Logan, G. D. (1988). Toward an instance theory of automatization. Psy-
chological Review, 95, 492-527.

Maechler, M. (2005). fracdiff: Fractionally differenced ARIMA(p, d, q) 
models. Vienna: R Foundation for Statistical Computing. Available at 
www.R-project.org.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisi-
tion and the law of practice. In J. R. Anderson (Ed.), Cognitive skills 
and their acquisition (pp. 1-51). Hillsdale, NJ: Erlbaum.

Newell, K. M. (1990). Unified theories of cognition. Cambridge, MA: 
Harvard University Press.

Ohlsson, S. (1992). The learning curve for writing books: Evidence 
from Asimov. Psychological Science, 3, 380-382.

Pai, J. S., & Ravishanker, N. (1998). Bayesian analysis of autoregres-
sive fractionally integrated moving-average processes. Journal of 
Time Series Analysis, 19, 99-112.

Ritter, F. E., & Schooler, L. J. (2001). The learning curve. In 
W. Kintsch, N. Smelser, & P. Baltes (Eds.), International encyclope-
dia of the social and behavioral sciences (pp. 8602-8605). Oxford: 
Pergamon.

Sowell, F. (1992). Maximum likelihood estimation of stationary uni-
variate fractionally integrated time series models. Journal of Econo-
metrics, 53, 165-188.

Thornton, T. L., & Gilden, D. L. (2005). Provenance of correlations in 
psychological data. Psychonomic Bulletin & Review, 12, 409-441.

Torre, K., Delignières, D., & Lemoine, L. (in press). Detection of 
long-range dependence and estimation of fractal exponents through 
ARFIMA modelling. British Journal of Mathematical & Statistical 
Psychology.

Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2003). Self-
organization of cognitive performance. Journal of Experimental Psy-
chology: General, 132, 331-350.

Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2005). Human 
cognition and 1/f scaling. Journal of Experimental Psychology: Gen-
eral, 134, 117-123.

Wagenmakers, E.-J., Farrell, S., & Ratcliff, R. (2004). Estimation 
and interpretation of 1/fα noise in human cognition. Psychonomic Bul-
letin & Review, 11, 579-615.

Wagenmakers, E.-J., Farrell, S., & Ratcliff, R. (2005). Human cog-
nition and a pile of sand: A discussion on serial correlations and self-
organized criticality. Journal of Experimental Psychology: General, 
134, 108-116.

Wagenmakers, E.-J., Grünwald, P., & Steyvers, M. (2006). Ac-
cumulative prediction error and the selection of time series models. 
Journal of Mathematical Psychology, 50, 149-166.

NOTES

1. Throughout their article, Thornton and Gilden (2005) variously refer 
to psychological (e.g., p. 430) and psychophysical (e.g., p. 429) time se-
ries. Here, we discuss the claim applying to psychological time series.

2. We note that the noise considered by Thornton and Gilden (2005) is 
not technically fractional Brownian motion and is better treated as frac-
tional Gaussian noise (fGn); fBm is obtained by integrating fGn, has a 
spectral slope steeper than 1, and is nonstationary (Eke et al., 2000).

3. Recent evidence suggests that the power function is actually a com-
bination of exponentials (Heathcote, Brown, & Mewhort, 2000).
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