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A New Method for Investigating Prototype Learning

Jerome R. Busemeyer and In Jae Myung
Purdue University

Past researchers studied prototype learning by asking subjects to categorize exemplars constructed
from different prototypes. This procedure is less than ideal because learning must be inferred
from the percentage of correct categorizations pooled across many trials or subjects or both. An
alternative procedure is proposed in which subjects are asked to reproduce their estimate of the
prototype on each trial, thereby providing trial-by-trial information about changes in the
estimated prototype. This procedure provides straightforward tests of three basic properties
implied by several prototype learning models: additivity across exemplars, noninterference among
features, and time invariance of serial position effects. An experiment is reported and the results
provide reasonably good support for the properties of additivity and noninterference, but clear
violations of time invariance were observed. The implications of the results for distributed-
memory models and multiple-trace models of prototype learning are discussed.

It seems quite easy to produce an image of an ideal circle
despite the fact that our experience is based on thousands of
different imperfect examples. This natural ability to abstract
and reproduce a single image from a myriad of examples is
often referred to as prototype learning.

The purpose of this article is to describe a paradigm for
investigating prototype learning. Subjects are shown a se-
quence of exemplars generated from one or more prototypes.
After observing each exemplar, they are asked to reproduce
(graphically or numerically) their current estimate of each
prototype. Obviously, this procedure is limited to stimuli that
can be easily reproduced by the subject.

It may be useful to compare the prototype production task
with the categorization task introduced by Posner and Keele
(1968, 1970). Exactly the same exemplars can be used during
training in both tasks. In the categorization task, subjects are
presented with an exemplar and then are asked to produce a
category label. In the prototype production task, subjects are
presented a category label and then are asked to produce a
prototype estimate.

The storage of exemplar information may be quite similar
in the two tasks (e.g., a multiple-trace memory system, or a
composite distributed-memory system). However, the use of
this stored information is quite different: The prototype pro-
duction task requires some sort of abstraction procedure (e.g.,
form an average of the traces associated with a category),
whereas the categorization task requires some sort of classifi-
cation procedure (e.g., choose the category associated with a
trace that is most similar to the probe).

There are several reasons for investigating the prototype
production task. First, it is a naturally occurring task. Proto-
typic drawings of organs, bones, and cell structures frequently
appear in physiological and medical textbooks. A second
example is the use of prototypic symptom patterns to describe
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the behavior of patients suffering from different types of
psychoses. Another example is stereotypic personality trait
descriptions of minority groups or working classes.

Second, the prototype production task provides a direct
view of the trial-by-trial evolution of a prototype separately
for each subject. In the categorization task, learning must be
inferred from the percentage of correct decisions pooled across
subjects or blocks of trials. It is not even clear that category
decisions are based on prototypes, and instead they may be
based solely on memory for past exemplars (see Busemeyer,
Dewey, & Medin, 1984, for a recent discussion of the problem
of distinguishing exemplar and prototype models of classifi-
cation).

Third, the prototype production task provides direct tests
of some basic properties common to parallel distributed mem-
ory models (Knapp & Anderson, 1984; McClelland & Ru-
melhart, 1985), holographic memory models (Metcalfe-Eich,
1982), and multiple-trace memory models (Hintzman, 1986).
Three basic properties common to these models will be em-
pirically tested: additivity, noninterference, and time invari-
ance. Because it is easier to understand these basic properties
with a concrete example in mind, they will be described after
presenting the following prototype production experiment.

Method

Procedure

The stimuli were constructed from random dot patterns similar to
that used by past researchers (e.g., Homa & Cultice, 1984). Obviously,
dot stimuli are less representative of natural stimuli than are wings of
insects or personality traits. Also, random placement of dots may
discourage subjects from using the complex features that they nor-
mally use with natural stimuli. However, the learning principles being
tested are assumed to hold across stimulus sets, including dot stimuli.
Also, the simple features that random dot stimuli tend to encourage
permit more rigorous tests of these principles. Because one purpose
of the present experiment was to test some basic properties of memory
models, highly artificial dot stimuli were used in the attempt to obtain
a simple feature representation.
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Subjects were asked to imagine that eaeh dot pattern was a teles-
copic photograph of a star pattern containing four stars located far
out in space. They were also told that because atmospheric disturb-
ances distorted each photo, five photographs were obtained from each
star pattern. The subjects' task was to identify the true star locations
on the basis of the sample of five distorted photos. They were
instructed to observe each photo sequentially and to provide a draw-
ing of the estimated star locations after each photo. The subjects were
also told that different star patterns were photographed by randomly
changing the position of the telescope and focusing on a different
region of space.

A typical photo is shown in Figure 1. (The actual photos were a
little more than twice as large). Each photo contained four dots
located withm a bounded 15x15 cm2 plane. Horizontal and vertical
axes were drawn, and for each axis, tic marks with numerical labels
were placed at one unit intervals ranging from —15 to +15 units.
Eaeh unit equaled 0.5 cm. Subjects drew their estimates of the
prototype on a plane exactly like that used for the photos except the
dots were initially absent.

Each subject received one practice and eight experimental sessions.
A total of 24 star patterns were presented each session, producing a
total of 5 x 24 = 120 photos per session. Each photo was preceded
by a unique category label (a random number) that was common to
all photos generated from the same star pattern. Also, the end of a
sequence of five photos for a given star pattern was clearly distin-
guished by asking subjects to rate task difficulty after finishing every
fifth photo.

The 120 photos per session were printed in a booklet. The booklet
contained two pages for each photo. The photo was printed (by a
computer) on the top page, and the estimated star pattern was drawn
(by the subject) on the bottom page. Each photo contained four
integers (1,2,3,4) positioned in the plane; each number represented a
distorted photographic image of a corresponding star in the true star
pattern. For each photo, subjects first connected the four points
printed in the top page in numeric order. They then positioned four
new numbers in a plane on the bottom page representing the esti-
mated locations of the four stars and they connected these four points
in numeric order. After completing each pair of pages for a given
photo, both pages were turned over and permanently hidden from
view.
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Each session lasted approximately 45 minutes, and each subject
was run individually in a quiet room. Subjects were told that their
pay at the end of the experiment depended on their performance,
where performance was measured by the sum of squared deviations
from the estimated and true location of each star. The photos were
scored by projecting each dot drawn by the subject onto each axis,
and recording the position in 0.5-cm units.

Stimulus Design

Each photo can be represented as an eight-element vector, denoted
E. The first pair of elements, denoted X{ and Yu represent the
horizontal and vertical coordinates of the first point in the plane, the
second pair of elements, denoted X2 and Y2, represent the horizontal
and vertical coordinates of the second point, and so on. For example,
the row vector in Figure 1 represents the four points shown in the
figure. Each photo can be decomposed into two parts, E(0 = P +
d(0* where P is the true star pattern (the prototype), and 6(0 is the
disturbance for trial t. The trial number, /, represents the number of
photos that the subject has observed from the same star pattern (t
ranges from 1 to 5).

The main design of the experiment was based on the manipulations
of the two elements, X\ and y2- The manipulation of X\ was used to
provide a test of the additivity and time invarianee properties. The
manipulation of F2 was used te test the noninterference property.
(These properties are described in the Results section).

The location of X\ was assigned to either —5 or +5 units for each
trial. (One unit equals 0.5 cm.) For example, Xi was assigned the
values (-5, - 5 , +5, - 5 , +5) across the five trials for one of the star
patterns. All 32 possible - 5 , +5 sequences of length five were used
in the experiment, one sequence for each star pattern. The location
for Y2 was fixed at either - 5 , 0, or +5 units for all five trials of a
given star pattern, but this value varied across star patterns. The three
possible values for Y2 were crossed with the 32 sequences for Xi to
produce a 3 x 2 5 factoriaKdesign with 96 conditions. Each subject
observed all 96 conditions in a different random order.

The remaining elements (Y,, X2, Xit Yit X4, Y4) were generated as
follows. First, the true star position for each element was randomly
sampled from a normal distribution with zero mean and a standard
deviation of five (0.5 cm) units. The five disturbances for each element
were randomly sampled from a normal distribution with zero mean
and a standard deviation of two. For the practice stimuli, all eight of
the elements were constructed from the same procedure used to
construct the elements Xi or Y3.

Subjects

Subjects were 8 graduate psychology students (6 female and 2
male) who were paid $4 per session for their voluntary participation
in the experiment.

Results

Overview

- 1 5 - 1 2 ' - 9 ' - 6 ' ' - 3 ' 6 ' ' 3 ' ' h ' ' 9 ' ' 1 2 ' ' i 5

X
Figure I. An example photo of a star pattern. Each number repre-
sents a distorted image of one of the true stars in the pattern.

Before we present the four different types of analyses, we
introduce some descriptive statistics, followed by tests of
additivity, noninterference, and time invarianee. A linear
system model of prototype learning was fit separately to the
data from each subject.

Note that this paradigm quickly generates a massive data
base. Each subject generated a vector of eight responses,
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denoted R = {RXi, RY]y . . . , RX4, RY4)
T corresponding to

the vector of eight stimulus coordinates E = {X\, Yy, . . . , XA,
Y4)

T for each of 480 photos. However, all of the analyses
reported below were based on only the first four coordinates
to reduce the amount of redundancy in the data analyses.
Because a large number of significance tests were performed,
all significance tests were conducted at the .01 level to reduce
the overall Type I error rate.'

Descriptive Statistics

The frequency distribution provides a qualitative test of
averaging. If subjects averaged the stimulus coordinates, then
the response distributions (pooled across all 480 stimuli for a
given subject) should be unimodal, symmetric, and centered
at zero for all measures except RY2. Alternatively, if subjects
simply retrieved a single trace of an exemplar and based their
estimate on this single trace (e.g., the mode), then the response
distribution for RX\ should be bimodal with large frequencies
centered at - 5 and +5. In fact, the frequency distributions
for RXi, RYi, and RX2 were unimodal, symmetric, and cen-
tered at zero for all subjects. The only exception was the
distribution of RY2> which was trimodal with heavy concen-
trations at - 5 , 0, and +5.

The variance of the responses provide a simple test of some
standard models. The optimal prototype estimate is the arith-
metic average of all t exemplars. Because the variance of a
sample mean equals the variance of the scores divided by the
sample size (t), the optimal model predicts that the variance
of the responses decreases at a rate equal to 1//.

A proportional change model is often used for prediction.
This model assumes that the new prototype estimate is a
weighted average of the previous prototype estimate and the
new exemplar. In this case, each new exemplar receives the
same weight independent of sample size. This model predicts
that the variance initially increases as the sample size (t)
increases, but eventually the variance levels off at some
asymptote (see Chatfield, 1975, p. 45).

The observed variances (pooled across response coordi-
nates) initially decreased but then leveled off as t increased.
The observed variances were 19.6, 16.8, 15.4, 15.4, 15.4 for t
= 1 to 5, and the optimal model predicts 19.6, 9.8, 6.5, 4.9,
3.92 for t = I to 5. Thus, the observed rate of decrease in the
variances is inconsistent with both the proportional change
and optimal model. Later, more evidence will be reported
that indicates the use of a complex weighted averaging
scheme.

One final observation is that the correlations among all
responses were all less than .01 in magnitude. This would be
expected if there was no direct influence of one response
coordinate on another.

Definitions of the Three Basic Properties

First, it is necessary to distinguish between the subject's and
the experimenter's representation of each exemplar. We chose
to represent each exemplar by the eight-element column
vector E defined in terms of rectangular coordinates. The
subject's representation of the same exemplar will be symbol

ized by the column vector, f, that contains at least eight and
possibly more elements or features. It is assumed that f is
related to E by an affine transformation, f = TE + B, where
T is a (n x 8) matrix of constants, and B is a (n x 1) matrix
of constants. The map from E to f is assumed to be one to
one so that each feature vector f corresponds to only one
feature vector E and vice versa.

For example, subjects may contract, translate, or rotate the
rectangular coordinates E. However, these are only special
cases, and more complex affine transformations are possible.
For example, subjects also may encode the differences be-
tween each pair of points. These differences would also be
related to E by an affine transformation.

It is also necessary to distinguish between the image re-
trieved by the subject, denoted F, and the response vector R.
We chose to record R in terms of rectangular coordinates.
The retrieved image is assumed to be related to the recorded
response by the same affine transformation that relates the
experimenter's and subject's representations of the exemplars.

The three properties—additivity, noninterference, and time
invariance—can be understood by referring to a linear system
model of prototype learning. This model states that the image
retrieved immediately before trial (/ + 1) is a weighted sum
of the features of the t previously experienced exemplars
generated from the same prototype.

F(f = 2 W{t - k)i{k\ (1)

where the summation extends across the serial positions k =
1 , . . . , * for trials t = 1 to 5. Serial position k refers to the hh
position within a sequence of t trials. For example, if t = 4
photos of the same star pattern have been presented so far,
then k = 2 refers to the second of these four photos.

The weight, denoted W(t — k), is a scalar that multiplies all
of the features of the exemplar presented at serial position k.
Note that the weight depends only on the lag = (/ - k), which
is the difference between the current trial number and the
serial position that an exemplar was presented. For example,
if t — 4 exemplars have been presented so far, then the lag for
the first exemplar (k — 1) is (4 - 1) = 3. The lag for the fourth
(current) exemplar is zero.

The property of additivity refers to the assumption that the
weighted features of each exemplar are added together. The
property of noninterference refers to the assumption that the
value of thejth coordinate of the retrieved prototype, F-^t +
1), should be influenced only by the value of the./th coordinate
of each exemplar. The time invariance property refers to the
assumption that the magnitude of the effect of each exemplar
depends only on the lag. The Appendix shows that if the
experimenter's and subject's features are related by an affine
transformation, then empirical tests' of the validity of these
three basic properties are not influenced by the choice of
affine transformation.

Both the optimal and the proportional change model imply
additivity and noninterference. The proportional change

1 Reducing the significance level t oa= .05 would not change the
main conclusions, but it would produce a large increase in the Type
I error rate.
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model also implies time invariance (it is a special case of
Equation 1), but the optimal model does not because the
weights of the optimal model depend on the sample size, /.

Tests ofAdditivity

Additivity across exemplars was assessed by analyzing the
interaction effects of the manipulations of X\ on RX{ (cf.
Anderson, 1964). Before describing the results in general, it
may be useful to consider the example shown in Table 1,
which illustrates a test of an interaction among Photos 1, 4,
and 5 on the response following all five photos. The first three
columns indicate the values of stimulus coordinate X{ for
Photos 1, 4, and 5. The fourth column shows the mean values
of the RX\ responses after all five photos, and the last column
shows differences between adjacent rows. Violations of addi-
tivity are indicated by differences among the differences in
the last column.

Five repeated measures analyses of variance (ANOVAS) were
performed to test the significance of the main and interaction
effects among the photos. The first ANOVA was a one-way
analysis performed on the responses following the first photo,
the second ANOVA was a two-way 22 analysis performed on
the responses following the first two photos, the third was a
three-way 23 analysis performed on the responses following
the first three photos, the fourth was a four-way 24 analysis
performed on the responses following the first four photos,
and the fifth was a five-way 25 analysis performed on the
responses following all five photos. All main effects were large
and significant. Only one of the 42 possible interactions (the
three-way interaction among Photos I, 4, and 5 from the five-
way analysis seen in Table 1) was significant, F([, 7) - 25.05,
MS* = 0.5.

As can be seen in Table 1, when Photos 1 and 4 were both
negative, then the observed effect of a negative coordinate
value for the fifth photo was smaller than the effect predicted
by additivity. A similar result occurred when Photos 1 and 4
were both positive: The effect of a positive coordinate value
for the fifth photo was smaller than the effect predicted by
additivity. It seems as if subjects were not willing to draw a
point at the extreme negative or positive sides of the page.

Table 1
Means for the Interaction Effect of Stimulus Coordinate Xx

for Photos 1, 4, and 5 on Response Coordinate RX^

Photo 1

- 5
- 5
- 5
-5
+5
+5
+5
+5

Condition

Photo 4

-5
-5
+5
+5
- 5
- 5
+5
+5

Photo 5

-5
+5
-5
+5
-5
+5
-5
+5

RX}

-2.92
0.08

-1.58
2.28

-1.81
1.61
0.02
3.29

Difference

1 At.

Tests of Interference

Two six-way, 25 x 3, repeated-measures ANOVAS were per-
formed to test the main and interaction effects of stimulus
coordinates X> and Y2 on the responses following all five
photos for coordinates RYt and RX2. The only significant
finding from a total of 126 independent tests was the inter-
action effect of the first photo for coordinate Xly the third
photo for coordinate X\ and the value of coordinate Y2 on
the response coordinate RY{ after observing all five photos,
F(2, 14) = 9.9, MSe - 10.7, This interaction effect was
complex and difficult to interpret. Given that one significant
finding out of 126 tests is about the number expected by
chance, it seems likely that a Type I error had occurred.

Serial Position Effects

The weights shown in Equation 1 imply that serial position
effects are solely a function of the lag, (t - k). In other words,
the main effect of the most recent photo (lag 0) does not
depend on the number of photos presented, and the main
effect of the second most recent photo (lag 1) does not depend
on the number of photos presented, etc. The following analy-
sis directly tests this assumption by using a method developed
by Weiss and Anderson (1969).

Separate estimates of the main effects of stimulus coordi-
nate Xx on response coordinate RX{ were obtained following
each photo, producing five sets of serial position effects. The
first set, containing only one main effect equal to 8.08, is the
effect of the first photo when only one photo was presented.
The second set (containing two main effects) was estimated
from the main effects of Photos 1 and 2 after observing only
two photos. The fifth set (containing five main effects) was
estimated from the main effects of Photos 1 through 5 after
observing all five photos. Each main effect was estimated
from 384 observations.

The last four sets of serial position effects are shown in
Figure 2 plotted as a function of the lag. Consider, for exam-
ple, the curve with the parameter / = 4. The point at lag 0
shows the main effect of the fourth photo when four photos
were presented. The point at lag 3 shows the main effect of
the first photo when four photos were presented.

Before discussing the details, it might be helpful to point
out several predictions. According to the optimal model, the
serial position curves should be flat, and the level of each flat
line should decrease the sample size (t) increases. According
to the linear system model (including the proportional change
model), the serial position curves should all line up on top of
each other forming a single curve.

Figure 2 shows that both the optimal and linear system
models are incorrect. The strong recency effect violates the
equal weight assumption of the optimal model. The system-
atic reduction of the recency effect with increased sample size
(0 violates the time invariance property of the linear system
model.

Finally, note that when five photos were presented, a pri-
macy effect occurs when comparing lags 4 and 3 (correspond-
ing to Serial Positions 1 and 2, respectively), A primacy effect
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-1

Figure 2. Serial position effects plotted as a function of lag after
observing t ~ 2, 3, 4, or 5 photos. For example, consider the curve
labeled (= 4. The point plotted at lag = 2 is the main effect of second
photo on the response following four photos. Each point is an average
of 384 observations.

Table 2
Serial Position Weights (Wx) and Percentage of Variance
(R2) Predicted by the Linear System Model (Equation 1)
Fit to the Response Coordinates RY* and RX2for
Each Subject

Subject

1
SE

2
SE

3
SE

4
SE

5
SE

6
SE

7
SE

8
SE

M

Wo
.50
.02
.42
.02
.33
.02
.64
.02
.49
.03
.51
.02
.59
.02
.48
.02

.50

w,
11
.02
.23
.02
.12
.03
.20
.03
.33
.03
.26
.02
.31
.02
.27
.02

.25

W2

.11

.02

.06

.02

.02

.02

.06

.03

.07

.03

.11

.02

.07

.02

.07

.02

.07

w3
.02
.02
.01
.03
.03
.03

-.03
.03

-.02
.03
.02
.02
.00
.02
.01
.02

.0

WA

.04

.03
-.02

.03
-.04

.03

.03

.03

.04

.03
-.01

.03

.03

.02

.02

.02

.01

R2

.90

.79

.65

.86

.84

.87

.94

.88

.84

Note. N — 768 data points per subject.

also occurs after observing four photos. However, when only
2 or 3 photos were presented, a recency effect occurs at Serial
Positions 1 and 2. Thus, the rank ordering of main effects
according to serial position varies as the number of photos
presented increases. This rules out attention decrement
models which assume that the weights depend solely on serial
position (see Busemeyer, 1987).

The serial position curves shown in Figure 2 were also
calculated separately for each subject. All subjects showed
violations of time invariance in the direction indicated by
Figure 2. However, there were striking individual differences:
5 subjects produced patterns very similar to Figure 2, 3
subjects produced patterns with strong recency effects and no
primacy effects, and 1 subject produced weak primacy effects.

Quantitative Analyses

The linear system model (Equation 1) was fit separately to
each subject's data. The model was applied to the responses
following Photos 2, 3, 4, and 5 for all 96 star patterns and
two response coordinates, RYt and RX2, producing a total of
4 x 96 x 2 — 768 observations per subject. Five weight
parameters (W,-*, for (t - k) = 0, 1,2, 3, and 4) plus a
separate intercept for each response was estimated using mul-
tiple regression analysis. The estimated parameters and per-
centage of variance predicted by the model {R2) for each
subject is shown in Table 2. Also shown are the estimated
standard errors. The R2 values are fairly high (an average of
84% of the variance was predicted).

According to this analysis, all subjects produced strong
recency effects. The average serial position weights shown at
the bottom of Table 2 can be approximated by the exponential
function 0.5'~*.

So far, all of the preceding analyses have been based on the
assumption that the subjective features (f) are related to the
rectangular coordinates (E) by an affine transformation, It is
possible that some other coordinate system was used. For
example, subjects may have encoded each point in terms of
its angle and length (polar coordinates), which is not an affine
transformation of the rectangular coordinates. To test this
hypothesis, the position of the first point of each photo was
predicted using Equation 1 with either rectangular coordinates
or polar coordinates. Both models contained exactly the same
parameters.2 The percentage of variance predicted by the
rectangular coordinate system was greater for all subjects. On
the average, the rectangular coordinate model produced a
10% increase in predicted variance over the polar coordinate
model.

Discussion

The present experiment was designed to empirically test
three basic properties of prototype learning models by using
the prototype production paradigm. The first property was
the additive effects of a sequence of exemplars on the evolving
prototype, and a small but statistically reliable deviation from
additivity was obtained. The second property was noninter-
ference across exemplar features, and there was not much
evidence for interference effects. The third property was the
time-invariance property of serial position effects, and the

1 The rectangular coordinates were translated by adding 15 to both
coordinates before transforming to polar coordinates. This translation
was selected to improve the fit of the polar coordinate model. This
additive factor actually provided the polar coordinate model one
extra parameter.
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results clearly violate this property. The implications for var-
ious memory models are elaborated next. First, it is shown
that for the present task, the predictions generated from these
models are the same as those generated from the linear system
model (Equation 1). Thus, they all imply additivity, nonin-
terference, and time invariance. Afterward, explanations for
the violations of additivity and time invariance are considered.

Multiple Trace Models

Hintzman's (1986) schema abstraction model (MINERVA 2)
can be applied in a fairly direct manner to the prototype
production task. Each pairing of exemplar with category label
produces a separate memory trace. Each memory trace is
represented by a vector of features. A subset of the elements
within each vector represents the features of the exemplar
presented on trial t, denoted f(/). The remaining subset of
elements represents the features of the category label associ-
ated with each exemplar, denoted g(0- Note that the category-
label features, g(/), vary across different prototypes, but they
are constant across all exemplars generated from the same
prototype.

When subjects are asked to reproduce the prototype, the
category label operates as a retrieval cue for activating all of
the traces in memory that have a nonzero lag. The degree of
activation is a function of inner product, g(£ + l)rg(A;),
between the current category-label features preceding trial (/
+ 1), and the trace of the category-label features from serial
position k. (The inner product X ^ = 2 XjY, is a measure of
the similarity between X and Y.)

According to Hintzman (1986, see his Equation 4) the
retrieved prototype image is calculated by Equation 1 of the
present article, and the weight for lag (/ - k) equals the inner
product raised to the third power, W(t - k) = [g(/ + l)'g
(/c)]3. The inner product remains constant for all category
labels paired with exemplars generated from a common pro-
totype, and it is approximately zero otherwise. Therefore, the
weight is solely a function of the lag. Note that MINERVA 2
retrieves a prototype estimate even though such an abstraction
was never stored.

Holographic Memory Models

Metcalfe-Eien's (1982) holographic model of prototype
learning can also be applied to the prototype production task.
According to this model, the association of an exemplar with
a category label is represented by the convolution of the
features of the category label with the features of the exemplar,
producing the association vector [g(0*f(01- The associations
produced by a sequence of / pairings are summed to form a
composite trace M(t) - 2 [g(k)*f(k)], where the summation
ranges from k = 1 to t. When a category label is presented
and subjects are asked to reproduce the prototype estimate,
the category label operates as a retrieval cue. The retrieved
image of the prototype estimate is obtained by correlating the
category-label features with the composite memory trace,
symbolized as F(/ + 1) = g( t + 1)#M(O- (See the Appendix
for definitions of the convolution and correlation operations.)

Given the usual assumptions regarding the construction of
feature vectors (see Metcalf-Eich, 1982, p. 632), it can be
shown (see Appendix) that F(f + 1) = g(r + 1)#M(O reduces
to Equation 1 plus noise. According to this model, the weight
for each lag is equal to the inner product between the category-
label features, W{t — k) = g(t + l)Tg(k). This inner product
is constant for category labels paired with exemplars generated
from a common prototype, and approximately zero otherwise.
Therefore, the weight is solely a function of the lag.

Distributed Memory Models

Several researchers have suggested that distributed memory
provides a natural explanation for prototype learning (Heath
& Fulham, 1985; Knapp & Anderson, 1984; McClelland &
Rumelhart, 1985). A modified version of the Knapp and
Anderson model is described because of its relative simplicity.
However, the basic properties derived from this particular
model are fairly general.

The values of the features used to encode the category label
presented on trial / are defined as a (column) vector denoted
g(t). The values of the features used to encode the exemplar
presented on trial t are defined as a (column) vector denoted
i(t). The connection strength on trial / between rth category-
label feature gi(t) and the7th exemplar feature^/) is denoted
a^t). In the prototype production task, the category-label
features are presented as input and prototype features are
retrieved as output. The value of the prototype feature j
retrieved before trial t + 1, denoted Fj(t + 1), is obtained from
the sum of products

Fj(t+ 1) = Z # ( * + 1K(O,

where the sum ranges across the category-label feature in-
dex /'.

The connection strengths, «#(*)» are assumed to be updated
according to either a Hebb rule or a delta rule. According to
the Hebb rule, the change in connection strength is deter-
mined by the product of the input and output activation
levels. One version of Hebb rule can be stated as follows:

aif{t) = (1 - c)aa(t - 1) + (c)ft(rM(r),

where c is a learning rate parameter between zero and one.
According to the delta rule, the change in connection

strength depends on the discrepancy between the observed
and predicted feature values. The delta rule (cf. Stone, 1986)
can be stated as follows

aij(t) = a.M - 1) + (c)gi(t)[fj(t) - Fj(t)l

where c > 0 is the learning rate parameter.
It can be shown (see Appendix) that for both the Hebb and

the delta learning rule, the distributed memory model reduces
to Equation 1. According to the Hebb rule,

W{t-k) = c{\ -c)-ku(t+ \)Tg(k),

that is the inner product multiplied by a recency weight. The
inner product is constant for all category labels paired with
exemplars generated from the same prototype. Therefore, the
weight is solely a function of the lag.
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According to the delta rule,

i)TQ{t, k)g{k).

(Xr symbolizes the transposition of the vector X.) For lag
zero, Q(t, t) — I (an identity matrix), and for nonzero lags,
QU, k) is defined as the product of (/ - k) matrices.

Q(t, k) - [I - (c^OglO7! . . . [I - (c)g(fc + l)g(fc + I)7].

Because the category-label features are constant for all cate-
gory labels paired with exemplars generated from the same
prototype, the matrix Q(?, k), and consequently the weight
W{t - k\ is solely a function of the lag.

Explanations for Nonadditivity

All three memory models imply that the exemplars are
combined according to an additive rule, but the interaction
shown in Table 1 violates additivity. However, it may be
worth considering alternative explanations that allow one to
retain the linear system model, for two reasons. Linear systems
are mathematically more tractable than nonlinear systems. In
addition, the observed violations of additivity were few in
number (only one) and small in magnitude. The following
two explanations allow one to retain the linear system model.

Incorrect features. One possible explanation for the devia-
tions from additivity is that the wrong features were used in
the analyses.1 Perhaps the additive property may be retained
if a different coordinate system was used that was nonlinearly
related to the rectangular coordinate system. For example,
suppose that the memory system is additive, but subjects used
polar coordinates to encode each exemplar (i.e., encode each
dot in terms of a length and angle). Then the analyses in the
Results section would yield both nonadditive and interference
effects since those analyses were based on a rectangular co-
ordinate system. However, it is unlikely that subjects were
using polar coordinates, because if they were, interaction and
interference effects would be much more extensive than those
obtained in the present study. Also, rectangular coordinates
provided a better fit to Equation 1 than polar coordinates.

Response bias. A more plausible explanation is that the
memory system accumulates information in an additive fash-
ion, and the small interaction may be due to the way that
subjects squeeze the image at the extremes to fit their drawings
into the bounded plane outlined on the computer page. This
nonlinear response transformation can produce interaction
effects analogous to floor or ceiling effects obtained with
percent correct measures of performance. Conjoint measure-
ment techniques may be used to evaluate this hypothesis (cf.
Krantz, 1973).

Explanations for Serial Position Effects

The time-in variance property of memory systems is impor-
tant because it greatly reduces the number of parameters
needed to describe the learning process. All of the accounts
of previous research by Hintzman (1986), Knapp and Ander-
son (1984), and Metcalf-Eich (1982) were based on this as-
sumption. However, the analysis of serial position effects
shown in Figure 2 clearly indicates that the system is time

variable. Two explanations for violations of time invariance
follow.

Contextual cues. In previous research, it has been assumed
that the category-label features operate as the primary retrieval
cue. Alternatively, one could assume that context (e.g., extra-
neous thoughts) experienced during learning become associ-
ated with the exemplars and this context also operates as a
retrieval cue. This context fluctuates across trials (perhaps at
different rates for different features). To be more explicit,
suppose that the retrieval cue can be decomposed into two
parts g(0 - c + e(r), where c represents the common category-
label features associated with a prototype and e(() is a noise
vector that changes across trials. Thus, the inner product, g(t
+ l)rg(^X is no longer constant across exemplars generated
from the same prototype.

This context hypothesis is similar to that proposed by
Glenberg, Bradley, Kraus, and Renzaglia (1983). However,
normally it is assumed that the similarity of the context at
different trials depends only on the lag: That is, e(f) is a weakly
stationary stochastic process with autocorrelations that de-
pend only on lag (cf. Chatfield, 1975), Thus, the context
hypothesis helps explain recency effects, but it does not ex-
plain violations of time invariance.

Variable learning rate. An alternative hypothesis is that the
learning rate (or attention) parameter of the distributive mem-
ory model is a function of serial position. For example, setting
c(t) - cjm{i), where m(t) is an increasing function of i, would
produce an averaging mechanism that has properties similar
to both the optimal model and the proportional change
model Setting c ~ 1 and m{t) = t yields an arithmetic average,
and setting m(t) ~ 1 produces a proportional change model.
Of course, it is also possible to include a time variable learning
rate parameter in the holographic memory model (see Lewan-
dowsky & Murdock, 1986) and the multiple-trace model.

Output interference. Weiss and Anderson (1969) found that
serial position curves change depending on whether an esti-
mate is required after each stimulus or only once at the end
of the sequence. This suggests that subjects may average
(according to Equation 1) both the previous exemplars and
their previous drawings when estimating the prototype (per-
haps with different weights). According to the theory described
in the Appendix, the inclusion of previous drawings into the
estimate would influence the weight parameters for each lag,
but this would not influence the tests of the validity of the
three basic properties. In particular, the estimate would still
have the property of time invariance (see Appendix). Unfor-
tunately, one cannot test time invariance when a response is
required only once at the end of a sequence.

Relation to serial position effects in recall. It seems reason-
able to suspect that the serial position effects obtained with a

71 Knapp and Anderson (1984) used a different set of features to
represent their dot stimuli. The difference is due to a procedural
change between their experiment and the present experiment. In
Knapp and Anderson's experiment, the dots were not labeled and
there was no way to form a correspondence among dots across
exemplars. In the present study, the dots were labeled so that subjects
could form a correspondence among dots with identical labels across
exemplars.
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prototype production task can be explained by serial position
effects observed with free recall. However, note that recency
effects obtained from serial recall are not influenced by list
length (Murdock, 1962), whereas the recency effects obtained
in the present study decrease with list length. More important,
a series of studies that directly compared abstraction and
recall (see Dreben, Fiske, & Hastie, 1979, for a review), found
no correlation between serial position effects obtained from
abstraction tasks and serial position effects obtained from
free-recall tasks.

Relation to research on intuitive statistics. The prototype
production task can be considered a multidimensional version
of the unidimensional mean estimation task (see Busemeyer,
1987, for a review). The results of the previous research with
univariate mean (Weiss & Anderson, 1969) and relative fre-
quency (Shanteau, 1970) estimation tasks are very similar to
the present results: Only small violations of additivity are
found, but large violations of time invariance are observed.
In particular, recency effects decrease as the number of obser-
vations increase, and striking individual differences in the
shape of the serial position curve are found.

Conclusion

The results of the present study indicate that linear, time-
variable, memory systems provide a fairly good description
of the evolution of prototypes. (This conclusion is based on
the belief that the small deviation from additivity observed in
this study was due to a response bias.) Previous memory
models of prototype learning have assumed time invariance,
and therefore, they fail to account for the fact that the mag-
nitude of a recency effect decreases as the number of exem-
plars increases. These conclusions are limited, of course, to
the use of random dot stimuli, and further research is needed
to see how well these models perform with more complex
natural stimuli. Nevertheless, it is important to establish first
that these models work well with simple artificial stimuli.

A more powerful test of memory models of prototype
learning can be realized by combining both the categorization
paradigm and the prototype production paradigm into a single
study. The same memory system (either a multiple-trace
system or composite distributed system) could be applied to
the responses obtained from both tasks. This would provide
converging operations for empirical tests of competing mem-
ory models.
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Appendix

Mathematical Models

Effects of Affine Transformations

Recall that E and R are representations of the exemplar and the
prototype estimate, respectively, in terms of coordinates selected by
the experimenter, but f and F are the corresponding representations
selected by the subject. It is assumed that f = TE + B and F = TR 4-
B, where the n by 8 matrix T has a rank equal to 8. The latter
condition implies that H = (T7t)- 'TT exists, and note that H(TE) =
E. (XT represents the transpose of the matrix X, and X"1 is the inverse
of X). Thus R = H(F - B) = HF - HB, and multiplying both sides
of Equation 1 by II yields

R(( + 1) + HB = HF(* + 1) = £ W(t - k)-m(k\

where the sum extends from k = 1 to t. Substituting TE + B for f
yields R(/ + 1) = 2 W{t - k)-E(k) - [1 - £ W{t - A:)]HB. The last
term subtracts out when the differences are computed for the tests of
additivity, noninterference, and time invariance.

Holographic Memory Model

Recall that g(f) is a vector of category-label features and the symbol
gj(t) is thejth element of this vector. Also, f(t) is a vector of exemplar
features and the symbol fj(f) is the/th element of this vector. For the
holographic model, it is normally assumed that both vectors are
infinite sequences with a finite number of nonzero elements. The
convolution h(/) = [g(t)*f(t)] produces a new vector, and the jth
element of the new vector is defined by the sum

where the summation extends across the index /. The composite
memory after t pairings is the sum M(0 = S [%(k)*f(k)], where the
summation extends across serial positions k = i , . . . ,t. The correlation
between g(t + 1) and M(/) produces a new vector

(A2)r{t + 1) = g(/ + 1) #M(/) = 2 [g(? + 1)

where the summation extends across serial positions k = I, . . . , t.
The mth-element of the vector [g(* + 1) #h(A:)] is defined as

[g(t + 1) #h(/:)]m = 2 glJ-m)(t + i)-hj(k\ (A3)

where the summation extends across the index/ By substituting the
definition of hj{k) given by Equation AI into Equation A3, and
algebraically rearranging terms, it is possible to show that

(For a complete table of identities, including the one shown above,
see Schonemann, 1987).

There is a special vector, 5, that has the following property [5*f(/>]
= f(/). Metcalf-Eich (1982, p. 632) assumes that all feature vectors
have the property that g(/) #g(/) is approximately equal to 5. For the
simulations on prototype learning, Metcalf-Eich assumed that the
category-label features were constant across exemplars generated from
the same prototype. Therefore, [g(/ + I) #g(^)]*f(/c) is approximately
equal to S*f(&) = f(/c). Substituting this last result into Equation A2
yields Equation 1 (with weights equal to unity).

Distributed Memory Model

Each exemplar is represented by a column vector of features,
denoted f(/), and the category label is represented by a column vector
of features, g(0- Both of these vectors are assumed to have a finite
number of elements. It is convenient to represent the connections

between the category-label features and the exemplar features by a
matrix A(0, where av{t) is the cell in row i column j and this cell
represents the strength of the connection between category-label
feature i and exemplar feature/ On the basis of these definitions, the
retrieved prototype estimate is obtained by the matrix product

¥(t+ l) = 1). (A4)

The Hebb rule can be stated in matrix form as follows (assuming
A(0) = 0):

A « ) « ( l - c ) . A ( / - I) + C-g(t)f(t)T.

The solution to the difference equation yields

A(0 = Sc-(l - c)'-*.g(*)f(*)r, (A5)

where the summation extends from k = 1 to /. Substituting the right-
hand side of Equation A5 into Equation A4 yields Equation 1 with
W(t-k) = c-(i -c)'-k-g(t+ l)rg(fc).Ifg(0 is assumed to be constant
for all exemplars generated from the same prototype, then the inner
product g(/ + l)rg(/c) is a constant.

The delta rule can be written in matrix form as follows (assuming
A{0)-0):

A{t- \) + c-U(t)[((t) - F{t)V.

The solution to the difference equation yields

(A6)

where the summation ranges from k = I to t. For k = t, Q(t, t) = I,
the identity matrix. For t > k,

ff [i - / + in.
Substituting the right-hand side of Equation A6 into Equation A4
yields Equation 1 with W(t - k) = c-g(t + l)rQ(*, k)%{k). If g(t) is
assumed to remain constant across exemplars generated from the
same prototype, then Q(t, k) = Q'~k, a constant matrix raised to the
power (t — k).

Output Interference

Suppose subjects average both the previous exemplars and the
previous prototype estimates according to Equation I with perhaps
different weights assigned to the exemplars and the previous estimates.
More specifically, for t > I,

F(/ + 1) = W(0)f(t) + S W{t- k)-f(k)

+ V{t- k)-F(k+ 1), 047)

where the summation extends across k = 1 to t - 1. The weights
W{t - k) and V(t - k) are solely a function of the lag. The first
estimate, denoted F(2), is simply equal to F(2) = W(0)-f(l). Given
this first estimate, Equation A7 can be solved iteratively and expressed
a s

F(t = S W*{t -
where the summation extends across k=\tot. The new weights can
be defined recursively as W*(0) = W(0\ and for./ > 0

W*U) = 7> V{i)W*U-i)+ W{j\

where the summation extends across / = 1 to j .

Received July 31, 1986
Revision received March 16, 1987

Accepted March 23, 1987 •


