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The latency and accuracy of human responding in sim-
ple choice reaction time (RT) tasks have long served as
important sources of data regarding the mechanisms un-
derlying human cognitive performance (Luce, 1986; Mc-
Clelland, 1979; Posner, 1978; Ratcliff, 1978; Ratcliff, Van
Zandt, & McKoon, 1999; Sternberg, 1969). In particular,
such data have been critical in the formulation of theories
regarding the mechanisms responsible for monitoring per-
formance and making necessary adjustments in cognitive
control (Botvinick, Braver, Barch, Carter, & Cohen, 2001;
Laming, 1979; Rabbitt & Rodgers, 1977). For example,
following an error, subjects exhibit more cautious behav-
ior, manifest as an increase in RT and accuracy. Such ad-
justments in behavior suggest the operation of mecha-

nisms responsible for the monitoring of performance and
the strategic adjustment of cognitive control.

Computational models have recently been proposed
that describe the specific mechanisms underlying moni-
toring and control (Botvinick et al., 2001; Yeung, Botvinick,
& Cohen, 2002). A central feature of these models is that
the degree of conflict in processing is an important signal
of the need for adjustments in control. Conflict occurs
when two mutually incompatible response alternatives
compete for expression. This competition slows process-
ing and lends uncertainty to its outcome, thus degrading
performance. This can be rectified by increasing the allo-
cation of cognitive control to the processes underlying task
performance (e.g., Cohen, Dunbar, & McClelland, 1990).
Thus, monitoring of processing conflict can be used to
adaptively allocate cognitive control. Models that incor-
porate a mechanism for conflict monitoring and use this to
drive the allocation of control accurately simulate adjust-
ments in performance that are observed in a variety of cog-
nitive tasks (Botvinick et al., 2001).
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In choice reaction time tasks, response times and error rates demonstrate differential dependencies
on the identities of up to four stimuli preceding the current one. Although the general profile of reac-
tion times and error rates, when plotted against the stimulus histories, may seem idiosyncratic, we show
that it can result from simple underlying mechanisms that take account of the occurrence of stimulus
repetitions and alternations. Employing a simple connectionist model of a two-alternative forced-
choice task, we explored various combinations of repetition and alternation detection schemes in an
attempt to account for empirical results from the literature and from our own studies. We found that
certain combinations of the repetition and the alternation schemes provided good fits to the data, sug-
gesting that simple mechanisms may serve to explain the complicated but highly reproducible higher
order dependencies of task performance on stimulus history.
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One task factor that seems to strongly influence both
performance and control is stimulus history. For example,
regular patterns (such as stimulus repetition or simple al-
ternation) produce progressive improvements in perfor-
mance, whereas the violation of such patterns produces poor
performance (Bertelson, 1961; Hyman, 1953; Kornblum,
1967; Laming, 1968; Remington, 1968; Soetens, Boer, &
Hueting, 1985). Such degradation is presumed to be due
to conflict between the expected and the actual stimuli.
Importantly, such violations (and concomitant conflict)
are followed by improvements in performance on subse-
quent trials (Laming, 1979) that are thought to reflect the
strategic allocation of cognitive control (Botvinick et al.,
2001). However, to date, models of conflict monitoring
and cognitive control have not incorporated mechanisms
that are sensitive to stimulus history and thus have been
unable to directly address the influence of this factor on
conflict monitoring, cognitive control, and overt behavior.

The purpose of this study was to identify plausible
mechanisms for encoding stimulus history that can be in-
corporated into models of performance in simple choice
RT tasks. In this paper, we focus on the ability of such
mechanisms to predict performance, without taking into
account the effects of conflict monitoring or cognitive
control. In related work, we use the mechanisms devel-
oped here to address interactions between stimulus history
(such as frequency effects) and mechanisms responsible
for conflict monitoring and cognitive control (Jones, Cho,
Nystrom, Cohen, & Braver, 2002). We begin by briefly re-
viewing what is known about the influence of stimulus se-
quence on performance. We then consider several simple
mechanisms that could account for such effects and assess
their ability to predict human performance in simple two-
alternative forced-choice (2AFC) tasks.

The effects of stimulus sequence on the performance
on choice RT tasks were originally characterized by exam-
ining first-order relationships—that is, those limited to the
influences of the trial just previous to the current one. In
choice tasks with two alternatives, first order effects arise
from either repetitions or alternations, and with more than
two choices, from repetitions or nonrepetitions (the possi-
bility of nonrepetitions with more than two stimuli will
henceforth be implied by any mention of alternations). A
natural extension is to investigate higher order effects that
extend further back into stimulus histories. Varying the
permutations of up to four preceding stimuli has been
shown to have systematic effects on RTs and error rates
(ER; Kirby, 1976; Remington, 1968; Soetens et al., 1985).
Dependencies on recent stimulus history can explain
much of the variability in performance even of tasks in-
volving the learning of regularly structured sequences,
where significant trial-to-trial effects owing to stimulus
repetitions and alternations are observed, independent of
those sensitive to the experimenter-determined regulari-
ties in the stimulus orderings (Cleeremans, 1993). Indeed,
the broad range of conditions under which these sequen-
tial dependencies are observed suggests a potential rele-
vance to all experimental paradigms involving local vari-
ations in the orderings of stimulus presentation.

Explanations of sequential effects have been divided
broadly into two types: facilitation and expectancy (Luce,
1986). Facilitation is thought to involve a low-level mech-
anism by which past presentations of a particular stimulus
augment the processing of its recurrence (e.g., Kirby,
1976); in other words, facilitation favors repetitions. Fa-
cilitation is thought to predominate at short response–
stimulus intervals (RSIs), in keeping with the notion that
it involves automatic activation of a trace that fades at longer
RSIs. In contrast, expectancy effects are attributed to
higher level strategic processes that set up expectations for
either repetitions or alternations and may require a mini-
mum time to establish (Vervaeck & Boer, 1980), thus in-
fluencing task performance at longer RSIs.1

Although invoking such notions as facilitation and ex-
pectation may aid in understanding the generally mono-
tonic relationships2 between the numbers of prior repeti-
tions and alternations and the associated RTs and ERs, it
is unclear how they would explain the complex pattern of
higher order effects observed in the data (see Figure 1).
The reproducibility of many of these effects across stud-
ies suggests that they are not simply idiosyncrasies of par-
ticular datasets but, rather, that they reflect the operation
of specific sequence detection mechanisms. In one of the
first analyses of higher order effects, Laming (1968) per-
formed a multiple regression to assess the impact of stim-
ulus identities on task performance at incremental steps in
the trial history. Repetition and alternation effects were in-
ferred from regression coefficients and the behavioral
data, but without proposing what basic mechanisms might
give rise to these sequential effects. Falmagne, Cohen, and
Dwivedi (1975) proposed a more mechanistic account
based on Markov chains. In their model, the orderings of
comparisons of newly presented stimuli with stored rep-
resentations of each stimulus were dependent on the iden-
tity of the penultimate stimulus. However, this model re-
quired the adjustment of numerous parameters to provide
an adequate fit to the empirical data. Thus, although pre-
vious models have offered reasonable fits to data, they
have lacked in either mechanistic detail or parsimony. In
this article, we consider the possibility that the pattern of
RT and ER effects observed in response to sequences of
stimuli may reflect the operation of relatively simple
mechanisms that respond only to highly local regularities
(e.g., the relationship of the current stimulus to the imme-
diately preceding one). On this account, the complexity of
the observed effects would result from the interaction of
these simple mechanisms as they respond to different se-
quences of stimuli.

There are several possible schemes by which simple rep-
etition and alternation detectors might operate. For exam-
ple, given a sequence involving two stimuli—for example,
1112212—there are at least two ways in which repetitions
may be detected and influence performance. One scheme
would simply track single occurrences of a stimulus, per-
haps mediated by residual activation of the representation
of that stimulus (akin to facilitation, as was discussed
above). In this case, the fourth 1 would by itself increase
the tendency to respond 1 in the next trial. The first three
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1s would produce a greater tendency to respond 1, not be-
cause they were repetitions per se, but because of the ac-
cumulated effects of each 1’s individually priming for an-
other 1. A different scheme accounting for repetition effects
might base facilitation on first-order transitions, requiring
a detection of two consecutive occurrences of the same
stimulus. In our example, the first two 2s would produce
a bias toward another 2 response, but the third 2, lacking
a pairing with a preceding 2, would not do so. Similarly,
there are a variety of means by which alternations could be
detected and used to prime subsequent ones.

Given the variety of mechanisms that are possible for
the detection of even simple patterns of repetition and al-
ternation and the potential complexity of their interac-
tions, the effects that these mechanisms may have on be-
havior are not immediately obvious. Our aim in this study
was to explore these effects by explicitly implementing an
array of simple detection devices, incorporating these into
an existing model of responding in a 2AFC RT task and
then examining the behavior of the model as a function of
different stimulus sequences. By so doing, we hoped to
determine whether the combinations of simple repetition
and alternation detectors could account for the complex
pattern of findings observed in empirical studies and, if
so, which combinations of mechanisms were most suc-
cessful. Our target empirical data were taken from an ex-
ample in the literature, Soetens et al. (1985) and from ex-

periments of our own, which consistently exhibited simi-
lar first-order and higher order repetition and alternation
effects. We focused on data from the longer RSI condi-
tions of these studies, since it was in this regime that both
repetition and alternation effects appeared in a robust, reg-
ular fashion, providing a more straightforward initial test
of our models. Also, following the tendency of most pre-
vious studies in which sequential effects have been exam-
ined, we based our analyses on stimulus, and not response,
histories.

OVERVIEW OF MODEL

We based our model on the architecture used by Usher
and McClelland (2001) for simulating behavior in a 2AFC
task. This model involves leaky, stochastic, nonlinear ac-
cumulation of activation in two mutually inhibitory deci-
sion units and successfully captures many important sta-
tistical properties of subjects’ RTs and error distributions
within single trials (Usher & McClelland, 2001). How-
ever, this model does not address sequential effects ob-
served from one trial to the next. That is, there is no com-
ponent of the Usher and McClelland model that performs
a stimulus-history–dependent biasing of processing in
favor of one stimulus or the other.

Our contribution was to add a component to the model
that performs stimulus-history–dependent biasing. This

Figure 1. Human subject median reaction times (RTs) and error rates (ERs) over varying stimulus histories at long
response–stimulus intervals (RSIs): (A) Soetens, Boer, and Hueting (1985), Figure 2; (B) present study; (C) Jones, Cho,
Nystrom, Cohen, and Braver (2002). RSIs for the three studies were 1,000, 800, and ~900 msec (estimated from inter-
stimulus intervals), respectively. Noted along the abscissa are all of the possible five-stimulus-long sequences; each se-
quence, read from top to bottom, proceeds from the earliest stimulus progressively toward the present stimulus. For ex-
ample, RRAR could represent sequences 11122 or 22211. The first-order trends are similar across the data sets. However,
the greatest similarity is between data collected for the present study and those presented in Soetens et al.; the differences
in some of the higher order variations in Jones et al. may be due to subtle influences from their choice of stimulus–response
mappings (many to one for one alternative and one to one for the other) and asymmetric stimulus probabilities employed
in other blocks of their experiment (the data presented here are based on symmetric probabilities, as in panels A and B).
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component responds to local occurrences of repetitions
and alternations in the stimulus sequence and primes the
decision units in the network accordingly. This has the ef-
fect of changing the initial conditions from which the de-
cision units’ activities evolve when the next stimulus is
presented, thus producing modulations in the RTs and
ERs that are dependent on the identities of the preceding
stimuli. We then explored the extent to which the accrual
of these biases, across trials, could account for the empir-
ical data concerning such sequence effects. Particular pair-
ings of repetition and alternation detection schemes were
explored with regard to their ability to fit the empirical
data, in order to evaluate whether such an approach can be
fruitful in revealing simple mechanisms that underlie
complex higher order variations in the observed data.

The method of this study not only helps in determining
plausible mechanisms underlying sequential effects in
simple choice RT tasks, but also suggests a general ap-
proach for examining sequential dependencies in any
tasks in which such effects play a prominent role in the
trial-to-trial dynamics. The advantage of such mathemat-
ical models is that their assumptions must be clearly for-
mulated and that conclusions regarding their behavior fol-
low rigorously from these assumptions. This makes them
clearly refutable and, sometimes, provably adequate, if not
provably correct (for other models may lead to the same
behavior). Verbal models rarely offer such clarity. Another
important benefit is that once the sequence effects in a
task are characterized, other factors influencing perfor-
mance can then also be better understood, particularly if
they are known to interact with such dependencies on
stimulus history. We have taken this approach, for exam-
ple, by incorporating the most successful of the repetition–
alternation detection combinations of this paper into an
augmented model, to explore mechanisms of conflict
monitoring and cognitive control (Botvinick et al., 2001;
Carter et al., 1998) in 2AFC task performance (Jones
et al., 2002).

METHOD

First, we will describe the experimental method used in
our replication of the empirical sequential effects. Then,
we will describe the general form of the Usher and Mc-
Clelland (2001) model of the 2AFC task and will detail
the different repetition and alternation detection methods
we added to their model to produce the sequential depen-
dencies of RTs and ERs. In the final section, we will pro-
vide the details of the actual simulations performed. Our
collected data, together with those of Soetens et al. (1985)
and Jones et al. (2002; see Figures 1B, 1A, and 1C, re-
spectively), make up the empirical dataset with which we
optimize parameter fits, employing the methods of the
final section.

Experimental Method
Subjects

Six Princeton University undergraduates (3 male, 3 fe-
male; ages, 18–21) participated in the study in exchange

for partial fulfillment of a course requirement. Each sub-
ject gave informed consent in accordance with the Insti-
tutional Review Panel for Human Subjects at Princeton
University.

Task Design and Procedure
The task was modeled after the 2AFC tasks of Laming

(1968), substituting an upper- or lowercase “o” character
(1.28 or 0.97 cm tall, respectively) for Laming’s tall or
short rectangles. The two stimuli were presented in a ran-
dom order, with the constraint that each stimulus should
appear with equal frequency in each series of trials. The
subjects viewed stimuli displayed in white on a black
background in the center of an Apple Macintosh monitor,
at a distance of approximately 60 cm, using the Psyscope
experimental presentation software (Cohen, MacWhin-
ney, Flatt, & Provost, 1993). The subjects were told to press
one of two response keys with their index fingers when-
ever they saw the “o” and the other key with their middle
fingers for the “0.” They were instructed to respond as
quickly and accurately as possible. The stimuli remained
on the screen until a response was made, up to a maximum
time limit of 2,000 msec. The only performance feedback
given was a beep sound to indicate any buttonpress and a
buzzing sound to warn the subjects if they have failed to
respond within the allowable 2,000-msec limit. Following
each buttonpress, the next stimulus appeared after a delay
(RSI) of 800 msec. After each series of 120 trials, the sub-
jects were allowed a short break; 13 series of 120 trials were
collected from each subject, for a total of 1,560 trials.

Model of the 2AFC Task

Usher and McClelland’s (2001) model of the 2AFC task
uses two decision units whose respective activations rep-
resent the propensity for producing one response or the
other. Each unit’s activation is influenced by passive
decay, inhibition by activation of the other unit, input ac-
tivation once a stimulus is presented, and a noise term that
is responsible for the variability in RTs, as well as for pro-
ducing errors in performance. All these effects are sum-
marized by the following set of stochastic differential
equations:

and (1)

where xi is the state of unit i 5 1 or 2, k represents passive
decay, b is the mutual inhibition term, f is the activation
function3 for both units, which takes the form f (xi) 5 1/{1
1 exp[2G(x 2 d )]} with a gain (G ) and offset (d), 
ri represents the nonnegative input stimuli, and xi repre-
sents the uncorrelated noise terms (formal derivatives of
Wiener processes with zero mean, variance s2t). This net-
work, similar in many respects to the cascade model of
McClelland (1979), implements a mixed deterministic
drift-random diffusion process in which each unit moves

dx
dt

kx f x2
2 1 2 2= - - ( ) + +b r x ,

dx
dt

kx f x1
1 2 1 1= - - ( ) + +b r x
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toward threshold at a rate determined by the relative input
strengths and is also influenced by noise. The values of
the inputs r1 and r2 are fixed such that r1 1 r2 5 1. The
simulated response is determined by the first unit to reach
a fixed threshold—that is, xi 5 q—or equivalently, when
f (xi) 5 f(q ); the corresponding RT is the time (number of
iterations of our numerical integrator) at which this
threshold is crossed. We chose this as our basic frame-
work, since it had compared favorably with other models
based on independent, nonleaky accumulation of activa-
tion and a response criterion based on activation differ-
ences instead of absolute thresholds (Usher & McClel-
land, 2001). Further motivations for this architecture are
detailed in Usher and McClelland, with an in-depth analy-
sis of the within-trial dynamics provided by Brown and
Holmes (2001).

Sequence Detection

General Description

To realize effects of stimulus history, we add separate
bias terms, bi, to each decision unit in Equation 1:

and (2)

In our simulations, we divide each trial into a prepara-
tory period and a response period. During the preparatory
period, the units’ activations evolve in the absence of any
stimulus inputs, ri: they are driven only by biases, bi
(Equation 2, with r1 5 r2 5 0). Thus, in the absence of
input from the sequence detectors, bi will decay from trial
to trial, implementing a fading memory of prior effects.
The duration of this period represents the task RSI,4
whereas the subsequent response period models the por-
tion of the trial during which the stimulus is actually pre-
sented by adding inputs ri (Equation 2, with r1 randomly
assigned 0.85 or 0.15 for a given trial and r2 5 1 2 r2;
see the Simulations and Parameter Fitting section below).
The biases bi remain fixed during the preparatory and re-
sponse periods and are discretely updated following each
trial. Updating occurs by adding inputs from the sequence
detectors (see below) to a fraction of the biases’ current
values.

We explored six possible schemes for updating bi, with
three types of repetition detectors and three types of alter-
nation detectors. They further divide into two classes:
(1) individual, in which there is a separate repetition and
alternation detector for each of the decision units, and
(2) shared, in which a single repetition and alternation de-
tector is shared by both decision units. Detectors are also
distinguished by whether they depend solely on the iden-
tity of the previous trial’s stimulus (one-back) or on the
identities of the two stimuli just preceding the current one
(two-back). All the schemes emphasize more recent
events by the use of exponentially weighted averages.

We first will give a brief overview of each type of de-
tector, followed by more precise formal descriptions, and
will provide diagrammatic depictions to aid the reader in
distinguishing how each respective scheme first detects
repetitions or alternations (Table 1) and then, subse-
quently, biases the decision units accordingly (Figure 2).

Individual Detectors
Individual repetition, one-back (IR1). A simple rep-

etition detector5 that increases b1 following every occur-
rence of stimulus 1, with no input to b2 (and conversely for
b2 following stimulus 2).

Individual repetition, two-back (IR2). A strict rep-
etition detector that increases b1 only following two (or
more) sequential occurrences of stimulus 1, with no input
to b2 (and conversely for b2 following stimulus 2).

Individual alternation, one-back (IA1). A simple al-
ternation detector exactly analogous to IR1, but that in-
creases b2 following every occurrence of stimulus 1, with
no input to b1 (and conversely for b1 following stimulus 2).

Individual alternation, 2-back (IA2). A strict alter-
nation detector that increases b1 only after the sequence
12, with no input to b2 (and conversely for b2 following the
sequence 21).

To implement these detector types, four separate running
tallies are maintained as b1

R, b 2
R for repetitions and b1

A, 
b2

A for alternations. At the end of each trial, each decision
unit bias bi is increased by an amount proportional to b i

R

plus b i
A.

Shared Detectors
Shared repetition, two-back (SR2). A strict repeti-

tion detector that increases its tally for any repeat (e.g., the
sequence 11 or 22) and then increases only the bi for the
decision unit corresponding to the most recent stimulus.

Shared alternation, two-back (SA2). A strict alter-
nation detector that increases its tally for any alternation
(e.g., the sequence 12 or 21) and then increases only the
bi for the decision unit corresponding to the opposite of
the most recent stimulus.

To implement these detector types, only two running
tallies are maintained, bR and bA. At the end of each trial,
only the bi for the decision unit corresponding to either the
repeat or the alternation is updated.

Figure 2 further describes schematically how bias units
are updated with each respective method of detecting rep-
etitions and alternations. The changes made to each bias
bi for the individual and shared detectors are more pre-
cisely defined as follows.

For individual detectors,

where

(3)and

b n b n b f ni
A

i
R A

i
A( ) ( ) ( ) ( ).max+ = + -1 1l l

b n b n b f ni
R

i
R R

i
R( ) ( ) ( ) ( )max+ = + -1 1l l

b n b n b ni i
R

i
A( ) ( ) ( ),+ = + + +1 1 1

dx

dt
kx f x b2

2 1 2 2 2= - - ( ) + + +b r x .

dx

dt
kx f x1

1 2 1 1= - - ( ) + +b r x



288 CHO ET AL.

R and A stand for repetitions and alternations, respec-
tively, l is the exponential decay parameter with value be-
tween 0 and 1, bmax is a scaling parameter, and f i(n) is the
function that updates the bias for unit i, to be described
below.

For shared detectors,

where

(4)

and

In this case, the first expression denotes the fact that all
of the bias accrued for repetitions is directed toward the
decision unit whose identity is the same as the stimulus
that was presented in the previous trial and similarly that
all of the bias accrued in evidence of alternations is di-
rected toward the unit whose identity is opposite to that of
the stimulus presented in the previous trial. Note that the
second expression in Equation 4 lacks a subscript for the

bias terms, since there is only one repetition detector and
one alternation detector shared by both the decision units.

Formal Descriptions of the Sequence Detectors f (n)

Here, we describe each of the sequence detectors in
greater detail and work through the sample stimulus his-
tory given in Table 1 to illustrate the workings of each de-
tector type.

Individual Detectors
Repetition detectors. IR1. This implements simple fa-

cilitation, with each occurrence of a stimulus acting indi-
vidually as evidence for recurrence of the same stimulus
in subsequent trials. This form of priming is tantamount to
a self-excitatory connection for each decision unit:

(IR1)

In Table 1, we see that for IR1, decision units 1 and 2
each has its own repetition detector and that each sepa-
rately detects an occurrence of the respective stimuli
(marked by xs). The repetition detector for unit 1 detects
an occurrence of stimulus 1 at the first, third, fifth, sixth,

f n
n

n
i
R i

i

( )
( ) .

( ) .
.=

>
<

ì
í
î

ü
ý
þ

1 0 5

0 0 5

if

if

r
r

b n b n b f nA A A A( ) ( ) ( ) ( ).max+ = + -1 1l l

b n b n b f nR R R R( ) ( ) ( ) ( )max+ = + -1 1l l

b n
b n n

b n n
i

R
i

A
i

( )
( ) ( ) .

( ) ( ) .
,+ = + >

+ <

ì
í
î

ü
ý
þ

1
1 0 5

1 0 5

if

if

r
r

Table 1
Repetition and Alternation Detection Schemes

Sample Stimulus History

Detection Scheme Unit 1 2 1 2 1 1 1 2 2 2

Individual
IR1 1 x x x x x

2 x x x x x
1 0 1 1 2 2 3 4 5 5 5
2 0 0 1 1 2 2 2 2 3 4

IR2 1 x x
2 x x
1 0 0 0 0 0 0 1 2 2 2
2 0 0 0 0 0 0 0 0 0 1

IA1 1 x x x x x
2 x x x x x
1 0 0 1 1 2 2 2 2 3 4
2 0 1 1 2 2 3 4 5 5 5

IA2 1 x x x
2 x x
1 0 0 1 1 2 2 2 2 3 3
2 0 0 0 1 1 2 2 2 2 2

Shared
SR2 x x x x

1 0 0 0 0 0 0 1 2 2 2
2 0 0 0 0 0 0 0 0 0 1

SA2 x x x x x
1 0 0 1 1 2 2 2 2 3 3
2 0 0 0 1 1 2 2 2 2 2

Note—Shown are the responses of each of the various detection schemes to the stimulus
history “. . .1212111222.. . .” The xs denote detections ( f i

R,A(n) 5 1; see the Method sec-
tion) for the respective schemes. The resulting biases are then updated as defined by Equa-
tions 3 and 4 prior to the next trial.  Running tallies of the applications of these biases are
shown below the respective rows of xs; the tally for the appropriate unit is incremented on
trial n 1 1 each time the scheme makes a detection on trial n.  Note that for the individual
unit based schemes, there is a separate detector for each of the two units; for the shared de-
tection schemes, only one unit is responsible for the detection of either repetitions or al-
ternations, respectively.
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and seventh points in the stimulus history, and the repeti-
tion detector for unit 2 accordingly detects occurrences of
stimulus 2 at all other points. To make explicit which units
actually receive the resultant increments in bias, Table 1
includes running tallies of the applications of these biases
(shown below the respective rows of xs); the tally for the
appropriate unit is incremented on trial n each time the
scheme makes a detection on trial n 2 1.

IR2. This detects immediate repeats of a stimulus, re-
quiring a comparison of the stimulus identities of trials n
and n 2 1:

(IR2)

In our sample history of Table 1, there are no consecu-
tive occurrences of stimuli until S 5 1 is presented in the
fifth and sixth trials, when the repetition detector for unit 1
correctly records its first repetition. Another repetition is
detected on the seventh trial as stimulus 1 is presented
again. Two similar detections of repetitions are made sub-
sequently by unit 2.

Alternation detectors. IA1. This has exact symmetry
with IR1, with each occurrence of a stimulus acting indi-

vidually as evidence for an occurrence of the alternate
stimulus in subsequent trials:

(IA1)

In Table 1, we see that for IA1, both the detections and
the running tallies of bias applications are exactly sym-
metrical to those for IR1. This symmetry suggests that IR1
and IA1 are a priori incompatible as a possible combina-
tion of repetition and alternation detectors, since their ef-
fects would cancel each other. However, each can be com-
bined with others of a different type.

IA2. This detects an immediate alternation in the two
preceding stimuli:

(IA2)

Here, the alternation detector for unit 1 records an al-
ternation on the second trial, since stimulus 2 is preceded
by stimulus 1. This increases the bias for decision unit 1.
Similarly, the next stimulus elicits a detection by the al-
ternation detector for unit 2, since stimulus 1 is preceded
by stimulus 2. This increases the bias for decision unit 2.

f n
n n

i
A i i( )

( ) . ( ) .
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> - >ì
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ü
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Figure 2. Bias updating protocol. Shown is a schematic of Equations 3 and
4, detailing how biases are updated for each trial. For individual biasing, the
first row shows the various detection schemes (IR1, IR2, IA1, and IA2), and the
second row shows the required stimulus history to elicit a detection by the re-
spective schemes. All possible cases are shown, and the arrows point to the spe-
cific bias that is incremented as a result of a detection. For example, IA2 would
increment b1(n) if the last two stimuli were . . .12. A similar format is used for
shared biasing. Here, SR2 and SA2 detect repetitions and alternations, respec-
tively, over the last two trials. The specific bias that is incremented depends on
the identity of the present stimulus, as is illustrated. For example, SA2 would
detect an alternation with the stimulus history . . .12 and increment b1(n).
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This pattern continues until the alternations cease, inter-
rupted by a short run of repetitions of stimulus 1. The last
detection of an alternation is made by the detector for
unit 1, when stimulus 2 follows stimulus 1.

Shared Detectors
Repetition detector. SR2. This detector responds to the

occurrence of repetitions of either stimulus. Its value is
then applied in its entirety to the bias for the decision unit
corresponding to the most recent stimulus:

(SR2)

In our example of Table 1, notice that xs mark the oc-
currence of repetitions for either stimulus 1 or stimulus 2.
In effect, SR2 collapses IR2 detections of repetitions
across units 1 and 2.

Alternation detector. SA2. This detector responds to
the occurrence of an alternation of either stimulus, and the
resulting value is applied in its entirety to the bias for the
decision unit opposite the most recent stimulus:

(SA2)

Analogous to SR2, we can think of SA2 as collapsing the
individual detections of IA2 across units 1 and 2.

To summarize, we have described three repetition de-
tectors (IR1, IR2, and SR2) and three alternation detec-
tors (IA1, IA2, and SA2). In the simulations described
below, we paired each of the repetition detectors with each
of the alternation detectors to produce a total of nine com-
binations of possible repetition–alternation detection
schemes. Each of these combinations provides a unique
way of accounting for stimulus sequence dependencies in
the following manner: Repetitions and alternations are de-
tected by the respective methods described above to pro-
duce f R(n) and f A(n). Equations 3 and 4 then scale these
detections by their bmax terms and incorporate them into a
running, exponentially weighted average of occurrences
of repetitions and alternations. The results of Equations 3
and 4 (bias terms bi) exert their influence on stimulus pro-
cessing through their inclusion in Equation 2, which de-
scribes the complete model.

Simulations and Parameter Fitting
In order to assess which sequence detection combina-

tion would most successfully account for the empirical
data of Figure 1, we performed simulations of the model
(Equation 2), exhaustively assessing each of the nine pos-
sible combinations of repetition and alternation detectors.
The only free parameters adjusted were the scale factors
for the repetition and alternation detectors, b R

max, b A
max,

and the noise strength s, for a total of three free parame-
ters to be determined for any given repetition–alternation
detection pair. The model’s performance employing the

optimal set of parameters for each detection pair is sum-
marized in Figure 3. Values for the other parameters were
taken directly from Usher and McClelland’s (2001) and
Botvinick et al.’s (2001) studies and were kept fixed for all
simulations at the following values: k 5 0.2, b 5 0.75,
stimulus r 5 .85, G 5 4, d 5 0.5. D t, the time step for the
model, was 0.1, q was 1.05 (yielding f (q ) 5 0.9), and the
number of preparatory period timesteps was 60 (see note 4).
l , the decay parameter for the exponential weighting of
sequence effects in Equations 3 and 4, was set at 0.5. This
corresponds to an essentially four-trial stimulus history (at
n 2 4 trials back, exponential weighting of bmax is at most
l4 5 0.54 5 0.0625), consistent with the finding that stim-
ulus variations further back have negligible effects (Kirby,
1980; Laming, 1968; Remington, 1968). Simulations were
numerically integrated (cf. Strogatz, 1994) with 25,000
trials for each sequence detection combination, so that the
data point for each of the 16 sequence variants in Figure 1
included, on average, 25,000/16 5 1,563 trials.

Parameter adjustments first targeted the replication of
RTs, since these had finer dependencies on the varying
stimulus histories. These initial adjustments of b R

max and
b A

max were performed using noise-free (s 5 0) versions of
the model, since the presence of noise in the nonlinear
Equation 2 was not found to significantly affect the means
of RT distributions (cf. Brown & Holmes, 2001). In this
way, the computational expense of Monte Carlo simula-
tion was avoided in determining initial estimates. In de-
termining the ER profiles, the sequence detection para-
meters were fixed to their optimal values, and the third
parameter, noise strength (s), was adjusted to obtain lev-
els of error comparable to those of the empirical data. At
this stage, simulations were run for many more trials,
since ERs were relatively low and required a large number
of iterations in order to obtain stable estimates for each se-
quence variant.

RESULTS

Empirical Data
Our study of human subject performance in the 2AFC

produced RT and ER profiles (Figure 1B) similar to those
observed in the literature (Figure 1A). Both RT and ER
generally increase with a decrease in the number of repe-
titions that precede a final repetition (left half of Fig-
ure 1B). This trend is mirrored by an analogous increase
in RT and ER with a decrease in the number of alterna-
tions that precede a final alternation (i.e., the right half of
Figure 1B is a reflection of the left half). There is also a
slight predominance of repetition over alternation effects.
For example, RT and ER are consistently lower for RRRR,6
as compared with AAAA trials, and highest for violations
of a run of repetitions (RRRA), as compared with a viola-
tion of a run of alternations (AAAR).

With regard to higher order effects, we found that these
were preserved across successive experimental blocks
(not shown). This was also observed by Soetens et al. (1985)
in their study. This suggests that these higher order effects
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are not random variations but, rather, reflect reproducible
patterns of behavior within the context of a particular ex-
perimental paradigm. Furthermore, there are substantial
similarities between the higher order effects observed in
our study and those of Soetens et al. For example, in Fig-
ure 1 (panels A and B), it is apparent that the largest dif-
ferences in RT occur between corresponding pairs of ad-
jacent data points in the two plots. The one exception is
the middle pair of data points (for the AAAR and RRRA
sequences—i.e., at the transition from those ending in rep-
etitions to those ending in alternations). This may reflect
the general trend in the present study toward showing bet-
ter performance on trials ending in a repetition versus an
alternation. The similarity across these two experiments
suggests that similar mechanisms may underlie the sensi-
tivity of performance to stimulus history, as was explored
in our simulations, discussed below.

In addition to similarities across studies, there are also
noticeable differences—in particular, between the data
from Jones et al. (2002; Figure 1C) and those from the
other two studies. In the Jones et al. study, the effects of
repetitions predominated over those of alternations, as ev-
idenced by a number of patterns in the data: The best per-
formance was associated with a run of repetitions (RRRR),
the poorest performance occurred with a violation of a run
of repetitions (RRRA), and subjects exhibited significantly
better performance with sequences ending with repeti-
tions versus alternations. Interestingly, this plot (Fig-
ure 1C) bears resemblance to the plot of short RSI data in
Soetens et al. (1985; see Figure 2 in their paper), where it
was also noted that repetition effects predominated over
those of alternations.

These differences in behavioral data may reflect the in-
fluence of task-specific factors that differed across stud-
ies, such as the nature of the stimulus–response mapping
(overlearned in the Soetens et al., 1985, study relative to
the other two), stimulus set size (large in the Jones et al.,
2002, study relative to the other two), and stimulus and re-
sponse frequencies (varied in the Jones et al. study, but not
in the other two). We will consider how these factors may
have interacted with the effects of stimulus history in our
discussion of the simulation results below.

Simulations
To determine which detector mechanisms would pro-

duce results that best fit the empirical data, we paired each
of the three repetition detectors with each of the three al-
ternation detectors and conducted simulations, using the
procedures described above. For each pairing, a search
was conducted over a broad range of values for the three
critical parameters of the model (the detector scale fac-
tors, b R

max and b A
max , and the noise strength s). Figure 3

shows the best fit to the empirical data from the present
study (Figure 1B) for each of the nine combinations of de-
tectors.

Figure 4 shows analogous plots for the data from
Soetens et al.’s (1985) and Jones et al.’s (2002) studies,
from the detector combination that produced the best

overall fit to the three data sets (IR1–SA2, for the data ac-
quired in the present study, with b R

max 5 0.08, b A
max 5 0.06,

s 5 0.72; overall, r2 5 .92 for RT and .62 for ER). Table 2
provides the results of individual fits for each detector
combination to the RT and ER data from each of the three
studies. As was noted above, the best overall fit to the data
was achieved with the IR1–SA2 combination. This com-
bination also produced the best f it to the data from
Soetens et al. (1985) (r2 5 .98 for RT and .34 for ER). The
best f it to the data collected in the present study was
achieved with the SR2–IA2 combination (with b R

max 5
0.055, b A

max 5 0.07, s 5 0.75: r2 5 .96 for RT and .81 for
ER), whereas for the data from Jones et al. (2002), it was
achieved with IR2–IA1 (with b R

max 50.035, b A
max 5 0.005,

s 50.97: r25.92 for RT and .87 for ER). We emphasize
that all of the fits to the RT and ER data, for all 16 se-
quence histories, were obtained by adjustment of only
three parameters of the model (b R

max, b A
max , and s).

DISCUSSION

The purpose of this study was to explore how simple
mechanisms for detecting stimulus repetitions and alter-
nations behave when they are used in various combina-
tions to bias responding, and whether this behavior can ex-
plain the effects of stimulus history on human performance.
In the discussion that follows, we first will consider the
overall ability of different combinations of detectors to ac-
count for behavioral performance. We then will consider
what the simulation results can tell us about the similari-
ties and differences observed in the empirical findings
across studies.

Figure 3 shows that certain combinations of detectors
provided a reasonably good account of human perfor-
mance, whereas others did not. By examining the pattern
of results, we can identify properties of the detectors, and
their combinations, that may account for their ability to
capture the empirical data.

For example, we see from Figure 3 that all of the com-
binations involving repetition and alternation detectors of
the same type (i.e., IR1–IA1, IR2–IA2, and SR2–SA2)
produced poor fits. For the combinations involving indi-
vidual detectors, this is because they failed to produce any
consistent modulation of performance as a function of
stimulus history (the small differences observed are pre-
sumably due to noise). This most likely reflected the sym-
metric influence of the repetition and alternation detectors
in these combinations. This is easily seen for the IR1–IA1
combination. In this case, the occurrence of a given stim-
ulus caused IR1 to bias the response corresponding to that
stimulus on the next trial (i.e., it predicted a repetition).
However, this was exactly offset by the prediction of an
alternation and the biasing of the opposite response by
IA1. A similar situation held for the IR2–IA2 combina-
tion. In this case, however, the fact that the detectors re-
sponded to actual repetitions or alternations led to a slight
improvement of performance for long runs of one type of
sequence or the other. This effect was greater for repeti-
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tions, because a run of repetitions by definition involves
only one of the stimuli and thus produces a consistent bias
toward the corresponding response. In contrast, a run of
alternations involves both stimuli, offset by one trial; thus,
biasing occurs for both responses. Since the response

units are in competition with one another, there is no (or
only a small) net gain in advantage by one over the other.

The situation was slightly different for the SR2–SA2
combination. Note that this produced the appropriate mo-
notonic changes but that they were too “smooth”—that is,

Figure 3. Simulation reaction times (RTs) and error rates (ERs) over varying stimulus histories. Shown are the results of sim-
ulation fits (circles joined by solid lines) to the empirical data shown in Figure 1B (shown in squares with dotted lines for com-
parison), following the format of that figure, with each plot representing a different repetition–alternation detector combina-
tion. The empirical RTs (Figure 1B) shown for comparison are scaled to the range of simulation RTs (in simulation timesteps)
observed for the overall best detection scheme, IR1–SA2. The empirical ERs are the original values, without scaling.



MODEL OF SEQUENTIAL DEPENDENCIES 293

they did not exhibit any higher order effects of stimulus
history. Recall that for shared detectors, the accumulated
effects of prior history are used to bias only one response
unit or the other on a given trial. Thus, the offsetting ef-
fects that individual detectors can have on one another for
a given trial cannot occur for shared detectors. Further-
more, because shared detectors are necessarily two-back
detectors and, therefore, respond only to actual repetitions
or alternations, a given sequence of two stimuli will in-

crement only one detector or the other. Thus, longer runs
of a sequence of a given type (i.e., of repetitions or alter-
nations) will produce greater values for the detector of that
type. This, in turn, will progressively improve perfor-
mance when the current stimulus conforms to that se-
quence type. Insofar as the SR2 and SA2 detectors re-
spond in a perfectly complementary way to a given
sequence, we would expect their influence to be a simple
and monotonically increasing function of the length of the

Figure 4. Simulation fits of reaction time (RT) and error rate (ER) profiles for Soetens, Boer, and
Hueting (1985) and Jones, Cho, Nystrom, Cohen, and Braver (2002), respectively, utilizing IR1–SA2.
The format follows that of Figure 3, with simulation results represented by circles (with solid lines)
and empirical data shown in squares (with dotted lines) for comparison.

Table 2
Simulation Fits to Empirical Data for Each Sequence Detection Combination

Detection Schemes Soetens Present Jones and
Repetitions Alternations et al. (1985) Study Braver (2001) Average

IR1 IA1 .11 .34 .38 .28
.03 .53 .61 .39

IR1 IA2 .77 .67 .77 .74
.15 .53 .77 .44

IR1 SA2 .98 .92 .86 .92*
.34 .77 .79 .62*

IR2 IA1 .71 .72 .92 .78
.00 .46 .87 .45

IR2 IA2 .74 .77 .92 .81
.23 .56 .77 .49

IR2 SA2 .96 .85 .85 .88
.29 .49 .81 .51

SR2 IA1 .05 .41 .63 .36
.00 .63 .61 .41

SR2 LA2 .85 .96 .67 .82
.26 .81 .59 .53

SR2 SA2 .95 .94 .69 .86
.29 .85 .66 .57

Note—The top number of each pair is the R2 for the reaction times, and the lower number is the R2 for
the error rates. *The overall highest R2s—those for the IR1–SA2 combination. 
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run of each type. This pure monotonicity is precisely what
is observed in Figure 3 for the SR2–SA2 combination.

IR1–IA2 fared somewhat better than the symmetric de-
tectors. However, like the IR1–IA1 and IR2–IA2 combi-
nations, it too failed to produce the strong monotonicities
seen in the empirical data. This may have been due again
to the offsetting influences of individual detectors on the
responses for each stimulus. These observations suggest
that at least one shared detector is needed to break sym-
metry and produce results closer to those observed em-
pirically.

Finally, we can see from Figure 3 that none of the com-
binations involving the IA1 detector produced good fits.
In general, this detector failed to produce the appropriate
benefits for trials that ended in an alternation when these
were preceded by progressively longer sequences of alter-
nations (i.e., the monotonicity in the right half of the
plots). This is not surprising, since this mechanism fails to
detect actual alternations (see note 5). It simply predicts
an alternation following each trial and primes the corre-
sponding response. In other words, it is insensitive to the
number of preceding alternations and, therefore, does not
produce the corresponding improvement in performance
seen in the empirical data for trials ending in an alternation.

In contrast to the symmetric combinations and those in-
volving the IA1 detector, the results from the IR1–SA2
and, to lesser degrees, the IR2–SA2 and SR2–IA2 combi-
nations produced reasonably good fits to the empirical
data. All of these combinations reproduced the prevailing
monotonicities seen in the data, as well as many of the
higher order effects. Nevertheless, no single combination
provided the best fit to all of the datasets individually. This
is not surprising, since there are notable differences across
datasets. As was discussed above, the reproducibility of
the effects within each study suggests that the differences
across studies may be due, at least in part, to factors spe-
cific to the tasks used in each study. The fits of the simu-
lations to the individual datasets may reveal something
about these task-specific factors and how they interact
with stimulus history.

The data from Jones et al.’s (2002) study showed the
greatest differences from the others. The monotonicities
were less pronounced, and the higher order effects were
more so. This study used a larger stimulus set for one re-
sponse relative to the other (25:1) and manipulated the rel-
ative frequency of the stimuli associated with one re-
sponse relative to the other (target/nontarget frequencies:
13/87, 50/50, 87/13). These factors may have diminished
sensitivity to alternations. That is, the large number of
varying stimuli associated with one of the responses may
have diluted sensitivity to alternations between those stim-
uli and the one associated with the other response. Fur-
thermore, although only data from the 50/50 response fre-
quency condition are presented in Figure 1C, performance
in this condition may have been influenced by the pre-
ponderance of repetitions (of the more frequent stimulus)
in blocks employing asymmetric frequencies. Consistent
with these observations, the IR2–IA1 combination of de-

tectors provided the best individual fit to these data, and
the b R

max for this fit was substantially greater than the bA
max

(as compared with their relative values for the fits to the
other data sets). Recall that IA1 is insensitive to actual al-
ternations, whereas IR2 is sensitive to actual repetitions.

Another difference across studies was overall better
performance in Soetens et al.’s (1985) study relative to the
other two: Both RTs and ERs were substantially lower in
this study. There were two obvious factors impacting ERs:
Subjects were given feedback about their ERs between
blocks and were also encouraged to keep overall ER below
4%. For RTs, this difference was likely due to the use of
over-learned stimulus–response mappings in their task (re-
spond with a buttonpress on the same side as the appear-
ance of a left- or right-sided light, respectively). In con-
trast, versions of the 2AFC tasks used in the Jones et al.
(2002) and the present studies studies used novel mappings
(e.g., alphanumeric characters arbitrarily assigned to but-
tons). Differences in the strength of the stimulus–response
mapping are represented in the model by the input strengths
(ri). This parameter was not varied in the present study,
which may account for the relatively poor fits to the error
data from the Soetens et al. study.

In ongoing work, we are exploring the use of mathe-
matical techniques in an effort to develop deeper insight
into the behaviors exhibited by different combinations of
detectors observed in the simulations. As Audley (1973)
has shown, valuable inferences concerning the differen-
tial expectancies built up during the preparatory period
can be made by examination of resultant RTs across vary-
ing trial histories. Along similar lines, we have constructed
two-dimensional phase portraits displaying the state of the
system relative to the two response thresholds following
the influence of the biases during the preparatory interval
and then have used these to make linear approximations
regarding the influence of the biases on RT. These meth-
ods have begun to provide some insights into the behavior
of different combinations of detector systems. However,
this approach assumes that the behavior of the system pro-
ceeds linearly following the response preparation phase.
This assumption is violated by the presence of competi-
tion between the responses, which introduces significant
nonlinearities into the system and shapes performance.
For instance, in the phase plot of the model’s activation
states in Figure 5, points X and Y mark two possible re-
sponse phase starting points following the preparatory in-
terval; during the response phase, despite being equal in
their perpendicular distances to the threshold of unit 1
(q1), X and Y will have different arrival times at q1, owing
to nonlinearities in their trajectories.

Thus, more powerful mathematical approaches are
needed to fully characterize these systems and to deter-
mine what underlying factors are most important for ex-
plaining the pattern of results observed in the empirical
data (Brown & Holmes, 2001). However, even without a
full analytic understanding of the behavior of the sequence
detectors we have modeled, the simulation results address
the two initial goals of this work: (1) to determine whether
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a combination of simple detectors that respond only to
highly local sequential events can account for the sensi-
tivity of human performance to longer stimulus sequences
and, if so, (2) to identify which combinations of detectors
best fit the empirical data, as a guide to the incorporation
of such mechanisms into models that address other phe-
nomena of interest.

GENERAL DISCUSSION

Factors that are known to affect performance during RT
tasks include the number of stimulus–response alterna-
tives, RSI, stimulus–response compatibility, and the prob-
ability of repetitions and alternations (Kirby, 1980). We have
explored a subset of these factors, by focusing on tasks in-
volving two response alternatives, each associated with a
single stimulus (or set of stimuli) presented with equal
overall probability at long RSIs. We have specified a set
of simple mechanisms that detect local repetitions and al-
ternations in the stimulus sequence and have explored
their ability to explain regularities observed in subjects’
RT and ER profiles as a function of stimulus history. The
results of simulations using various combinations of these
mechanisms revealed that only a limited subset produces
behaviors that match the empirical data. The finding that
certain combinations could account for detailed variations
in performance over 16 different stimulus histories demon-
strates that seemingly idiosyncratic, higher order, sequence-
dependent variations in performance can be explained by
the interaction of two relatively simple mechanisms for
detecting stimulus repetitions and alternations.

In the discussion below, we first will consider one im-
portant question about the significance of our results for
addressing sequential effects in other studies. We then will
consider a variety of more general issues concerning the
relationship of our findings to psychological and neurobi-
ological processes relevant to sequence effects in perfor-
mance, as well as alternative approaches to addressing
these phenomena.

Generality of Simulation Findings
One of the principal aims of this paper was to determine

the pairing of repetition and alternation detectors that
would produce the overall best fit to the three sets of em-
pirical data examined in this study. However, in surveying
the summary of the fits for each of the three sets (Table 2),
we see that IR1–SA2—the overall best candidate pair-
ing—provided the best fit only for the data of Soetens
et al. (1985), whereas SR2–IA2 and IR2–IA1 produced op-
timal fits for the data of the present study and Jones et al.
(2002), respectively. As was discussed in the previous sec-
tion, we believe that differences in task design between
studies have led to some of the variations in the profiles of
the RTs and ERs. Despite these task differences, in this
paper, we purposely fixed all the parameters at values in-
herited from previous modeling studies employing our
general framework (Botvinick et al., 2001; Usher & Mc-
Clelland, 2001). However, it may be useful to explore
whether changes to a subset of these parameters (e.g.,
input strengths, number of input stimuli, etc.) can interact
with our favored mechanism (IR1–SA2) to produce better
fits to individual datasets with the same combination of

Figure 5. Map of activation trajectories. This is a vector field showing
representative velocity vectors for a stimulus presentation, S 5 1; acti-
vation trajectories “flow” along this field. Despite being equidistant to
the response threshold (q1) for x1, the initial conditions represented by
Points X and Y will result in different response times, owing to the non-
linear dynamics of the ensuing activations.
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detectors. However, given the early stage of the explo-
ration, the most conservative approach at present would
be to investigate what progress can be made employing
the combination that produces the overall best fit. This is
the strategy that was fruitfully adopted in Jones et al. (2002).

Relationship to Psychological Processes
In contrast to our approach of exploring explicitly de-

fined sequence detection schemes, past accounts of repe-
tition and alternation effects have appealed to broader
constructs, such as facilitation and expectancy (Bertelson,
1961; Kirby, 1976; Soetens et al., 1985). Typically, facili-
tation has been offered as an explanation for repetition ef-
fects. Facilitation has been thought to occur only at short
RSIs (less than 100 msec), involving a simple, low-level
mechanism, with rapid decay (Soetens et al., 1985). How-
ever, even though our data sets all came from long RSI tri-
als, our overall best detector combination (IR1–SA2) em-
ploys a facilitation-like mechanism for repetitions. This
suggests that facilitation may exist at two different time
scales: a short RSI version based on low-level mechanisms—
say, sensory or motor based—and another at long RSIs me-
diated by higher, decisional-level processes. More elabo-
rate combinations of sequence detection schemes (with
different decay parameters) would be required to explore
this possibility.

Higher level expectancy-based mechanisms have been
thought to manifest behaviorally at long RSIs (Soetens
et al., 1985) and have usually been offered as an account
of alternation effects. However, it is possible that such ex-
pectancies are, in fact, established at short RSIs but sim-
ply do not have sufficient time to affect performance.
Sommer, Leuthold, and Soetens (1999) provided electro-
physiologic evidence that stimulus alternations—which
affect behavioral performance only at longer RSIs—are
indeed detected even at short RSIs. This suggests that de-
tections of alternations, even at longer RSIs, do not nec-
essarily have to rely on slow, high-level expectancy-based
mechanisms, since these patterns can be discerned even at
such brief time scales. One interesting possibility, then, is
that our optimal detection schemes, which have only been
tested at long RSIs, may operate across both short and
long RSI conditions. In summary, contrary to earlier pro-
posals, facilitation-based mechanisms may account for
long RSI data and expectancy-based effects may appear
also at short RSIs, questioning the adequacy of simple no-
tions of facilitation and expectancy in providing a com-
prehensive account of the sequential effects observed in
the behavioral and neurophysiologic data.

Neurophysiological Evidence
Studies in nonhuman primates have produced corrobo-

rative evidence that both behavior (Dorris, Taylor, &
Klein, 1999) and electrophysiologic measurements (Dor-
ris & Munoz, 1998; Dorris, Pare, & Munoz, 2000) are in-
fluenced by trial history. This appears to occur whether
previous trials have the predictive value of the present one
(Dorris & Munoz, 1998) or not (Dorris et al., 2000; Dorris
et al., 1999). Dorris et al. (1999) reported both stimulus-

and response-related effects, indicating that both stimulus-
and response-based mechanisms should be considered in
accounting for the influences of trial history. Of particular
relevance to the present study are the results of Dorris
et al. (2000). They showed that during the motor prepara-
tory phase in a saccadic response task, activity in superior
colliculus neurons increased as a function of the number
of previous repetitions of stimulus presentations in the re-
spective neuron’s receptive field. Unfortunately, owing to
insufficient sample size, the effects of trials histories fur-
ther than two trials back could not be examined, thus hin-
dering an adjudication between a simple facilitation of re-
sponses, using a scheme like IR1, and a more elaborate
combination of repetition and alternation schemes (which
could equally account for their data but would depart from
IR1 in predictions of higher order stimulus effects).

Studies employing human subjects have also found
modulations in neural activity that track the variations in
behavioral indices over different stimulus histories. For in-
stance, variations in the amplitude of the P300, a parietally
distributed event-related potential component that is
thought to index subjective expectations (Donchin &
Coles, 1988), exhibit a sensitivity to repetitions and alter-
nations similar to those explored in this paper (Squires,
Wickens, Squires, & Donchin, 1976; Sommer et al., 1999).
Squires et al. formally modeled these effects as a combi-
nation of the influence of stimulus repetition, alternation,
and overall frequency of each stimulus type and arrived at
a model very similar to our IR1–SA2 model.7 More re-
cently, the Sommer et al. study produced a plot of P300
amplitudes over varying stimulus histories that bears re-
markable resemblance to the patterns shown in Figure 1.
Further work is needed to determine the exact relationship
between the variations in the P300 and the associated be-
havioral data, but these ERP studies indicate that such
lawful relationships do exist and suggest potential neuro-
anatomical sites that may be involved in these processes.

Recent functional neuroimaging studies of human sub-
jects performing the 2AFC task afford significantly greater
spatial resolution, raising the possibility of providing
anatomical localization of the sequence-detecting mecha-
nisms that we have formalized in the present paper. In a
PET imaging study of novelty detection, we have demon-
strated that the implicit learning of predictable sequences
is associated with activations of the right prefrontal cor-
tex and the right inferior parietal lobe/superior tempo-
ral gyrus, whereas violations of the learned regularities
elicited greater response from the premotor and anterior
cingulate cortex and the basal ganglia (Berns, Cohen, &
Mintun, 1997). However, the task used in this study dif-
fered significantly from the present one in that the sequence-
dependent expectancies were based on true regularities in
the stimulus history as specified by an experimenter-
determined grammar. A more recent fMRI study em-
ployed a typical 2AFC paradigm with random presenta-
tions of two stimuli (Huettel, Mack, & McCarthy, 2002).
Violations of repeating sequences of stimuli were shown
to elicit activations in the prefrontal cortex and the basal
ganglia, with activations increasing with increasing pat-



MODEL OF SEQUENTIAL DEPENDENCIES 297

tern length. Violations of alternating sequences elicited
activation in the prefrontal cortex alone. It is unclear
whether more posterior regions, such as the parietal areas
implicated in Berns et al.’s study and the P300 ERP work
(Sommer et al., 1999; Squires et al., 1976), were also ac-
tivated in Huettel et al.’s study, since they did not collect
scans in the posterior half of the brain.

An important question, however, is whether the results
of Huettel et al. (2002) generalize to a wider range of stim-
ulus histories. Analyses in their study were limited to vi-
olations of histories consisting solely of either repetitions
or alternations. It is unclear, then, whether the observed
brain activations were elicited specifically in response to
violations of two simple patterns or, rather, were a result
of a general sequence detection mechanism that could
produce appropriate responses in a variety of scenarios.
Jones et al. (2002) performed an analysis relevant to this
issue, incorporating data from all the possible sequences
of stimuli starting from four trials back. One of the aims
of this study was to examine how conflict in processing
(Botvinick et al., 2001) modulated over varying stimulus
sequence contexts. They found that activations in the an-
terior cingulate cortex (ACC), which is thought to track
the degree of conflict (Botvinick et al., 2001), varied pre-
dictably over the different sequences. Predictions of ACC
activity were made employing the optimal repetition and
alternation detectors of the present study (IR1– SA2),
demonstrating that the interactions of two simple detec-
tors could serve as a general mechanism that could ac-
count for the modulations in brain activity observed over
a wide range of stimulus histories.

Alternative Approaches
Stimulus- versus response-based accounts. Our choice

to study stimulus-based effects follows the vast majority
of studies in which sequential effects have been examined.
There is evidence that dependencies on trial history are at
least partly due to stimulus-based mechanisms. The neu-
rophysiologic studies in nonhuman primates described
above suggest that dependencies on stimulus history can
manifest independently of those associated with overt mo-
toric responses (Dorris et al., 1999). Similarly, the P300—
commonly thought to reflect stimulus evaluation—is clearly
modulated by stimulus history (Sommer et al., 1999).

One obvious alternative to a stimulus-based account is
a response-based analysis of sequential dependencies.
When error rates are low, these two approaches may not
produce significantly different results, given that it is only
with errors that response histories diverge from stimulus
histories. However, performance exhibiting higher ERs
offers the opportunity to distinguish between sequential
effects that are due to stimulus and to response orderings,
respectively. Laming (1968) did include the effects of past
responses in his regression equations but found no con-
clusive patterns. Rabbitt and Rogers (1977) also investi-
gated response-related modulations in performance but
focused on error-related performance and did not examine
higher order dependencies. However, was as noted above,
Dorris et al. (1999) reported response-based sequential

dependencies, over and above effects that were due to the
stimulus presentations. Clearly, further research is re-
quired to determine the relative contributions of response-
versus stimulus-based mechanisms to the observed de-
pendencies on trial history.

Abstract models. Our model of sequential dependen-
cies lies between more abstract mathematical characteri-
zations and specific neural implementations, providing a
guide for further work at each level. We have employed
analytic methods from dynamical systems approaches
(Brown & Holmes, 2001) to gain insights into the behav-
ior of our sequence detection schemes in the context of
the complex nonlinearities that drive performance (Usher
& McClelland, 2001). Along similar lines, in other stud-
ies, sequential dependencies have been examined, using
alternative nonlinear frameworks. Falmagne et al. (1975)
analyzed sequential effects in terms of a Markov chain
model. Their model produced responses that varied ac-
cording to the outcomes of comparisons of the presented
stimulus with stored representations of the stimulus set;
how these comparisons were made in a given trial depended
solely on parameter values in the previous trial. This method
bears similarity to ours in that a temporally local mecha-
nism was used to explain an array of higher order varia-
tions in performance. However, reasonable fits to their
empirical data were gained at the expense of a large num-
ber of free parameters (ranging from 8 to 12, in contrast
to our 3), raising the question of whether simpler models
might also suffice in accounting for the observed data.

Other, more sophisticated formalisms may serve to re-
duce the complexity of models. For example, Mozer, Co-
lagrosso, and Huber (2002) employed a Bayesian frame-
work to explain sequential dependencies by rapidly adapting
the model’s prior probability estimates to the local statis-
tics of the environment—that is, the local stimulus history.
This relatively simple model was able to achieve good fits
to the empirical data of Jones et al. (2002; Figure 1C of the
present study). However, it would be interesting to see
how well the performance of this model generalizes to
other datasets. For instance, Mozer et al. noted that their
model did not require an explicit mechanism to facilitate
alternations, but this may have been a function of the par-
ticular dataset that was fitted—recall that alternation ef-
fects were minimal in the data of Jones et al. It is of inter-
est, then, what additional assumptions, if any, might be
required for their model to account for data in other stud-
ies, including ones with more prominent alternation ef-
fects. It may also be instructive to explore the relationship
between such abstract statistical approaches and models
such as ours, which detail specific mechanisms by which
repetitions and alternations affect performance.

Learning mechanisms. An interesting question is
whether the mechanisms responsible for the observed
stimulus sequence effects are hardwired, as opposed to
being learned over the course of development or certain
task contexts. Pertinent to this question is the model of
Cleeremans (1993), which employed a connectionist learn-
ing mechanism that detected sequence dependencies
using fast weights (Hinton & Plaut, 1987). This method
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involves relatively large adjustments in connection weights
that also have a very quick decay rate. Consequently, local
regularities can quickly be discovered but have only short-
term impacts on performance. Thus, the detections of rep-
etitions and alternations may arise from a general learning
mechanism in which a narrow temporal window constrains
the learning to only the most basic of patterns.8

The use of such simple learning algorithms may place
limits on the complexity of the specific mechanisms by
which repetitions or alternations are detected. For in-
stance, in the Cleermans (1993) model, the learning algo-
rithm produced a fairly rudimentary implementation of al-
ternation detections. Specific ordinal relationships were
learned (e.g., a response to Stimulus A following Stimu-
lus B would be facilitated after one or more instances of
A’s following B, akin to our IA2), instead of a more gen-
eralized detection of alternations, as is implemented, for
example, by the most successful of our alternation detec-
tors, SA2. Thus, sequence detections that arise from tem-
porally local learning may give a reasonable account of
the empirical data but may fall short of more optimal fits
that might be afforded by more complex mechanisms that
may be either hardwired or require learning over more ex-
tended time frames.

CONCLUSIONS

In this paper, we have explored a number of mecha-
nisms for repetition and alternation detection in attempt-
ing to account for the complex but highly reproducible
modulations in performance over varying stimulus histo-
ries. A number of important issues remain to be clarified,
such as the generalizability of our particular detection
schemes and how these mechanisms relate to more tradi-
tional psychological constructs, such as facilitation and
expectancy. However, the success of our better detector
combinations in accounting for the behavioral data of
three separate studies provides encouraging initial support
for the proposal that simple mechanisms can interact to
produce the seemingly complex sequence-dependent pat-
terns in performance.

The careful characterization of the mechanisms that un-
derlie sequential dependencies serves one of our broader
aims of exploring how such dependencies interact with the
higher level mechanisms that subserve strategic adjust-
ments in cognitive control. As was mentioned above, we
have already employed the insights gained from the pres-
ent work, by incorporating detectors of repetitions and al-
ternations (IR1–SA2) into larger simulations of atten-
tional tasks that also include the mechanisms of conflict
monitoring and cognitive control (Jones et al., 2002). Our
hope is that, as in the present study, in which the detectors
were added to an otherwise unmodified model of the
forced-choice task, one can assemble models of more
complex cognitive tasks in an incremental fashion from
simpler units that have been tested individually. It is hard
to see how this approach could proceed without the clar-
ity afforded by precise (mathematical) specifications.
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NOTES

1. The association of expectation effects with longer RSIs is limited
to effects that depend on the identity of the immediately preceding stim-
ulus. Expectations already engendered by earlier stimuli could, of
course, have an immediate impact on the processing of the current stim-
ulus.

2. By monotonicity, we refer to the pattern in the RTs and ERs, in plots
such as Figure 1, of progressive increases for sequences ending with rep-
etitions (left halves) and decreases for those ending with alternations
(right halves).

3. xi, the state of each decision unit, corresponds to the net input of a
processing unit in connectionist models; f (xi) is a function that trans-
forms xi to the activation state of each unit.

4. The RSIs of the empirical data of Figure 1 were approximately two
to three times the average RTs. To ensure a comparable “RSI” for the
model, the preparatory period was set to 60 timesteps, three times that
of the average model RT, which was approximately 20 timesteps.

5. This device (and the IA1 device described further on) is not a de-
tector in the literal sense. That is, it does not detect repetitions as such;
rather, it simply predicts that the next stimulus will be the same as the
current one (and for the IA1 device, that the next stimulus will be the op-
posite one). This was included to implement the simplest possible mech-
anism that might be sensitive to repetition (i.e., by implementing auto-
matic repetition priming), and the IA1 device was included as its
analogue for alternations for completeness.

6. We use the nomenclature of Soetens et al. (1985) where R and A
represent repetitions and alternations, as explained in the caption to Fig-
ure 1. Read from left to right (or in the figures, from top to bottom), the
sequence proceeds from the earliest stimulus progressively toward the
present stimulus.

7. However, there are some important differences. In their model, bi-
ases based on alternation effects were assigned discrete values (integers
between 23 and 13), depending on the number of consecutive alterna-
tions in the recent stimulus sequence. Although this method could ade-
quately account for lower order alternation effects, it is limited in ac-
counting for many of the higher order ones. These subtler effects could
be better addressed by schemes that employ continuous bias values that
result from exponentially weighted averages (favoring more recently pre-
sented stimuli) of any occurrences of alternations in the stimulus history,
regardless of order. Also, Squires et al.’s (1976) model included an ex-
plicit term for the overall frequency of each stimulus type and found that
the term for overall stimulus frequency accounted for a significant por-
tion of variance in the behavioral data. In contrast, sensitivity to global
stimulus frequency emerges naturally in our model as a consequence of
local detections of repetitions (Jones et al., 2002).

8. In principle, by using slower decay times, more intricate patterns
could be learned, although with random stimulus presentations, the rel-
evance of this possibility quickly diminishes with sequences of increas-
ing length, since their consecutive occurrence becomes increasingly im-
probable.

(Manuscript received October 2, 2001;
revision accepted for publication September 23, 2002.)

http://www.catchword.com/rpsv/cgi-bin/linker?ini=isis&ext=a&reqidx=/0036-8075^28^29193L.1142[aid=4347461]
http://www.catchword.com/rpsv/cgi-bin/linker?ini=isis&ext=a&reqidx=/0033-295X^28^29108L.550[aid=4347462]
http://www.catchword.com/rpsv/cgi-bin/linker?ini=isis&ext=a&reqidx=/0033-295X^28^29108L.550[aid=4347462]

