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ABSTRACT—In dynamic decision-making environments,

observers must continuously adjust their decision-making

strategies. Previous research has focused on internal

fluctuations in decision mechanisms, without regard to

how these changes are induced by environmental changes.

We developed a simple paradigm in which we manipulated

task difficulty, thereby inducing changes in decision pro-

cesses. We applied this paradigm to recognition mem-

ory, manipulating task difficulty by changing the similarity

of lures to targets. More difficult decision environments

caused participants to make more careful decisions, but

these changes did not appear immediately. We propose a

simple theoretical account for these data, using a dynamic

version of signal detection theory fitted to individual sub-

jects. Our model represents a significant departure from

existing models because it incorporates subject-controlled

parameters that may adjust over time in response to en-

vironmental changes.

What triggers a participant to be more careful in one condition

than another, or to pay more attention to some features than

others? These questions are important in considering real-world

environments, where changes are frequent and require constant

adjustment of decision-making strategies. Most laboratory

analyses of such changes are static: The conditions are con-

sidered separately, with the aim of establishing differences in

decision-making strategies regardless of how environmental

changes give rise to those differences. In this article, we illus-

trate a method for going beyond this level, by using dynamic

analyses.

Our approach is substantially different from related work in

dynamic systems (e.g., Gilden, Thornton, & Mallon, 1995; Kelly,

Heath, & Longstaff, 2001; Van Orden, Holden, & Turvey, 2003).

That research has focused on spontaneous rather than experi-

mentally induced changes. For example, a common paradigm

involves collecting a long, stationary sequence of data and

extracting information about autocorrelation properties, or low-

dimensional nonlinear systems that might have produced the

data. These quasi-experimental analyses are post hoc—one

cannot predict the location of changes in the data without first

looking at those very data. A fundamentally different approach

is to induce dynamic changes via experimental manipulations.

This approach is a priori; changes in data can be predicted to

occur around the points at which experimental conditions were

changed.

We investigated induced dynamic effects in recognition

memory. We presented subjects with a series of photographic

images of everyday objects to be studied. Later, we tested the

subjects with a mixture of images presented at study (targets)

and new images (lures). The crucial experimental manipulation

was an increase (or decrease) in difficulty halfway through each

test phase, caused by increased (or decreased) similarity of

targets and lures. This manipulation forced subjects to be more

(or less) careful, just as one must be more careful when recog-

nizing a child’s face in a crowd of children (and less careful when

recognizing a child’s face in a crowd of adults). Our primary

research questions were, can we measure the onset of corre-

sponding changes in subjects’ strategies, and if so, how quickly

are those changes made? We developed a dynamic version of

signal detection theory (SDT) to explore these questions.

METHOD

We created two different levels of difficulty by changing the

kind of distractors (lures). In the easy condition, lures were

quite clearly different from the studied items; in the difficult

condition, lures were very similar to the studied items. Our

experimental design was similar to that of Benjamin and Bawa’s

(2004) Experiment 3, with two important differences. First, we

adjusted our test conditions to increase difficulty (e.g., average

of around 63% correct responses, compared with around 90%
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for Benjamin & Bawa’s study). Second, we had each participant

change between the easy condition and the difficult condition six

times, whereas Benjamin and Bawa’s participants experienced

just one change. Our design allowed us to make more reliable

measurements of performance around the point of stimulus

change and thus to analyze dynamic-model hypotheses.

We created the memory stimuli from images of everyday ob-

jects photographed against white backgrounds. There were 30

images in each of six categories: telephones, bags, hammers,

cameras, binoculars, and guitars (see Fig. 1 for an example).

Images in a study list were all drawn from a single category.

During the test phase, lures were either difficult or easy. Easy

lures were simply new pictures drawn from the same category

used in the study list. For example, Figure 1a shows a picture of a

pair of binoculars that could have been used as a studied item.

Figure 1b shows a picture of a different pair of binoculars, not

shown in the study list—a lure for the easy condition. Difficult

lures were mirror images of studied pictures: For example,

Figure 1c shows the difficult lure corresponding to Figure 1a. We

never tested both mirror and nonmirror versions of any image.

We warned subjects that mirror images of studied items might

appear as test items, and instructed subjects that mirror images

were not old items and should be responded to as lures. Each

study list was created by drawing 18 images from a single cat-

egory. The corresponding test list was created by drawing 12

images from the study list (old items), 6 new images from the

same category (easy lures), and 6 mirror images of studied items

(difficult lures). The remaining 6 items in the category were used

for 3 initial and 3 final buffer pictures on the study list, but were

not used in the test list. Figure 2 has an illustrative example of a

study and a test list, showing a transition from the easy context

(the first 12 test trials) to the difficult context (the final 12 test

trials).

During the test phase, subjects were shown pictures (either

studied items or lures) one at a time and asked to rate how

confident they were that each picture had been previously

presented in the study list. They responded using a mouse and

an on-screen rating scale. The rating scale consisted of three

choices for both old and new: ‘‘very sure,’’ ‘‘sure,’’ and ‘‘not

sure’’; in all analyses reported here, we collapsed these ratings

into ‘‘old’’ and ‘‘new’’ responses. Participants were not given any

feedback about the accuracy of their decisions. Each participant

completed six study-test blocks. During each block, the diffi-

culty condition switched after the 12th trial, such that there were

only easy lures for Trials 1 through 12 and only difficult lures for

Trials 13 through 24, or vice versa.

Blocks containing easy-to-difficult and difficult-to-easy

switches alternated, with the direction of change for the first

block selected randomly. The 13th image in each test list was a

lure, so that the switch point could be defined accurately. Par-

ticipants were explicitly warned to be vigilant against classify-

ing mirror images of studied items as old. Participants were not

told that easy and difficult lures would occur in different sections

of the experiment, or that there would be switches between easy

and difficult conditions. In fact, postexperimental debriefings

suggested that participants were unaware of the separation of

easy and difficult lures into different parts of each block. We also

did not explicitly tell subjects that each test list would contain

exactly 50% old and 50% new items. However, we assume that

our subjects expected this property to hold, and may have used

this knowledge during the experiment.

Forty-seven undergraduates from the University of California,

Irvine, participated in the study, but data from 11 subjects were

omitted from analysis. Those 11 participants did not pay at-

tention to the task instructions and treated mirror-image lures as

old items, yielding unacceptable false alarm rates (FARs; over

75%).

RESULTS

The bottom left panel of Figure 3 shows changes in the hit rate

(HR) and the FAR across the 24 trials within each block, sep-

arately for blocks that began with the easy condition and ended

with the difficult condition and blocks that began with the dif-

ficult condition and ended with the easy condition. In the first 6

Fig. 1. Sample study picture (a) with sample distractors from the easy
condition (b) and the difficult condition (c).

Fig. 2. Illustration of the sequence of stimuli in the study and test blocks. The numbers below the items indicate
the image numbers. F 5 filler item; T 5 study item; M 5 study item whose mirror image was to be used as a hard
distractor at test; De 5 easy distractor; Dh 5 hard distractor.
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trials of each block, the FAR was higher and the HR was lower in

the difficult context than the easy context. This is the well-

known mirror effect, which has been very important in the de-

velopment of memory theories (e.g., Benjamin & Bawa, 2004;

Glanzer & Adams, 1990; Glanzer, Adams, Iverson, & Kim,

1993; Stretch & Wixted, 1998). A higher FAR was to be ex-

pected in the difficult condition because the difficult lures were

very similar to the studied items, so many of them were erro-

neously called ‘‘old.’’ The upper left panel of Figure 3 plots the

difference between the HRs in the easy and difficult conditions.

The fact that the HR was lower in the difficult condition than in

the easy condition before the change point must be ascribed to

internal differences within the participants, as the studied items

producing the HRs were the same in the easy and the difficult

contexts. Most researchers assume that some kind of criterion

shift underlies the mirror effect (at least, when the criterion is

not required to shift on every trial—see Stretch & Wixted,

1998). That is, when a decision environment becomes more

difficult, or the probabilities of the two stimulus classes change,

observers respond by changing the amount of evidence they

require to make each response type (e.g., Benjamin & Bawa,

2004; Berch, 1976; Marken & Sandusky, 1974).

After the stimulus switch point (between Trials 12 and 13), the

FAR changed dramatically, reflecting the change in lures. The

FAR for transitions from easy to difficult lures showed a dra-

matic increase, and the FAR for difficult-to-easy transitions also

showed a significant decrease. These changes occurred imme-

diately after the switch point, but there was no correspondingly

immediate change in the HR. After the switch point, the HR for

blocks that began in the difficult condition remained lower than

the HR for blocks that began in the easy condition, even though

those conditions had reversed. Thus, immediately after the

change, the HR was higher in the difficult condition than in the

easy condition—the opposite of a mirror effect. Finally, during

the last six trials of each block, the ordering of the HRs reversed,

and the mirror effect re-appeared.

Fig. 3. Experimental data (left) and fits of the dynamic signal detection theory (SDT) model to
those data (right). The lower graphs show mean hit rates (HR) and false alarm rates (FAR)
across trials within each block, separately for blocks that started in the easy context and
switched to the difficult context and for blocks that started in the difficult context and switched
to the easy context. The upper panels show the differences in HR between the easy and difficult
contexts (calculated by subtracting HR for blocks that began with the difficult context from HR
for blocks that began with the easy context). The error bars in the upper panels show standard
errors, calculated using a repeated measures analysis of variance algorithm. In the panels
showing the model-fitting results, the lines show predictions from the dynamic SDT model,
calculated separately for each subject and then averaged (the data points are from the graphs on
the left). For these graphs, we averaged data across participants and within six-trial windows,
but for the model analyses reported in the text, we used unaveraged data.
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DYNAMIC SDT

Our results show that after the onset of an experimental change

in the difficulty of distractors, the usual mirror pattern in HR and

FAR took 6 to 12 trials to reestablish. The parallel changes for

HR and FAR suggest a criterion-shift explanation for this mirror

effect. To provide such an explanation, we have developed a

simple SDT model that includes a dynamic lag component to

model the delay in reestablishing mirror effects. In a previous

study involving a different paradigm (Brown & Steyvers, 2005),

we used this model to estimate parameters describing per-

formance, including sensitivity (d0), bias, and change point. The

dynamic model we employ here incorporates simple SDT models

to describe performance in the easy and difficult conditions. The

model is dynamic in the way it accounts for changes between the

two conditions: We assume that when the lures change, the lure

distribution in the model changes immediately, but that the

decision criterion changes only after some time lag (specified by

the change-point parameter). This process is illustrated in

Figure 4.

Figure 4a shows a standard SDT model for the easy condition.

Note that the distractor distribution is well separated from

the target distribution, because the distractors are easy. In

Figure 4b, the distractors are much more difficult, so the

distractor distribution is much closer to the target distribu-

tion. This change increases the FAR immediately and dramat-

ically. Because the decision criterion has not yet moved from

its previous placement (which was appropriate for the easy

condition), the HR remains unchanged. After some time has

passed (a lag), the decision criterion is updated, as shown in

Figure 4c. This change causes parallel decreases in the FAR

and HR. The key dynamic assumption is that the properties of

the target and lure distributions are fixed by the experimenter,

but the location of the decision criterion is under subjects’ control.

In Figure 4, we simplified the model description by using

decision criteria that were set optimally. However, when we fit

the model to the data, we freely estimated the decision criteria

(bias parameters).1 The predicted HR and FAR averaged across

subjects are shown in the bottom right panel of Figure 3, together

with the averaged data. The model fit the data quite well, cap-

turing the large, immediate change in the FAR after the stimulus

switch point, as well as the slower change in the HR (shown in

detail in the upper right panel of Fig. 3). The dynamic SDT

model also captured the slower postswitch trends in the FAR,

that is, the pattern of slow change in the direction opposite the

direction of the initial large changes.2 Reasonable estimates of

Fig. 4. Illustration of the dynamic signal detection theory (SDT) model during a change from the easy to the difficult
condition. The example begins with a standard SDT model for an easy distinction (a); the x-axis represents famil-
iarity, and probability distributions for targets and distractors are shown, along with the decision criterion for
responding ‘‘old’’ versus ‘‘new’’ (the dashed vertical line). When the distractors become more similar to the targets,
the decision becomes more difficult, but the criterion does not change immediately (b). As a result, the false alarm
rate (FAR) increases, but the hit rate (HR) is unchanged. After some lag time (c), the criterion is updated, decreasing
both the HR and the FAR.

1We used maximum likelihood to estimate five model parameters for each
subject, without averaging over trials or blocks. That is, for given parameters,
we calculated expected HR and FAR from the model, then used these values to
calculate the likelihood of 1 subject’s data sequence under the model. We re-
peated this process, adjusting parameter estimates using the simplex algorithm,
to maximize the likelihood. Note that in the simple static case, this method is
equivalent to calculating sensitivity and bias using the standard z transforms.

2The model assumes that the variances of the distributions for old and new
items are equal. Previous research suggests that this assumption is often untrue,
especially in recognition memory (e.g., Glanzer, Kim, Hilford, & Adams, 1999;
Malmberg, 2002; Ratcliff, Sheu, & Gronlund, 1992; Sheu & Heathcote, 2002;
Verde & Rotello, 2003). Because our model includes a criterion shift during
otherwise-stationary data sequences, we were able to directly estimate variance
ratios. This approach uses the same principle as receiver-operating-charac-
teristics (ROC) analysis, except that it involves two explicitly different criterion
placements, rather than several implicit criteria used to model confidence
judgments. For most participants, the unequal-variance dynamic SDT model
did not fit the data significantly better than the simpler equal-variance model
(according to a nested-model comparison using a chi-square test on log-like-
lihood differences). The mean estimated ratio of the standard deviation for new
items to the standard deviation for old items was 0.53 (standard error 5 0.31).
Note that this estimate of the variance ratio was obtained without using the
confidence-rating data, and yet it is approximately consistent with estimates
based on ROC analyses of those data. The agreement between our dynamic
estimates and ROC estimates suggests that our (new) methodology for esti-
mating variance ratios in SDT produces reasonable values; however, either the
data or the effect sizes were insufficient to make reliable distinctions between
equal- and unequal-variance models.
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lags were obtained: It was estimated that, on average, partici-

pants changed their criterion location after the 15th trial of each

block, 3 trials later than optimal. That the lag estimates are

reasonable, and the fits to the data are good, suggests that the

model captures behavior well even when fit to relatively scant

data. However, more observations of switch points would im-

prove parameter estimation (e.g., using a simpler task, we col-

lected either 10 or 20 observations per subject—Brown &

Steyvers, 2005).

DISCUSSION

We created a recognition memory task that switched between

easy and difficult conditions by changing the properties of lures

in the middle of each test list. Results were similar to those of

other studies (Benjamin & Bawa, 2004; Stretch & Wixted,

1998), as we observed a mirror effect consistent with changes in

decision criteria. We applied to the data a dynamic SDT model in

which criteria shifted in response to changes in the properties of

lures, but these shifts occurred some time later than the stimulus

changes.

The dynamic SDT model is our attempt to illustrate a weak-

ness in many current models. In most models, some parame-

ters—such as decision criteria—are assumed to be under

subjects’ control, and these parameters are most often simply

assigned some value, without any explanation of when that value

changes after conditions are changed. The basic principle be-

hind the dynamic SDT model (an assumption that can be im-

plemented in many other models as well) is that different

decision-making strategies are adopted in response to changes

in the decision-making environment, but that these changes in

behavior occur at some lag, which can be estimated from the

data. These estimated lags can be of both psychological and

methodological interest.

Our use of dynamic analyses for dynamic designs is unusual,

but not unprecedented. We concentrated on cognitive changes

that take place over many (6–12) trials. Other researchers have

examined shorter-term dynamics, most notably in studies of

sequential effects during decision making or categorization

(e.g., Petrov & Anderson, 2005; Stewart, Brown, & Chater, 2005;

Treisman & Williams, 1984; Vickers & Lee, 1998, 2000; Ward &

Lockhead, 1970). These studies differed from our work in two

important ways. First, the sequential effects were much shorter-

term fluctuations than the changes we studied—on the order of 1

or 2 trials, rather than 6 to 12. Second, the sequences of stimuli

assumed to cause sequential effects were always confounded

with sequences of responses, making causal inferences difficult.

The design we have used avoids this problem, and is not limited

to recognition memory.
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