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The Dynamics of Experimentally Induced Criterion Shifts

Scott Brown and Mark Steyvers
University of California, Irvine

Investigations of decision making have typically assumed stationarity, even though commonly observed
“context effects” are dynamic by definition. Mirror effects are an important class of context effects that
can be explained by changes in participants’ decision criteria. When easy and difficult conditions are
blocked alternately and a mirror effect is observed, participants must repeatedly change their decision
criteria. The authors investigated the time course of these criterion changes and observed the buildup of
mirror effects on a trial-by-trial basis. The data are consistent with slow, systematic changes in decision
criteria that lag behind stimulus changes. The length of this lag is considerable: analysis of a simple
dynamic signal-detection model suggests participants take an average of around 14 trials to adjust to new
decision environments. This trial-level measurement of experimentally induced changes has implications
for traditional blockwise analyses of data and for models of decision making.
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A common assumption in models of decision making is station-
arity. With few exceptions (e.g., Kac, 1966; Rabbit, 1981; Strayer
& Kramer, 1994a, 1994b; Treisman & Williams, 1984; Vickers &
Lee, 1998, 2000), models of decision making assume that succes-
sive decisions are independent. The assumption of stationarity has
proven useful in keeping models simple and tractable and seems
reasonable, as most decision-making experiments have used sta-
tionary decision-making environments. More recently, there has
been a growing focus on nonstationary (dynamic) research. A
central feature of most dynamic research in psychology is a focus
on behavioral changes triggered by internal events, such as stim-
ulus or response monitoring and error-rate tracking (e.g., Heit,
Brockdorff, & Lamberts, 2003; Kelly, Heath, & Longstaff, 2001;
Petrov & Anderson, 2005; Rotello & Heit, 2000; Treisman &
Williams, 1984; Van Orden, Moreno, & Holden, 2003). Often,
these internally induced changes are fast, on the order of seconds
(although see also Gilden, Thornton, & Mallon, 1995). The key
aspect of internally induced changes is that they can occur at any
point during measurement—there is no way to predict their arrival
times before the experiment begins.

Below, we consider decision environments that are themselves
dynamic, experimentally inducing changes in behavior. For exam-
ple, consider a medical observer making decisions about the nature
of tumors (benign vs. malignant) from X-ray photographs. Deci-
sion difficulty will change with time, as the patient population or
perhaps the picture clarity changes. Observers must dynamically
adjust their decision-making processes to reflect changes in the
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environment: if it becomes easier to identify benign tumors, ob-
servers should relax their criterion for identifying malignant tu-
mors. Below, we report an empirical and theoretical investigation
of this classic criterion setting problem. We introduce a simple
decision model based on signal detection theory (SDT) to measure
changes in criterion, and fit this model to data from four experi-
ments in which we experimentally induce changes in the decision
criterion.

Our research addresses the dynamics of criterion shifts induced
by experimental manipulations. These manipulations lead to sim-
ple a priori predictions for the timing of the induced criterion
changes. Experimental manipulations set up a dynamic decision-
making environment in which the predicted criterion changes can
be measured. For generality, we refer to the two classes of decision
stimuli as targets and distractors. These stimuli could be malig-
nant versus benign tumors, words versus nonwords in a lexical
decision task, or any of a host of other examples. We define two
different decision environments by the properties of their distrac-
tors. In one environment, the distractors may be relatively dissim-
ilar from the targets, making decisions relatively easy. In the other
environment, the distractors and targets may be much more alike
resulting in relatively hard decisions. We then construct a dynamic
decision environment by alternating sequences of easy and hard
decisions, as shown in Figure 1.

The alternating decision contexts illustrated in Figure 1 have
been widely used in blocked cognitive psychology experiments,
often leading to context or blocking effects. A context effect occurs
when behavior associated with an experimental condition is dif-
ferent at different times—even though the condition itself is un-
changed—because the context of the condition has changed. One
particularly prominent context effect is the mirror effect, describ-
ing a particular relationship between performance levels in a pair
of decision environments of different difficulty. A mirror effect is
said to occur when performance in the easier condition is marked
by better performance on both of the response alternatives. For
example, in recognition memory, a mirror effect occurs when the
condition with higher accuracy has both higher hit rate (HR) and
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Figure 1. Basic paradigm. Decision environments change (A) leading to

changes in the optimal decision criterion (B). Participants’ actual decision-
making processes (C) lag behind.

lower false-alarm rate (FAR) than the condition with lower accu-
racy (e.g., see Glanzer, Adams, Iverson, & Kim, 1993). A mirror
effect can be observed when the properties of one stimulus type
(e.g., distractor items) are changed. Changes in FAR are to be
expected from changes to the stimuli with which they are associ-
ated (distractors) but mirror effects include changes in HR that
cannot be explained this way. Because the properties of the target
stimuli are unchanged, observed changes in HR must be due to
changes in participants’ decision-making processes.

Our focus is on the dynamic properties of mirror effects—how
they are established over time and how they change when
decision-making contexts are changed. Mirror effects are most
conveniently explained by changes in the location of a decision
criterion between the high- and low-accuracy conditions through
the use of SDT (Green & Swets, 1966). SDT posits that partici-
pants decide between two classes of items (i.e., targets and dis-
tractors) by generating an internal magnitude for each stimulus and
comparing that magnitude with a decision criterion, as illustrated
in Figure 2. Target and distractor stimuli give rise to distributions
of internal magnitudes that cross over: some distractor stimuli have
greater perceived magnitudes than some target stimuli and vice
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versa. The decision criterion illustrated in Figure 2A is optimal in
the sense that it minimizes the total number of errors (misses +
false alarms). We have drawn an optimal criterion for simplicity of
display, but in our analyses we always allow arbitrary criterion
values (i.e., we estimate bias).

In the SDT framework, a mirror effect can be caused by chang-
ing the properties of just the distractor items. Suppose the task
becomes more difficult because the distractors are made more
similar to the targets (shown in Figure 2B), then the old decision
criterion is no longer optimal and must be raised. Intuitively, this
represents the idea that participants recognize that moderate per-
ceived magnitudes are now more likely than before to have come
from the distractor distribution. Within the framework of SDT, a
mirror effect resulting from changes in the properties of just the
distractor items can only be explained by changes in the decision
criterion: With an unchanged distribution for target items, ob-
served changes in HR can only be due to changes in the decision
criterion. Although mirror effects can be explained by criterion
shifts (e.g., Stretch & Wixted, 1998, but see also Mewhort &
Johns, 2000), the time course of these shifts has been largely
unstudied. Much research has assumed that criterion shifts occur in
negligible time, but this is statistically impossible in many situa-
tions—some minimum number of samples from the new environ-
ment is required to identify a context change. Below, we present
experiments and theory investigating the time course of criterion
shifts that establish mirror effects.

Simple Dynamic Measurement Model

We have developed a simple dynamic version of SDT to ap-
proximate the expected behavior of an observer in the dynamic
decision-making paradigm outlined above (in Figure 1). In its
simplest form, the dynamic SDT model is designed to apply to
decision-making tasks where there are two different decision-
making environments that alternate throughout the task. The model
is based on two static SDT models, one for each decision-making
environment, where one environment is more difficult than the
other. The model assumes that there is an SDT model operating in
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Figure 2. A: Illustrates standard signal detection theory. B: How the optimal decision criterion changes when
the properties of the distractors are altered. Stimuli above the decision criterion are classified as targets; stimuli

below are classified as distractors.
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the difficult environment, defined by a sensitivity parameter (dj,
where H = hard) and a decision criterion (Cy;) and another SDT
model operating in the easy decision environment, defined by dj;
and Cp (where E = easy). We assume equal variances for the
target and distractor distributions, although later we discuss—and
test—unequal variance models.

The crucial addition that allows us to model dynamic behavior
is that we assume that the criterion lags when decision environ-
ments change. For example, when the decision environment
changes from easy to difficult, we assume that the sensitivity of
decisions changes immediately, from df to dy;. Immediacy makes
sense given that the stimuli themselves define decision difficulty.
By contrast, the decision criterion is under the control of the
decision makers, and thus will not change until they notice the
change in decision environment or some correlated variable (e.g.,
changed error rates). In our example, when changing from an easy
to a hard decision environment, we assume that the decision
criterion only changes from Cg to Cy after some lag, L. Our
assumption of a stepwise change in criterion may seem overly
simple and is different from the incremental adjustments assumed
by others (e.g., Strayer & Kramer, 1994b; Treisman & Williams,
1984). We examined other assumptions, such as a smooth expo-
nential approach from the old to the new criterion, or a piecewise-
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linear approach, and found that they provided no significant im-
provement in fit. Given that the data could not discriminate
between the various possibilities, we chose the stepwise criterion
change for its computational simplicity and the interpretability of
its parameter L (the number of trials after an environment change
before participants change their criterion).

Model Predictions

Figure 3 illustrates the predictions of this model. Once again, we
have drawn optimal decision criteria on Figure 3 for simplicity of
illustration; when fitting the model to data, we allow for nonopti-
mal criteria by estimating bias parameters. The SDT model de-
picted in Figure 3A, t,, illustrates behavior during easy decisions:
dy, is relatively large (the signal and noise distributions are rela-
tively far apart), and the criterion Cy is approximately optimal.
This submodel leads to the HR and FAR predictions at the left
edge of Figure 3F, with high HR and low FAR. Suppose the
decision environment changes from easy to hard at time z,, when
the distractor stimuli become more similar to the targets. The SDT
model then operating is shown in Figure 3B, labeled #,: note that
sensitivity has decreased as a result of the harder stimuli (di has
changed to djj), but the criterion has not yet changed. This leads to
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Figure 3. Predictions from the dynamic signal detection theory (SDT) model. A-D:

time

Static SDT submodels. E:

Predicted criterion changes. F: Predicted hit and false-alarm rate changes.
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the HR and FAR predictions shown in Figure 3F in dashed lines
under 7,: no immediate change in HR but a large increase in FAR.
After some lag, L, the decision maker updates his or her criterion
to Cy, the criterion for hard decision environments (shown by the
dashed line in Figure 3F). The SDT model then operating is shown
as t5 in Figure 3C, and its predictions are shown by the dashed
lines under the label 75 in Figure 3F: a decrease in both HR and
FAR. Finally, the decision environment again changes back to the
easy condition, changing sensitivity but not immediately changing
the decision criterion. This corresponds to SDT model #, shown in
Figure 3D and a predicted decrease in FAR, with no change in HR.
Again, after some lag, the decision criterion is changed to Cg,
bringing us back to the SDT model ¢,.

The dashed lines in Figure 3E and 3F show predictions for an
individual participant: our assumption of stepwise criterion
changes results in stepwise changes in predicted HR and FAR.
When analyzing data below, we show fits to large groups of
participants, where each participant is fit individually, but the
observed and expected HR and FAR are averaged over participants
for graphing. Those graphs show smooth changes in FAR and HR,
as illustrated by solid lines in Figure 3E and 3F. Smooth transitions
are the result of averaging over many individual stepwise transi-
tions with variable step positions.

Equal Versus Unequal Variance Assumptions

The illustrations of the dynamic SDT model above all use equal
variance target and distractor distributions. In recognition memory
tasks, as opposed to the lexical decision task we use, many re-
searchers have observed unequal variances for these distributions
(e.g., Glanzer, Kim, Hilford, & Adams, 1999; Malmberg, 2002;
Ratcliff, Sheu, & Gronlund, 1992; Sheu & Heathcote, 2002; Verde
& Rotello, 2003). We have no a priori reason to believe that the
target and distractor distributions should have unequal variances in
lexical decision. On the contrary, there is some evidence for an
equal variance assumption. Jacobs, Graf, and Kinder (2003) mea-
sured receiver operating curves in a lexical decision task and
observed that the slope of their z-transforms was not significantly
different from one, supporting the equal variance assumption. Our
model analyses are not restricted to the equal variance assumption,
so we provide direct tests of whether unequal variance models
provide better descriptions of the data. Additionally, we test
whether the relevant parameter estimates (criterion lags) are dif-
ferent in equal versus unequal variance models. To foreshadow,
the unequal variance models do not significantly improve good-
ness of fit, nor do they significantly alter parameter estimates.

Change Mechanism

A limitation of the model so far is that it does not include a
mechanism for how changes in criterion occur: What triggers a
change? Mechanisms have been proposed on the basis of response
monitoring (Treisman & Williams, 1984), stimulus monitoring
(Strayer & Kramer, 1994b; Vickers & Lee, 1998, 2000), and
error-rate monitoring (Rabbit, 1981). Each of these mechanisms
entails constant, small-scale adjustment to criterion position. We
use a simpler, descriptive model of criterion change that ignores
small, spontaneous changes and returns focus to the larger, exper-
imentally induced changes. This mechanism is based on change

detection and so applies naturally to experimentally induced cri-
terion changes, which presumably depend on detection of changed
stimulus properties.

Experiments 1-4

Mirror effects due to changes in decision difficulty have been
observed across a wide range of decision tasks. For example,
Stretch and Wixted (1998) identified mirror effects in episodic
item recognition when they manipulated memory strength by
giving greater study opportunities for some items than for others.
Glanzer and Adams (1985, 1990) observed a similar effect when
they manipulated recognition memory accuracy by changing the
length of study lists. Mirror effects have also been observed in
decision tasks other than recognition memory. In particular, robust
context effects have been observed in lexical decision tasks in
which participants classify strings of letters as words (e.g., CAT) or
nonwords (e.g., CXT; see, e.g., Glanzer & Ehrenreich, 1979;
Gordon, 1983; Grainger & Jacobs, 1996; Ratcliff, Gomez, &
McKoon, 2004).

Wagenmakers et al. (2004) also identified a mirror effect in
lexical decision. They observed improved performance for both
words and nonwords (a mirror effect) when the similarity of the
nonwords to the words was decreased. Mirror effects in lexical
decision tasks usually include changes in both response time (RT)
and accuracy. In our experiments, we use a variant of the signal-to-
respond procedure, similar to that of Wagenmakers et al. and to the
Kello and Plaut (2000, 2003) tempo naming task. This procedure
allows us to hold RT relatively constant and to observe changes
only in response accuracy, which simplifies analysis and allows
comparison with the predictions of our dynamic SDT theory.

We used a lexical decision task in Experiments 1-3 and a
numerosity categorization task in Experiment 4. In each experi-
ment, we alternated easy and difficult decision contexts. The easy
and hard contexts always differed only in the properties of one of
the stimulus classes—the properties of the other class remained
unchanged throughout the experiment, allowing separation of ef-
fects due to criterion shifts from effects due to stimulus changes.
In Experiments 1-3, the difficult decision context was defined by
nonwords that were very similar to real words—they have a high
“wordiness”—and the easy decision context was defined by non-
words with lower wordiness. In Experiment 1, the changes be-
tween hard and easy decision contexts occurred at random points
within each block. Experiment 2 used a more typical block design
in which the decision context only changed between blocks. Ex-
periment 3 was the same as Experiment 2, except that participants
were made aware of the experimental design before beginning. In
Experiment 4, participants decided whether strings of arrows had
more arrows facing left or right. The properties of one kind of
display (left or right facing) were kept constant within participants,
whereas the properties of the other were manipulated to change
decision difficulty. Changes in difficulty occurred only during
block breaks.

Method

Procedure (Experiments 1-3)

The participants’ task was always to respond with one mouse button if
a letter string presented was a valid English word and with another button
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if it was not (mouse button timing on our systems provides an accuracy of
about =6 ms; see Beringer, 1992). The buttons used for each response
were counterbalanced across participants. The same set of words and
nonword strings were used in all three experiments. Seven-letter words
were drawn from the Kucera and Francis (1967) word pool, and nonwords
were constructed by altering either just one letter of a valid word (making
hard nonwords) or by altering three letters (easy nonwords), always check-
ing to ensure that the resulting letter string was not a new valid word. The
letters used to replace letters in valid words when creating nonwords were
chosen from a multinomial distribution approximately matching the letter
frequencies observed in written English: Table 1 gives examples of the
stimuli.

We used a variant of the signal-to-respond procedure in order to keep
response latency as constant as possible, leaving accuracy as our only
dependent variable, similar to the Kello and Plaut (2000, 2003) tempo
naming task. In their procedure, a series of rhythmic tones are presented on
each trial that help participants anticipate the response signal. We gener-
alized their method by keeping a constant rhythmic tone throughout each
experimental block, continuing between trials. Every 400 ms, a 256-Hz
tone sounded for 50 ms, and these beeps reliably indicated when stimuli
would be presented and also when responses were required. Each trial
consisted of two beeps with a blank stimulus-display area, followed by
three “countdown” beeps during which the numbers 3, 2, 1 were displayed
in the stimulus position. The stimulus character string was displayed on the
beep immediately after the / and was removed from display on the
following beep.

Participants were instructed to respond between 330 ms and 700 ms after
the stimulus was displayed on the screen. If their responses were outside
this window, they were given either TOO FAST or TOO SLOW feedback.
To help participants keep their responses within the acceptable window, a
visible frame surrounding the stimuli changed orientation during the “re-
sponse window” time. This frame remained constantly visible throughout
each block, changing only when a response was expected. Whenever there
was no stimulus on display, the interior of the frame was blank.

At the end of each block, participants were informed of their mean
accuracy and response latency for that block to help them maintain the
desired performance level. As an extra aid, all procedural timings slowed
down by 50% in the first block (i.e., interbeep time of 600 ms), 33% in the
second block (interbeep time of 533 ms), and 16.7% in the third block
(interbeep time of 467 ms). All timings were rounded to the nearest integer
multiple of the display monitor’s vertical refresh period, which never
resulted in a change of more than 7 ms in any timing setting, and stimulus
presentations were synchronized with the screen’s vertical refresh.

Table 1
Examples of Easy and Hard Nonword Strings and Words Used
in Experiments 1-3

Nonwords
Easy Hard Words

CNOTSUN SUBVIRT PASSIVE
HASWEND COMNLEX DESCENT
FOMLERS LIBFARY CONICAL
BOEKLAW PETWIFY FURIOUS
EPPAASI FROPLET COMPOST
UNILIMA PYRAMOD FAILING
KTEDUAL SUBJERT ROYALTY
ROSTOMG CINEGAR INQUIRE
SEARAHE KSOWING PAINTER
REAYSED CROQUIT CURRANT
Note. The “wordiness” of easy nonwords is lower than that of the hard

nonwords.

Experiment 1: Details. Participants were 149 undergraduates from the
University of California, Irvine, who received course credit for participat-
ing. Data from participants with an overall accuracy of less than 55% or
who had fewer than 70% of their responses within the acceptable latency
window were discarded. This resulted in the loss of data from 14 partici-
pants (9.3%). Each participant in Experiment 1 completed 10 blocks of 100
trials each. Within each block, there was just one “switch point,” the
position of which was distributed exponentially over trials greater than 20,
with a mean switch point of Trial 50 (the distribution truncated above Trial
90). An exponential distribution of switch points was used for its constant
hazard rate, making the probability of a switch occurring at any point,
given that it had not previously occurred, constant. This makes the switch
points least predictable, from a participant’s point of view.

At the switch point, the nonwords changed from either hard to easy or
easy to hard. Changes from easy to hard nonwords always occurred on
blocks after changes from hard to easy and vice versa, so that stimulus
properties were never changed between blocks. The switch point was
constrained to be an even number, and there were always identical numbers
of words and nonwords before the switch and identical numbers of each
after the switch point. Order of words and nonwords was selected by
randomization without replacement, subject to the constraint that there
were never more than five words or nonwords in succession. Participants
were not informed about the changes between stimulus types or that there
were different classes of stimuli.

Experiment 2: Details. Participants were 108 undergraduates from the
University of California, Irvine, who received course credit for participat-
ing. Data from only 2 participants (1.85%) were rejected as a result of poor
accuracy or inability to respond within the acceptable latency window. The
improved performance over Experiment 1 most likely reflected the shorter
blocks: There were 20 blocks of 40 trials each in Experiment 2. There were
no switch points within blocks, so that blocked stimuli were always
homogeneous. Each block had 20 words and 20 nonwords ordered ran-
domly, such that there were never more than 5 words or nonwords in
succession. As before, the words used were always drawn from the same
pool throughout the experiment, whereas the nonwords alternated from
easy to hard across blocks. The class of nonwords used for the first block
(easy vs. hard) was randomized across participants. Participants were not
informed about the classes of stimuli.

Experiment 3: Details. Participants were 169 undergraduates from the
University of California, Irvine, who received course credit for participat-
ing. Data from 7 participants (4.1%) were rejected as a result of poor
performance. The design for Experiment 3 was identical to that of Exper-
iment 2, except for the instructions given to participants. Participants were
informed before the experiment began that there were two types of non-
words, those that were “easy to distinguish from real words” and those that
were more difficult. They were shown examples of each class of nonwords.
Before each block of trials began, a warning message was displayed
informing participants what kind of block (easy or hard) was next. This
warning was displayed in green for blocks with easy nonwords and in red
for blocks with difficult nonwords. During each block, the type of block
(easy vs. hard) was continuously displayed at the bottom of the display
screen in green or red.

Experiment 4: Details. We designed Experiment 4 to be conceptually
similar to Experiment 2, although we used a different choice task: numer-
osity instead of lexical decision. On each trial, participants in Experiment
4 were presented with a single row of 10 left and right pointing arrow
symbols (two examples are shown in Figure 4). For each stimulus, the
participants were to decide whether there were more arrows facing to the
left or to the right and to push the corresponding mouse button. The
left-to-right order of the arrows was randomly shuffled on every trial.

We used the same rhythmic beeping procedure as before, and we
manipulated task difficulty between blocks as in Experiment 2. There were
20 blocks, each with 10 trials associated with left responses and 10 with
right responses. Decision difficulty was manipulated by changing the
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Figure 4. Example stimuli for Experiment 4. The appropriate response
for each would be to push the /eft button, as more arrows face left than
right. The upper stimulus is easier than the lower stimulus.

distribution of proportions of left and right facing elements used: a display
with 4 to 6 left-right elements (like the lower stimulus in Figure 4) is much
more difficult than one with 1 to 9 left-right elements (like the upper
stimulus in Figure 4). We always had right-favoring displays with either 4
to 6 or 3 to 7 proportions. We varied (between blocks) the left-facing
displays from easy (either 9 to 1 or 8 to 2) to hard (either 7 to 3 or 6 to 4).
We reversed the left-right assignment for half of the participants, although
we collapsed across this factor in all analyses below. There were 153
participants, and we discarded data from 24 participants who were unable
to meet the accuracy and response deadline criteria.

Results
Experiment 1

We calculated the HR and FAR for our participants, separately
for blocks with easy and hard decision contexts. Figure 5 shows
these data averaged across participants for Experiment 1.

The data from Experiment 1 are shown in Figure SA, aligned at
the switch point from easy-to-hard (solid symbols) or from hard-
to-easy (open symbols) decision contexts. The smooth lines are
predicted probabilities from the dynamic SDT model—the HRs
show smooth changes even though our model assumes stepwise
criterion changes simply because of averaging across participants
in the plot. The data were also averaged over blocks of eight
consecutive trials for the purposes of graphing. Note that model
fitting was done on completely unaveraged (trial-by-trial) data.
The y-axis shows the probability of “word” responses. The FARs
show that our manipulation of decision difficulty had the desired
effect. When the decision context was easy (solid symbols), the
probability of incorrectly identifying a nonword as a word was low
(FAR, which is represented by triangles in Figure 5). When the
nonwords were made more similar to words (after the switch
point), the FAR jumped dramatically. A corresponding sudden
decrease in FAR was observed when the nonwords were changed
from hard to easy (open symbols).

More interestingly, the change in nonword properties resulted in
changes in the responses to word stimuli, shown by the HR
(represented in circles in Figure 5). After the nonwords changed
from easy to hard (solid symbols), the HR steadily declined; when
the nonwords became easier, the HR steadily increased. These
changes are consistent with our hypothesis of a lagged change in
decision criterion. These HR changes describe a trial-by-trial
emergence of the mirror effect. Before the switch point, there was
a clear mirror effect: responses in the easy condition had both
higher HR and lower FAR. Immediately after the stimulus switch
point, the FAR reversed but there was no immediate change in the
HR and thus no mirror effect. With time, the HR reversed their
ordering and thus the mirror effect reemerged. This change took an
average of about 12 trials after the stimulus switch, suggesting that

there is a significant lag in participants’ decision criterion changes.
This is shown in greater detail in Figure 5B, which plots the
difference in HRs between easy and hard conditions. Just before
the stimulus switch point there was a reliable mirror effect: HRs in
the easy condition were significantly higher than in the hard
condition (one sample, one-tailed), #(134) = 3.4, p < .001. In the
8-trial window following the switch point, the HRs were not
significantly different, #(134) = 1.6, p > .05. During Trials 9-16,
and thereafter, the HR for the easy condition was once again higher
than for the hard condition (9-16 trials after switch, #[134] = 1.9;
17-24 trials after switch, #[134] = 2.1; 25-32 trials after switch,
f[134] = 3.3; all ps < .05). Note once again, that the smooth
changes observed in HR and FAR are consistent with averaging
stepwise changes across participants.

The data from Experiment 1 show another interesting effect
consistent with our lagged criterion change explanation. After the
stimulus switch point, the FARs change suddenly and drastically
but then show a slow change back toward more intermediate
levels. This pattern is also predicted by a lagged change in decision
criteria: Adjusting the decision criterion causes correlated changes
in both HR and FAR.

Experiments 2 and 3

Data from Experiments 2—4 are shown in Figure 6 in the same
format as Figure 5. The data from Experiments 2 and 3 show
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Figure 5. Data from Experiment | aligned to the stimulus switch point.
Solid symbols correspond to blocks in which decision contexts changed
from easy to hard, and open symbols represent blocks in which decision
contexts changed from hard to easy. A: Circles represent hit rate (HR);
triangles represent false-alarm rate. B: The difference between HR in easy
and hard conditions changing within a block. P = probability.
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similar patterns to those from Experiment 1. Recall that in Exper-
iments 2—4 stimulus properties were only changed between
blocks, so the effective stimulus switch point was Trial 0, and data
are aligned to that point for graphing. The FAR in blocks with easy
decision contexts (open triangles) was much lower than in blocks
with hard decision contexts (solid triangles). At the end of each
block, presumably after changes in decision criterion had occurred,
there were reliable mirror effects: HRs in the easy condition were
significantly greater than in the hard condition (e.g., Trials 33—40
in Experiment 2, f[105] = 5.2, p < .001; Trials 33—40 in Exper-
iment 3, #[161] = 6.4, p < .001). There also appeared to be strong
carry-over effects of task history: mirror effects were not present
immediately after the stimulus switch points (block breaks). HRs
in the easy condition were smaller than in the hard condition
during the first 8 trials of each block (the mean difference was
1.3%, t[105] = 1.6, p = .055, in Experiment 2; the mean differ-
ence was 1.2%, t[161] = 1.7, p < .05, in Experiment 3). In
Experiment 3 a statistically significant mirror effect reemerged
over Trials 9-16, #(161) = 1.8, p < .05, and strengthened there-
after (Trials 17-24, 1[161] = 5.2, p < .001). The changes were
slower in Experiment 2: Trials 9-16 showed a marginally signif-
icant mirror effect, #(106) = 1.5, p = .06, which became signifi-
cant over Trials 17-24, 1(106) = 3.8, p < .001.

The FARs from Experiment 3 demonstrate the same slow
changes as observed in Experiment 1 (although possibly to a

smaller extent), and this is consistent with our lagged criterion
change explanation of these data. After the stimulus properties
changed (between blocks), there was a sudden large change in
FARs. The FARs then slowly changed over the course of the block
toward more moderate values. The changes in FARs from Exper-
iment 2 were as expected (i.e., in the same direction as HR
changes) for difficult blocks only. For the easy blocks there was a
very slight trend for the FARs to decrease across the block: 10.8%
in Trials 1-8, 10.7% in Trials 9-16, 10.1% in Trials 17-24, 10.0%
in Trials 25-32, and 9.5% in Trials 33—40. These changes are not
close to statistical significance (simple effects analysis of variance:
F[4, 101] < 1), but they are in the opposite direction to our
predictions. Our assumption of nonoptimal criterion placement can
change predictions about slow changes in FAR.! If the criterion
placement in hard decision blocks is close to optimal, and the
criterion placement in easy decision blocks is higher than optimal,
our model would predict very small (or no) smooth changes in
FARs when changing from hard to easy contexts, though still
predicting nontrivial trends in FARs for easy-to-hard context
changes (as observed). Indeed, these asymmetric biases seem to be
present in our data. Our estimates of decision criterion placement
below show that, for each experiment, participants reliably dem-

! We thank Vincent Stretch for pointing this out.
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onstrated greater bias (toward target responses) in easy than in
hard blocks: Over all experiments, the mean bias (criterion esti-
mate standardized by d’ estimate) was 24% larger in easy than in
hard decision contexts. These differences were reliable in each
experiment: Experiment 1, #(134) = 8.0, p < .001; Experiment 2,
1(105) = 3.1, p < .01; Experiment 3, #(161) = 2.8, p < .01; and
Experiment 4, 1(128) = 2.0, p < .05. These observed bias differ-
ences support the above explanation of small or zero FAR changes
after switching.

The results of Experiments 2 and 3 were very similar. The
methodological difference between these experiments was in the
information given to participants. In Experiment 2, participants
were told as little as possible about the experimental design; in
Experiment 3, they were fully informed and encouraged to switch
between hard and easy decision environments as quickly as pos-
sible. The similarity of the data from these experiments suggests
that participants were unable to adjust to new decision environ-
ments more quickly even when recruiting conscious, intentional
processes. Strayer and Kramer (1994a, 1994b) found similar ef-
fects in their experiments: Participants were unable to speed up
adjustments of their (speed—accuracy trade-off) criteria in response
to instructions.

Experiment 4

Experiment 4 used the same conceptual design as Experiments
2 and 3 but a different decision task: numerosity rather than lexical
decision. The results of Experiment 4 are shown in the right-hand
panels of Figure 6, averaging over blocks of only 5 trials, rather
than the previous 8, because of the smaller block lengths. The data
from Experiment 4 were very similar to those from Experiments 2
and 3. When the decision task was easy, the FARs were much
lower than when the task was difficult. As before, there was a
reliable mirror effect in the latter part of each block: In Trials
15-20 the mean difference was 4.9%, #(128) = 3.2, p < .001. No
mirror effect was observed in the first 5 trials of each block, the
HR for the easy condition was lower than for the hard condition
(by 1.3%, on average). The HR ordering reversed during Trials
6-10: easy HRs were 2.1% higher than were hard HRs, but this
was not yet reliable, #(128) = 1.3, p = .09. A reliable mirror effect
emerged during Trials 11-15, #(128) = 1.7, p < .05.

In summary, the data from Experiments 1-4 all follow a simple
pattern, with minor variations due to methodological changes. This
pattern begins with a mirror effect: easy decision environments
had both lower FARs and higher HRs. When the decision context
was made more difficult by changing only the properties of the
distractor stimuli, there was a sudden change in FAR but no
immediate change in HR. That is, the mirror effect was tempo-
rarily suspended when the distractor properties were altered. With
time (an average of around 8-15 trials), the HRs changed to
reinstate a mirror effect. Similar slow changes in FARs were
observed, that were always in the same direction as changes in
HRs. All observed changes are qualitatively consistent with our
dynamic SDT model that includes a lagged criterion shift.

Estimating the Dynamic SDT Model

To more accurately describe the data in terms of lagged criterion
shifts, we estimated parameters for our dynamic SDT model sep-

arately for each individual participant in each experiment. The
model has five parameters: two sensitivities and two biases to
specify the easy and hard decision context SDT models (dg, djj, Cy,
and Cy) and a single /lag parameter (L) that measures how many
trials after stimulus properties are changed (d') before the decision
criterion (C) is changed. We assumed that the decision criterion
changed in a stepwise fashion between its easy and hard values,
although this represents a computational convenience rather than a
theoretical statement.

The HR and FAR probabilities can easily be calculated for each
situation (easy and hard decision contexts and lagged or not
criterion values), conditional on parameter estimates. With these
probabilities and the observed unaveraged data, it is simple to
calculate maximum likelihood estimators of the parameters by
search.” The predicted HRs and FARs for this model are shown by
the solid lines in Figures SA (for Experiment 1) and Figure 6A
(Experiments 2—4), aggregated in the same way as the data (within
eight- or five-trial windows, and across participants). Histograms
of the estimated lag parameters for all participants are shown in
Figure 7.

The estimated lags show that most participants were quite good
at appropriately changing their decision soon after the stimulus
properties changed. In Experiment 1, 22% of participants had
estimated lag parameters of between 0 and 5 trials. Some partici-
pants behaved very differently: 8% had negative estimated lags,
and 20% had estimated lags greater than 40 trials. Averaged over
participants, 22 trials (22% of block length) were needed to make
the switch between contexts. Similar behavior, but without nega-
tive lags, was observed in Experiments 2—4 (recall that negative
lags in Experiments 2—4 are isomorphic to long lags, as stimulus
changes occurred in block breaks). Note the similarity of estimated
lag values from Experiments 2 and 3, which again suggests that
knowledge of the experimental design and specific instructions to
participants do not decrease the amount of time taken to adjust to
new decision environments (consistent with Strayer & Kramer,
1994a, 1994b). In Experiments 2 and 3, averaged over participants,
13 and 15 trials, respectively, were required for participants to
switch between contexts, representing 33% and 38% of block
lengths. In Experiment 4, 7.7 trials were required on average,
representing 39% of block lengths.

Unequal Variance Models

In addition to the above equal variance analyses, we investigated
unequal variance models for our data. Our methodology allows us
to estimate variance parameters with standard maximum-
likelihood techniques, simultaneous with estimation of the other

2 Starting values for the searches were calculated by estimating static
SDT models separately for easy and hard decision contexts. Independent
minimizations were carried out for all feasible values of the lag parameter.
“Feasible” lag values included any positive integer not greater than the
block length in Experiments 2—4. In Experiment 1, where the stimulus
switch point was within a block, feasible lags included some negative
values, allowing that some participants may have anticipated the stimulus
switches.
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Figure 7. Histograms of estimated lags from fits of the dynamic signal-
detection theory model. Exp. = experiment.

model parameters.®> Data from Experiment 4 were not used for
unequal variance estimation. In Experiment 4, the assignment of
stimulus class to response type (target vs. distractor) was random-
ized across participants, as was the assignment of response type to
response button. This symmetry makes the differentiation of target
and distractor distributions purely formal, thus making unequal
variance models implausible.

The first unequal variance SDT model we examined for Exper-
iments 1-3 had one more parameter than the equal variance model
(the ratio of variance in target distribution to that of the distractor
distributions). This parameter did not significantly increase good-
ness of fit, as measured by chi-square likelihood ratio tests, for
many participants (15%). The next unequal variance model we
examined relaxed the assumption that the two distractor distribu-
tions (for easy and hard conditions) have the same variance. We fit
a model in which the variance of each of the three (target and two
distractor) distributions was related to their mean by a single
parameter: o = exp(—Amw). This model includes an equal variance
submodel (A = 0), submodels in which target distributions have
higher variance than distractor distributions (A < 0), or lower
variance (A > 0). This model also did not provide a better fit to the
data of very many participants (17%).

It is possible that the estimation of unequal variance models was
numerically problematic. Estimation of the unequal variance pa-
rameters relies on separating data from before and after the esti-
mated criterion switch point. When short lags were estimated,
there were little data for this estimation, so numerical difficulties
could have resulted in nonoptimal fits. As a check against this, we
fixed the variance parameters across all participants and estimated
the other parameters, just like estimating the equal variance model.
We performed this analysis for many different unequal variance

parameters. These models have no more parameters than the equal
variance model, and so standard model selection techniques
(Akaike’s information criterion, the Bayesian information crite-
rion, etc.) suggest simple selection based on likelihood value only.
The very best performance we observed for these “fixed”” unequal
variance models was for a model in which the target distribution
had unit variance, the hard distractors had variance 1/A/2 and the
easy distractors had variance one half. This model had higher
likelihood for 67% of the participants. While this is significantly
different from the 50% expected by chance, it was not overwhelm-
ing support for unequal variance models. Further, the mean in-
crease in likelihood was very small (less than 0.2%).

Even though the unequal variance models did not fit the data
significantly better than the equal variance model, it is possible
that they resulted in different parameter estimates, particularly
criterion lag estimates. We tested this by comparing lag parameter
estimates from the equal variance and unequal variance model fits
using two-tailed repeated-measures ¢ tests, for Experiments 1-3.
We used parameter estimates from the simplest unequal variance
model (the first one detailed above), reasoning that those estimates
would be most reliable. In each of the three experiments, there was
no significant difference between lag estimates under equal and
unequal variance models: Experiment 1 mean difference of 0.03
trials, #(134) < 1; Experiment 2 mean difference of 2.4 trials,
1(105) = 1.7, p > .05; Experiment 3 mean difference of 0.2 trials,
1161) < 1.

Practice Effects

Given the length of the experiments, it is natural to wonder
whether there were practice effects. Perhaps the lag in criterion
change decreased in the latter parts of the experiments, as subjects
became more adept at anticipating change; or perhaps the lag
increased in the latter parts of the experiments, due to fatigue. We
tested these effects by separately fitting dynamic SDT models to
the first and second halves* of each participant’s data. We then
calculated repeated-measures 7 tests to assess whether the criterion
lag estimates differed in these models, and whether the magnitude
of the criterion change differed (i.e., did the size of the mirror
effect change?). The results are presented in Table 2. In Experi-
ment 1, participants demonstrated longer criterion lag times and
smaller criterion shifts in the second half of the experiment than in
the first half. These changes may be due to fatigue effects: Exper-
iment 1 was longer and more arduous than were the other exper-
iments, which was due to longer blocks and greater number of
trials. There was also a smaller but statistically significant increase
in the magnitude of the criterion shift in the second half of
Experiment 4 compared with the first half.

Summary of Results

The experiments and data analyses presented above demonstrate
the dynamic build-up of mirror effects over time. Mirror effects

3 The assumption of a lag parameter allows this estimation. Lags result
in measurements of hit and false-alarm rates for the same stimulus classes
with different response criteria, just as with confidence rating data.

4 Experiment 1 had only 10 blocks, so we separately analyzed Blocks
1-5 and 6-10. This ensured an equal number of hard-to-easy and easy-to-
hard transitions.
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Table 2
Results of Repeated Measures t Tests for Experiments 1—4

Lag difference

Criterion change size

Experiment df M difference t P M difference t P
1 134 —5.00 1.70 .044%* 0.099 5.10 <.01*
2 105 0.75 0.49 >.10 0.026 1.20 >.10
3 161 —2.00 1.50 >.05 0.020 1.20 >.10
4 128 —0.39 0.43 >.10 —0.045 1.70 .044*

Note.  Mean differences are defined as means of lags or criterion change sizes in the data from the first half of each experiment minus those means from
the second half of each experiment. Results indicate differences in criterion change size and lag estimates in the first versus the second half of data.

* Significant at the p = .05 level.

were established by changing the difficulty of decisions, and HR
and FAR changes were observed following changes in decision
difficulty. We developed a simple dynamic version of SDT in
which the decision criterion changes some time (L) after stimulus
properties change, and we used this model to fit data at an
individual-participant and individual-trial level. Model-based anal-
yses estimated the time required to adjust to new decision envi-
ronments as around 14 trials, on average. This implies that a
significant amount of data from hard (and, respectively, easy)
decision contexts actually reflects participants’ easy (and, respec-
tively, hard) performance mode, possibly contaminating typical
data analyses in which such dynamic changes are not taken into
account.

Further analysis of the mirror effect magnitude demonstrates
that this contamination could result in the reduction of mirror
effect size by about 10% if data are subjected to the usual block-
wise analyses. Using data from Experiments 2 and 3 (most similar
to standard designs), we estimated the size of the mirror effect by
calculating the mean difference in HR between the easy and hard
conditions across participants and dividing by the standard devi-
ation of those differences to create a normalized effect size. The
standard blockwise analysis (without excluding any data) showed
a mirror effect size of 0.63 standard deviations in Experiment 2
and 0.57 in Experiment 3. We then excluded data from the first
sample trials of each block, choosing sample size to maximize the
observed effect size. This involved a trade-off between increasing
HR differences and increasing variability as a result of decreasing
sample sizes. For Experiment 2, the maximum effect size was 0.70
standard deviations (an increase of 11%), which occurred when we
removed data from the first four trials of each block. For Experi-
ment 3, the maximum effect size was 0.63 standard deviations (an
increase of 10%), which occurred when we removed the first five
trials of each block.

A Change Detection Model

In Experiments 1-4, participants were required to make a de-
cision about every stimulus. Optimum performance in the lexical
decision or numerosity categorization task required participants to
detect and respond to changes in their stimulus environment. The
change detection task was thus secondary to the central decision
task. This contrasts with other statistical research investigating
change detection. Such research usually begins with the aim of
detecting a “change point” in a complete sequence of data. In our
paradigm, participants had to detect changes in a sequence as that

sequence unfolded. It is natural to ask not only how well do
participants perform in the main task, but also what mechanism
allows them to detect changes. Though many mechanisms are
possible and are consistent with the data, we investigate a simple
model based on null hypothesis significance testing.

An example that illustrates the model is one in which an ob-
server is presented with a sequence of numbers and he or she is
told that at exactly one point during the sequence the distribution
of these numbers will change. The observer’s task is to identify
when the change has occurred, as the sequence unfolds. After each
data point is presented, the observer is asked “Has the switch point
passed yet?”, and he or she is allowed to answer “yes” only one
time. This situation parallels that in our experiments in which there
was one context change per block. Our change detection model
assumes a nested model comparison framework for this situation.
Suppose that the pre- and postswitch data are drawn from normal
distributions (as per the assumptions of the dynamic SDT model).
Given parameter estimates for those distributions, it is simple to
evaluate the evidence for two nested models. The first model is
that the data so far have been generated by just one distribution:
The likelihood of the data under this hypothesis is easy to compute.
The second hypothesis is that the data so far were generated from
the one distribution up to some hypothetical switch point and then
from another distribution after that point. The likelihood of this
hypothesis could be calculated by evaluating the likelihood sepa-
rately for each possible switch point (from the beginning of the
sequence to the current time) and choosing the most likely switch
point. Continuing the spirit of maximum likelihood estimation, we
assume that the observer estimates the means of the distributions
directly from data.

The model would then be in a position to respond that the switch
had occurred if the likelihood of the switch model exceeded the
likelihood of the one-state model by some criterion level. Under
the above assumptions, twice the difference in log-likelihood val-
ues for the two nested models will be distributed as a chi-square
variable with two degrees of freedom (one for the extra distribu-
tion mean parameter, one for the switch point location parameter).
The criterion amount of difference required to detect a change
would be determined by the ideal observer’s desired Type I error
rate. If the ideal observer has a very strict Type I error rate (e.g.,
p = .0001), he or she will only decide that a change has occurred
when the two-state model has very much greater likelihood than
the one-state model (larger by about 18.4 units). Conversely, if the
ideal observer has a very lenient Type I error rate (e.g., p = .10)
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he or she will decide that change has occurred when the two-state
model fits only a little better than the one state model (larger
likelihood by only 4.6 units). Adjustments in the Type I error rate
implement a trade-off between the confidence that a change actu-
ally has occurred when a response is made and the lateness of that
response.

We implemented the ideal observer model individually for each
participant as follows. Measures of decision sensitivity in both
easy and hard decision environments were obtained from our
dynamic SDT measurement model (di and dy;). The difference in
these d’ values represents the stimulus change that participants
must detect during our experiments. For each participant in Ex-
periments 2—4, we simulated 1,000 random sequences of the same
length as the experimental sequences. These sequences alternated
between standard normal data, N(O, 1), and N(d; — dj, 1), with
alternations occurring at the same frequency as in the experiments
(i.e., each block). Experiment 1 was not used, as negative lags
were possible in that experiment. Also, data from participants with
di; — dfy < 0.75 were not used for these analyses, as small stimulus
property changes result in large estimation error for the detection
model. With the simulated sequences, and for any given level of
evidence required for change detection (Type I error rate or p
value), the distribution of change detection lags for the detection
model was estimated by Monte Carlo integration. For each partic-
ipant, we identified the Type I error rate that provided the maxi-
mum likelihood fit of the distribution of change detection lags
from the model to the change detection lag estimated earlier from
our dynamic SDT model. That is, we found the Type I error rate
that resulted in a distribution of change detection values with mode
closest to the estimated lag from the SDT model.

Figure 8 shows estimates of the Type I error rate (p value)
plotted against estimates of the lag parameter from the dynamic
SDT model for Experiments 2—4. There are strong negative cor-
relations evident, as shown by the R values and best-fitting lines.
These correlations show that fits of the change detection model are
capturing the notion that short lags are associated with relatively
large (i.e., lenient) Type I error rates and vice versa. The correla-
tions are less than 1 because different participants have different d’
changes to detect (i.e., the subjective magnitude of the difficulty
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manipulation varied across participants). Combining the dynamic
SDT model fits with the change detection model provides a pro-
cess model for change detection and performance in our paradigm.

General Discussion

The blocking paradigm described in Figure 1 experimentally
manipulates the position of the optimal decision criterion and
thereby induces changes in participants’ decision criteria. This
manipulation entails strong constraints on hypotheses about ex-
actly when criterion shifts should be observed and what those
shifts should look like, which is a departure from previous work in
some important ways (but see also Strayer & Kramer, 1994b). A
stationary experimental design is one in which the properties of
the task do not change during the experiment, hence participants
do not need to change their behavior during the experiment in
order to remain optimal. Experiments with between-subjects de-
signs are typical of this category—the participants’ task does not
change during the experiment, so there is no compelling reason to
consider sequential effects. Because static experiments are limited
in their design, researchers often use dynamic experiments, mean-
ing that experimental conditions change with time, forcing partic-
ipants to adjust their decision-making processes in order to remain
optimal. Research with dynamic experimental designs but static
analyses is common in psychology: block designs are used, mak-
ing the task dynamic, but static analyses are applied because
researchers (often implicitly) assume that sequential dependencies
between blocks are either unimportant or unmeasurable. Some
researchers do use dynamic analyses, but mostly they use static
experiments in which dynamic behavior arises spontaneously,
without being required by design. Most research into the presence
of short-term autocorrelations or of chaos and longer term nonlin-
ear dynamics in behavioral data is of this kind (e.g., Gilden et al.,
1995; Kelly et al., 2001; Van Orden et al., 2003), including
previous examinations of the criterion setting problem (e.g., Kac,
1966; Rabbit, 1981; Treisman & Williams, 1984).

Our work so far describes only the time course of criterion
shifts, without addressing the question of the causation of the
shifts. There are a multitude of plausible theories to explain how
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Figure 8. Data from Experiments 2—4 (left to right).

Plots of Type I error rate for the change detection model

(p value, y-axis) against lag estimates from the dynamical signal detection theory model (x-axis) Also plotted
are best-fitting lines in log-linear space, with corresponding R? values.
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participants adjust their decision criteria. The dynamic version of
SDT we use is similar to the Treisman and Williams (1984) theory
for criterion setting. In their theory, participants are assumed to
change their decision criterion after each trial on the basis of the
stimuli and responses from the last few trials. Our dynamic SDT
allows for a lag parameter that measures how far behind the
stimulus change participants change their decision criteria and is
thus a simplified version of the Treisman and Williams model. The
value of Treisman and Williams’s more complex model is that it
provides an account of trial-by-trial sequential effects in criterion
setting, and it provides a mechanism by which criterion change
comes about (i.e., response monitoring). For example, the obvious
extension of Treisman and Williams’s criterion setting theory
would allow for slow adjustments caused by response monitoring
(see also Rabbit, 1981). A discrete switching model may posit that
participants estimate properties of the decision environment and
discretely switch between one set of assumed properties and an-
other only when evidence against the status quo reaches some
critical level. All of these classes of models are interesting expla-
nations of the processes underlying decision criterion setting.
However, at a first attempt, our dynamic SDT model is sufficient
to describe the data and to provide useful measurements. Our
simpler model affords important advantages in descriptive power
and parameter estimation, allowing accurate estimation of param-
eters for individual participants. It is also consistent with each of
the model types just mentioned: At a sufficiently general level,
each can be reduced to a two-state model in which changes in task
properties precede changes in behavior.

Our observation of slow and systematic transient effects in
criterion setting presents a challenge to previous modeling exer-
cises that are static (i.e., do not include effects of stimulus history).
For example, Ratcliff et al. (2004) identify context effects in
lexical decision very similar to those in our Experiments 1-3.
Ratcliff et al. distinguish these effects by using a diffusion model
account of response time and accuracy, where the parameters that
encode stimulus properties (drift rates) are assumed to be different
for the different stimulus classes (e.g., easy nonwords, hard non-
words, and words). This assumption is equivalent to our assump-
tion that the signal and noise distributions in our SDT change with
changing stimulus properties. However, Ratcliff et al. also implic-
itly model context effects with their drift rates. For example, they
observe a context effect in which the differences in responses to
different word classes are smaller when the nonwords were ran-
dom letter strings than when they are pseudowords; this effect is
captured in Ratcliff et al.”’s model by different drift rate parameters
for words in the context of the two different kinds of nonwords.
Although this method of modeling the data was appropriate for
Ratcliff et al.’s purposes, it neglects the fact that context effects
must build up slowly.

Strategy or Criterion Switch: Equivalent Models?

Some readers may wonder why we have chosen to model the
difference in behavior from easy- and hard-decision contexts as a
criterion shift rather than as a strategy shift. In fact, at the general,
descriptive level of our SDT model, the difference is immaterial
(see Ratcliff et al., 2004, for a similar argument). For example,
suppose that the decisions in question were made by using one or
other of two decision “modules”—one module that is best suited

for use in easy decision contexts and one that is best suited for use
in hard decision contexts—and that the switch between usage of
these modules lags behind the switch in stimulus properties. For
the lexical decision task we used in Experiments 1-3, the hard
module may involve determining whether the stimulus exists in the
lexicon (a slower but reliable strategy), and the easy module may
involve assessment of a word’s familiarity (a faster but less reli-
able strategy).

When there is a response deadline, it is reasonable to assume
that the two decision modules produce response probabilities in a
similar fashion to SDT. With these assumptions, the strategy-
switching model is isomorphic to our criterion shifting SDT
model, as illustrated in Figure 9. The diagonal line shows the
location of the means of the target distribution (upper right) and
easy- and hard-distractor distributions (lower left and middle,
respectively). As with the dynamic SDT model, these distributions
are assumed to change exactly when the stimulus properties
change. We assume that each decision module produces distribu-
tions of some decision variable: The projection of the stimulus
distributions onto the y-axis shows these distributions when using
Decision Module 1, the module appropriate for easy decisions; the
projection onto the x-axis shows the distributions under Decision
Module 2. These distributions are the same as the nonlagged easy
and hard SDT model subcases. Finally, if a strategy shifting lag is
introduced so that, just after the stimulus properties change, the
“wrong” decision module is used for a short time, the outputs from
this model are the same as those from our lagged SDT model.

Conclusions

When the properties of decision-making tasks change during
experiments, participants’ behavior must lag behind these changes.
Our experiments show that this lag can be considerable in the case
of alternating easy- and hard-decision environments, so that be-
havior in each environment is influenced by the previous environ-
ment for many trials. We show that these effects are both quali-
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Figure 9. Isomorphism (at a descriptive level) of simple strategy shift and
criterion shift models.
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tatively and quantitatively consistent with a simple dynamic
version of SDT in which changes in decision criterion lag behind
stimulus changes. These lags could have consequences for data
analysis techniques and for model development in decision-
making paradigms. Realistic decision-making environments are
likely to be much more variable than experimental ones, and so
dynamic effects in real decision-making tasks may be very impor-
tant and are certainly poorly understood.
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