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Three models of sequential effects in psychophysical tasks are defined and exper-
imental results described. These appear most consistent with a model in which the
momentary value of the criterion is modified by memory traces, an independent
trace being retained for each relevant past event. On this basis, a theory of criterion
setting is developed: A long-term process determines an initial value for the criterion,
and two short-term processes adjust the criterion (a) to match current changes in
the expected probabilities of signals and (b) to maximize the information transmitted
by the subject's responses. The theory is applied to results in the literature.

Although signal detection theory (SDT;
Green & Swets, 1966), which is now widely
applied, includes the hypothesis of a decision
criterion and puts forward normative pre-
scriptions for its value, the problem of how a
subject maintains his criterion at the appro-
priate value and adjusts that value to take ac-
count of relevant intercurrent events has
largely been ignored. It is regrettable that cri-
terion setting should generally be treated as a
given but unexamined fact, because its proper
understanding may clarify important psycho-
logical aspects of decision in all areas and may
help to explain some still unresolved problems
such as the causation of sequential effects. The
object of the present article is to present a
theory of criterion setting developed by the
first author. As this theory arose from a con-
sideration of some features of sequential de-
pendencies, we begin with a brief discussion
of the latter.

It is a familiar but still unexplained obser-
vation that the outcomes of successive psy-
chophysical decisions are related (Verplanck,
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Collier, and Cotton, 1952). Early studies were
concerned with determining whether response
assimilation might be due, on the one hand,
to factors extrinsic to the decision process, such
as adaptation and other peripheral sensory
consequences of stimulation (Collier, 1954b)
or to spontaneous variations in the response
of sense organs, or, on the other hand, to direct
effects of the events on an earlier trial on the
determinants of the decision on a later one.
Collier (1954a) found that the association be-
tween responses decreased with the length of
the intertrial interval, and an important ex-
periment by Howarth and Bulmer (1956) pro-
vided evidence against the theory of endoge-
nous fluctuations in sensitivity. They used a
method introduced by Verplanck et al. (1952)
in which only a single (faint, visual) signal
intensity, chosen to give about 50% detection,
was used, and this same intensity was presented
on every trial. This method demonstrated as-
similation. Howarth and Bulmer found that
the probability of a YES response on trial i
was increased if the response on trial / — 1
was YES. (We represent responses by italic up-
per case letters and stimuli by italic lower case.)
At random intervals they omitted the signal
for a sequence of three blank trials, so as to
force three NO responses. After three such
forced NOES, the same degree of assimilation
was shown on the next trial as after three nat-
urally occurring negative responses, which
would not be expected if the latter were nor-
mally explained by a spontaneous trough in
sensitivity.
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Although assimilation and contrast are well
established terms, they can be confusing. The
difficulty is that an implicit model appears to
underlie them, although it is not usually clearly
stated. Assimilation may be understood to im-
ply that in some way the current stimulus input
is made more similar to a preceding stimulus
input than it would be if the former had not
occurred; contrast implies the reverse. Thus
these terms trail theoretical connotations
rather than simply describing the phenomena.
If we use these terms they will be descriptive
only, to avoid confusing implications, but for
the most part we avoid them and instead de-
scribe an increase in the probability of re-
sponse Rj following a preceding Rt (assimi-
lation) as a positive sequential dependency and
a decrease in P(Rj) following a previous ,R,
(contrast) as a negative dependency.

SDT (Green & Swets, 1966) made new con-
cepts available that may be used to explain
sequential phenomena. Thus, performance in
a simple detection task may be considered to
be limited by a noise distribution on a decision
axis z. We assume the noise distribution to be
normal with a mean Mn of 0 and a standard
deviation of 1 and the choice between the re-
sponses YES and NO to be determined by a
criterion zc. This is illustrated in Figure 1-1
(for the moment, ignore zd and z'c). A number
of alternative principles for denning an optimal
or practical criterion have been proposed
(Birdsall, 1955; Dusoir, 1975; Thomas &
Legge, 1970). Theoretical treatments have
usually preferred to assume that subjects define
their criterion as the maximum expected value
criterion /3, although there are cases where it
may not be possible to apply this criterion and
the Neyman-Pearson criterion may be more
appropriate (Treisman, 1964; Treisman &
Watts, 1966). The latter places the criterion
zc at that position at which it cuts off a pro-
portion of the noise distribution on its right
equal to t, the acceptable limiting false alarm
rate. We usually express the criterion as a de-
viation from the mean of the noise or the signal
distribution measured on a standardized de-
cision axis, rather than as a likelihood ratio.

In the single intensity procedure (Verplanck
et al., 1952) a signal of the same value is pre-
sented on every trial. The model for this case
is illustrated in Figure 1-2, which shows a sig-
nal distribution fs(z) whose mean Ms coincides

with the criterion zc so as to ensure 50% of
detections.

These models allow the probability of de-
tection, P(Y), to be modified in a number of
ways. In a detection task, P( Y) could change
because some factor acts directly on the cri-
terion to modify its value or because of a shift
in the mean of the noise distribution or of the
signal distribution. Thus if Mn shifts to the
left and zc is a Neyman-Pearson criterion, it
should follow Mn to the left, and this conse-
quential shift would cause an increase in P(Y)
for an unaltered signal distribution. An in-
crease or decrease in the variance of the noise
distribution would also cause a consequential
shift in a Neyman-Pearson criterion. Endog-
enous fluctuations in sensitivity might work
through such effects on the noise and signal
distributions. However, despite some evidence
for variations in sensitivity that are not mo-
dality specific (Long, 1980), we assume in the
present discussion that sequential dependen-
cies are brought about by changes in the de-
cision process mediated by direct effects on
the position of the criterion.

A number of paradigms have been used to
study sequential dependencies, and a variety
of explanations have been offered for them.
The major paradigms discussed in this article
are presented in Figure 1. Detection studies
have usually shown positive dependencies (e.g.,
Collier & Verplanck, 1958; Howarth & Bulmer,
1956; Levitt, 1967). An opposite result was
reported by Sandusky and Ahumada (1971),
who presented a 500-Hz tone gated on si-
multaneously with a 0.1-s burst of noise. They
found that P(Y), the probability of YES, in-
creased following noise on the previous trial.
(Whether this was due to the noise, or to the
response NO, is confounded.) Also, both P(Y\s)
and P(Y\n) increased when the probability of
the signal, P(s), decreased. These are negative
effects, and Sandusky and Ahumada noted that
they contrast with the positive effects usually
obtained. They suggested that the latter require
the stable frame of reference provided by a
continuous background noise.

In the identification procedure two stimuli
that differ by a small amount on a sensory
dimension are presented in random order (e.g.,
two tones, Si and s2, with st louder than s2).
One of the stimuli is presented on each trial,
and the subject must make an identification
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response, such as LOUD or SOFT. A Thur-
stonian model for this task is shown in Figure
1-3. There are two distributions of sensory
effects on a decision axis, and this axis is par-
titioned by a criterion, zc, into regions giving
the responses S\ and S2.

This model is formally similar to the SDT
detection model, but neither explains sequen-
tial dependencies. Parducci and Sandusky
(1965) applied the identification procedure to
a point of light that could appear in either of
two positions. The subject was required to say
whether the light was LEFT or RIGHT. They
found that responses without feedback were

more accurate for stimulus alternations than
for stimulus repetitions (that is, there was a
negative effect). Furthermore, the overall
probability of a LEFT response approximated
.5 whether left was actually presented on .2,
.5, or .8 of trials.

Tanner, Haller, and Atkinson (1967) used
an identification task in which one of two tones
differing slightly in amplitude (2.5 db on av-
erage) was presented on each trial. With no
feedback, the probability of LOUD increased
from .52 to .60 as the probability of the louder
signal increased from .1 to .9. This increase
is so small because both P(LOUD\loud) and

(4) ABSOLUTE JUDGEMENT

"1"

(3) IDENTIFICATION

(2) SINGLE INTENSITY

"NO"

(1) NOISE ALONE

"NO" I "YES"

-2 -1 2^=0 zrf Zc 3 4

Figure 1. Representations of Thurstonian models for some procedures that have been used to study sequential
dependencies. (The symbols are denned in the text.)
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P(LOVD\soft) fell as P(loud) increased: Al-
though there were more loud stimuli, LOUD
responses did not increase in proportion. Re-
sults in which signal probability has so small
an effect present a problem for a straightfor-
ward application of SDT. For the four con-
ditions of preceding stimulus and response
on trial / - 1, the probability of LOUD on
trial / decreased in the order: P(LOUDt\

T^I). That is, we see both a positive effect
of the last response and a negative effect of
the last stimulus. Sandusky (1971) reported
that a similar ordering applies to the data of
Parducci and Sandusky (1965). Tanner, Rauk,
and Atkinson (1970) and Long (1980) have
reported similar results. Long (1980) also
showed that the effect did not transfer from
one modality to the other if visual and auditory
judgments were alternated. Haller (1969)
studied identification with three intensities,
ranging from (an average of) 68.5 db to 70
db, and he too found that subjects tended to
repeat the previous response.

A number of explanations for sequential
effects have been put forward. Kac ( 1 962) pro-
posed an error-correcting model in which the
subject's criterion changes only after an error.
Thus, if the subject reports the signal when
noise was in fact presented, his criterion rises.
Dorfman and Biderman (1971) presented a
generalization of this proposal, and Dorfman
(1973) applied the term additive learning
model to accounts of this class. However, to
fit their data, Dorfman, Saslow, and Simpson
(1975) found it necessary to add to their model
the assumption that there are also random
drifts in criterion between trials, and Kubovy
and Healy (1977), using a numerical decision
task as an analog of signal detection, obtained
evidence against additive learning models.
Thomas (1973) reviewed the literature up to
that date and presented a version of the ad-
ditive learning model in which the criterion
is shifted by a quantity A following feedback,
in a direction that tends to reduce errors, and
this shift occurs with a probability determined
by the values in a payoff matrix. All these
models require that the subject receives feed-
back. Thomas (1975) examined ways of ex-
tending the model to situations without feed-
back. One useful suggestion was that the cri-

terion shifts towards z, (the sensory input on
trial /), and the extent of the shift is related
to the magnitude of |z, - zc\. Dusoir (1980)
has reviewed and tested a number of additive
learning models.

Parducci and Sandusky (1965) proposed a
memory state model for the identification task
(see also Sandusky, 1971) that required two
criteria. If the input fell in an extreme position
(to the left of the left criterion, or the right of
the right criterion), the appropriate response
would be made. If it fell between the criteria,
it was compared with the preceding input: If
the latter had been extreme the alternate re-
sponse would be made, but if both the previous
and the current inputs were in the central
band, the previous response was repeated with
probability v.

A memory recognition model has been ap-
plied to identification by Haller (1969), Tanner,
Haller, and Atkinson (1967), and Tanner et
al. (1970). In this case the current input is
compared with the trace of the preceding input
on every trial. The trace undergoes distortion
in the intertrial interval. If the difference be-
tween the input and the trace is sufficiently
extreme in either direction, the corresponding
response is made, otherwise the previous re-
sponse is repeated. Long (1980) was able to
apply both memory state and memory rec-
ognition models to his data.

In the absolute judgment (category-scaling)
task illustrated in Figure 1-4, there are more
than two stimuli and more than two categories
of response. When the number of response
categories is equal to the number of stimuli,
the procedure may be referred to as absolute
identification. Formally, these are extensions
of the two-category identification task, and we
might expect similar findings. However, a
number of analyses of this task have been made
that examined dependencies over a number
of preceding trials, and these have revealed
some interesting features. In particular, the
direction of the sequential effect may vary with
the lag. Holland and Lockhead (1968) required
absolute judgments of the loudness of 10 stim-
uli that varied in intensity over a range of 25
db, gave feedback, and found that the response
on trial / showed assimilation toward the stim-
ulus on trial / — 1, but contrasted with the
stimuli on trials / — 2 to i — 5, or further back.
They proposed that the stimulus and feedback
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on trial i — 1 were remembered and were used
as a standard in judging the presented stimulus.
Ward and Lockhead (1970) confirmed this
pattern of dependencies in a similar task and
also showed that if feedback were omitted, as-
similation was now enhanced, extending back
to trial i - 2, and contrast with stimuli on
earlier trials was very much reduced.

In these studies previous stimuli are, of
course, correlated with previous responses.
Ward and Lockhead (1971) analyzed depen-
dencies separately for previous stimuli and
previous responses. In the response analysis,
with feedback, assimilation to the response on
trial i — 1 is similar to or a little greater than
that shown for the stimulus analysis, but con-
trast of the current response with earlier re-
sponses appears reduced. When no feedback
was given, the response analysis showed as-
similation extending back four or five trials
and no evidence of contrast. Ward (1973) ex-
amined sequential effects in magnitude esti-
mations of the loudness of tones. In his pro-
cedure the response was required to represent
the subjective ratio of the current stimulus to
the one presented on trial / — 1. He reported
assimilation to stimuli as much as five trials
back, the effect tailing away with no appear-
ance of contrast.

Jesleadt, Luce, and Green (1977) also ex-
amined absolute judgments and magnitude
estimations of loudness. They applied a mul-
tiple regression analysis and concluded that
sequential effects extend one trial back only.
This conclusion has been challenged by Stad-
don, King, and Lockhead (1980), who argue
that a linear model extending over only one
trial cannot account for the sequence of con-
trast and assimilation effects and that mech-
anisms acting over several trials must be as-
sumed.

Purks, Callahan, Braida, and Durlach
(1980) applied a Thurstonian model like that
illustrated in Figure 1-4 to absolute judgments
of loudness with feedback. They estimated
quantities &)• that give the deviations of the
criteria from the positions intermediate be-
tween the means of the successive stimulus
distributions. Expressed as functions of the
preceding stimulus, these indicate a positive
sequential dependency: They are shifted to the
right when the previous stimulus is less than
the current one and to the left when it is greater.

Because sensitivity was not improved when
the preceding and the current stimuli were
similar in intensity, Purks et al. reject the hy-
pothesis that the previous stimulus is used as
a standard in judging the current one.

To summarize, detection studies have usu-
ally, but not always, produced positive depen-
dencies. Identification studies have shown
negative effects when accuracy is considered
(higher accuracy for stimulus alternations), but
positive dependence on previous responses.
Absolute judgments produce both positive and
negative dependencies as a function of lag. We
are faced with a somewhat bewildering variety
of results.

Three Models

Despite a considerable amount of puzzling
data and the exploration of several hypotheses,
no single explanation has been established for
even a major part of the data. One problem
is the complexity and variety of the situations
with which we are concerned. This suggests
that it might be useful to investigate a very
simple situation, involving as few independent
variables as possible, and to test general,
broadly defined models against the data re-
sulting. We look at data obtained with the
single intensity procedure of Verplanck et al.
(1952) as this has the advantage of excluding
both feedback and variation in stimulus in-
tensity.

What models should we test? In choosing
models, one may start with requirements for
parsimony and generality: It seems desirable
to frame simple theories, capable in principle
of being extended to the whole range of ob-
servations, at least until a contrary necessity
is demonstrated. We saw that three hypotheses
about response dependencies emerged from
the literature reviewed above: the memory
state, memory recognition, and additive
learning models.

The memory state model is excluded by our
requirement that a general model should be
capable of applying to a wide range of phe-
nomena. This model, which postulates two
criteria and a set of rules for their use, could
not easily be adapted to tasks having more
than two response categories.

Models, like the memory recognition model,
that require the input on trial / to be compared
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with the trace of the input from trial / — 1
are also excluded on the grounds that they
would be seriously inefficient. A comparison
between a current sensory input and a fixed
criterion is subject to the variance attaching
to the current input, but a comparison between
two successive inputs would be subject to the
variance affecting both, doubling the total
variance if they are uncorrelated. Only if the
sensory system has no alternative should we
expect it to perform in this way (Treisman &
Leshowitz, 1969). Furthermore, this assump-
tion cannot reasonably be applied to detection:
It would predict that a series of presentations
of the same stimulus intensity would give rise
to a 50% detection rate, whatever the mag-
nitude of the stimulus. It might be argued in
reply to this that a fixed criterion may be used
in detection when a background or a standard
stimulus is available, but comparison with the
previous trace when no standard is presented.
But this would predict that the standard de-
viation of the psychometric function should
increase by 21/2 in the latter case. However,
when both the methods of constant stimuli
and single stimuli (in which no standard is
presented) have been applied to the discrim-
ination of lifted weights (Fernberger, 1931;
Wever & Zener, 1928), taste discrimination
(Pfaffmann, 1935), and temporal discrimi-
nation (Treisman, 1963), very similar standard
deviations have been given by each procedure.

Three models that seemed to possess po-
tential generality were selected for testing. The
first two are simple generalizations of the ad-
ditive learning model of Kac (1962), Dorfman
and Biderman (1971), and Thomas (1973).

The Linear Additive Learning (LAL) Model

This model is described as it would apply
to a detection or two-choice identification task
without feedback. The basic idea is that the
response on each trial causes an increment or
a decrement to the criterion. We add here the
further assumption that there is a reference
level for any criterion and that when the cur-
rent criterion is momentarily increased above
or reduced below this reference level, it decays
back towards it. To represent this more for-
mally we use the following notation: z0 is the
reference level of the detection criterion, zc(i)
is the value of the criterion at the beginning

of trial i and determines the response made
on that trial, and z'j(i) is the final value taken
by the criterion after it has been incremented
or decremented as a function of the response
made on that trial. The response on trial i is
represented by /?,-. If the response is YES, Rj -
1; if it is NO, RI = 0. It is convenient also to
define /, = 2(Rt - 0.5); then YES gives J, =
1, NO gives .7, = — 1. The model has a direction
parameter, d, which may take the values 1 or
- l . J= 1 will cause the model to produce a
negative sequential dependency (contrast); d =
-1 will determine a positive dependency (as-
similation). The main assumptions of the
model are as follows.

At the commencement of trial i the criterion
has the value zc(i). The response causes a shift
of magnitude A. The direction of the shift de-
pends on the nature of the response made and
the sign of the parameter d:

z'c(i) = zc(i) + <//, A. (1)

Thus if d is -1 a positive response will lower
the criterion. This will favor repetition of the
same response; that is, it will give a positive
dependency.

During the intertrial interval the criterion
decays toward z0, but not beyond, at a constant
rate 6. Then

zc(i + 1) =
^(0 - 5, z0),

lmin(z'c(/) + 6, z0),

(2)

That is, if the criterion is less than z0 it will
increase by 5, but not beyond z0; if it is initially
greater, the reverse will happen. It follows that
no sequential dependencies will be seen if A «S
5. The model is illustrated in the left panel of
Figure 2, for the single intensity procedure
with d = — 1 . The responses on successive trials
are shown on the ordinate, proceeding down-
wards. The continuous trace in the left panel
shows how the criterion varies over trials and
illustrates the effect each successive response
has on it. On the initial trial zc(l) is at z0,
which is taken to be at the mean of the signal
distribution. This mean is given the value 0.
A positive response is made and this causes
zc(l) to be reduced by A = 0.5 (any latency
in producing this effect is not shown). The
criterion then drifts back toward z0 at a rate
of 5 = 0.2 per intertrial interval, reaching
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zc(2) = —0.3 at the commencement of the sec-
ond trial. The second response is again posi-
tive, the criterion again shifts to the left, then
decays back to the reference level at a constant
rate, and so on.

The Exponential Additive Learning (EAL)
Model

Memory theorists have usually preferred to
assume that memory traces decay exponen-
tially (Wickelgren, 1967). Thus it is of interest
to develop and examine a model with this fea-
ture. The EAL model was designed to be sim-
ilar to the LAL model except for the mode of
decay; it has the same number of parameters.
The assumptions of this model are as follows.

The criterion value at the commencement
of trial / is zc(i). The response causes a shift
A to give

= zc(i) K,,

where z0 is the reference level of the criterion.
During any interval the deviation from z0

decays toward z0 exponentially. Thus if on trial
/ the deviation is Kt = z'c(i) — zt) and no further
increments or decrements are added to the
criterion, then k trials later this deviation will
be reduced to Ki+k = Kie"1*, with the term r
a constant. Thus, after one intertrial interval,
K will be reduced in the proportion e~r. For
this model we define 5 = 1 — e~r. so that <5

Figure 2. The Linear Additive Learning and Independent Trace models illustrated for the detection or
identification procedures. (Changes in the criterion are followed for six trials. For this illustration the
parameters have the values za = 0, A = 0.5, and & = 0.2. The responses are indicated on the ordinate by
1 for YES and 0 for NO, and the criterion zc commences at 0. For the Linear Additive Learning model each
response produces a direct shift in zc (these are shown as though the events of the trial were instantaneous),
which then decays towards za at the rate S. In the Independent Trace model each response produces a
separate indicator trace Tr(i) that decays toward 0 at the rate S, and the value of zc at any instant is given
by the linear sum of the currently nonzero traces.)
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represents the proportion of the initial devia-
tion that is lost after one trial.

This model would give a trace similar to
that shown for the LAL model in the left panel
of Figure 2, save that each deviation decays
toward z0 exponentially.

The Independent Trace (IT) Model

The third model shares with the LAL model
the assumption that each response causes a
shift in criterion and that shifts decay at a
constant rate. But it differs in rejecting the
assumption that the shift indicated by the re-
sponse on each trial is immediately embodied
in the current criterion. Instead it proposes
that each shift is separately recorded and re-
tained. That is, an instruction specifying the
shift required by each response is laid down
in the form of an independent memory or
indicator trace. The linear sum of the inde-
pendently retained traces from previous trials
(those that have not yet decayed to zero) de-
termines the value of the criterion at any time.
Thus the shift indicated by each response is
separately and independently retained and is
independently effective, so long as it has not
decayed away. These indicator traces are spe-
cially constructed quantitative records, which
should not be confused with our normal
memories of the actual responses. (It is con-
ceivable that a subject may remember, in the
sense that he can report, past responses that
no longer have an effect on the current cri-
terion, and vice versa.)

The response on trial / will create an in-
dicator trace

Tr(i) = (3)

Thus if the response is positive and d is -1,
this would indicate a requirement for a re-
duction in criterion on subsequent trials.

The magnitude of an indicator trace de-
creases at a constant rate, <5, per intertrial in-
terval, until it reaches 0. k trials after its cre-
ation the residual magnitude of the trace will
be

Tr(i, k) =
fmax(7XO - k6, 0), 7X0 > 0

min(r,.(0 , 0), Tr(i) < 0 '

(4)

where / refers to the trial of creation, and k
refers to the number of trials since elapsed.
7X0 is equivalent to Tr(i, 0).

Thus, the trace will be nonzero for D terms,
where

jint(A/5),
tint(A/<>)

int(A/6) < A/5
int(A/6) = A/5

and int(x) is the integral part of x. D is the
number of terms over which the mechanism
produces a sequential dependency and is re-
ferred to as the depth of the dependency.

The criterion on trial / is given by the ref-
erence level, z0, plus the sum of currently non-
zero indicator traces deriving from earlier re-
sponses:

zc(f) = zt,
i-i
E Tr(h, i - h). (6)

The model is illustrated in the right panel of
Figure 2. For each of the first six trials the
indicator trace formed on that trial is shown
on the right, and on the left the resultant cri-
terion given by their linear combination at
any moment is traced out.

A Comparison of the Models

The models are as similar as possible in
terms of the number of parameters and the
assumptions made. In two we also have an
assumption of linear decay toward the refer-
ence level. The models differ in the way the
effects of past events are represented. The ad-
ditive learning models use a single parameter,
the value of the criterion at any time, to rep-
resent the net effect of past events. This may
appear efficient in terms both of information
processing and memory load: After each re-
sponse there is a single immediate addition to
the criterion, and no further information about
the events on that trial need be retained. Both
the additive learning models are nonlinear.
This is evident for the exponential model but
is also true for the linear model, because the
processing of the effect on the criterion pro-
duced on a given trial is not independent of
the outcomes on other trials. For example,
suppose that on trial / the criterion is at its
reference level, z0. If d = — 1 and a negative
response is made, then the criterion will be
shifted upward by A. One trial later, the re-
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sidual effect of the response on trial / will be
represented by a shift of A — 5. Suppose, how-
ever, that the criterion on trial / is initially at
the value (z0 4- A). Following the negative re-
sponse, the criterion will shift up to (z0 + 2A).
One trial later the value of the criterion will
have decreased to (z0 + 2A — <5). This looks
as though each component A has fallen by S/
2 (or we may divide the fall in any other way
between the two components that were sum-
mated to give the total shift: The situation is
indeterminate). Thus the residual effect of the
response 7?, varies with its context (the position
of the criterion when that response is made).
Because the identity of each contribution to
the criterion is lost, it also follows that we
cannot define the depth, D, of a sequential
effect for either additive learning model.

In contrast, the IT model is linear in that
each trace decays separately in the same way,
whatever the values and number of other traces
retained. (The decay is only "piecewise linear",
however, because it ceases when the magnitude
of the trace reaches zero.) This imposes a bur-
den on memory because the history of each
trace must be separately followed. This raises
the question: Can the model be formulated in
a more simple way? Is it possible to substitute
for the maintenance of a set of independent
traces a suitably denned additive learning
model with a single continuously updated
summary trace that decays in accordance with
an appropriate function such that these two
models are formally equivalent? We can ex-
clude this possibility by showing that no decay
function can be defined that is both indepen-
dent of the past history of the summary trace
and can simulate the IT model exactly. If on
trial / the summary trace representing the value
of the criterion corresponds to a shift from
the reference criterion of magnitude K, then
any additive learning decay function must
specify that this will decay to a new value K'
on trial (/ + 1), whatever the sequence of pre-
ceding responses that built up the initial shift
K. By hypothesis, that historical information
is not available to an additive learning model.
But if the IT model applies, we cannot specify
a new value K' on trial (i + 1) simply from
our knowledge of the value of K on trial /.
The rate of decay of the deviation from the
reference criterion is indeterminate if we do
not know the number and magnitudes of the

indicator traces that sum to give K. If K rep-
resents the residual effect of one indicator
trace, and if K > d, then K' will be equal to
K - d, giving a decay of 8 for this intertrial
interval. If K < d, the net decay must be K,
because K' = 0. If AT is the sum of the residual
effects of two positive indicator traces, each
greater than <5, then K' = K - 28. If K is the
sum of Ka < d and Kb > d, then the net decay
will be Ka + 8. Obviously, short of deploying
the IT model with its collection of retained
memory traces, such effects cannot be repro-
duced.

There is a resemblance between the IT
model and the EAL model in that large de-
viations of the current criterion from zg are
likely to decay toward z0 more rapidly in both
cases. For the IT model, this arises because a
large deviation is more likely to represent the
sum of a number of indicator traces pointing
in the same direction, and the decay of their
effect will represent the sum of their indepen-
dent decay rates. We see this in Figure 2, for
the IT model, in the difference in the rate at
which the first and second deviations from z0

decay back toward the reference value. This
resemblance between the IT and EAL models
leads us to expect that they will give more
similar matches to data than do the LAL and
IT models.

However, the IT and EAL models are not
simply discrete and continuous approxima-
tions to the same thing. Observe that for the
IT model, for both the third and the fifth de-
viations from z0 shown in Figure 2, net decay
is away from z0, something that cannot occur
with the EAL model.

The LAL and IT models differ in a way that
may be considered an advantage for the latter
model. The LAL model in its present gener-
alized form—in which we do not include
feedback-based error-correction—is subject to
a latent instability. Suppose that the model is
set to give a positive dependency (d = — 1) and
the subject responds NO. Then the criterion
moves to the right, increasing the probability
of further NO responses. There is no limit to
the extent to which the criterion may shift
from its reference value, given a series of rep-
etitions of the same response, so that we may
end with a grossly misplaced criterion likely
to stay permanently out of range. This does
not seem to happen in practice, which implies
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that this model would require additional
mechanisms to prevent the criterion straying
outside an acceptable range. The IT model,
however, contains intrinsic bounds on varia-
tion in the criterion. Because Dd < A < (D +
1)5, it can readily be shown from Equation 6
that the maximum shift in one direction that
can be induced by a series of repetitions of
the same response, however long the sequence,
cannot be greater than D(D + 1)5/2. Once the
parameters A and 5 are set, the possible range
of variation of the criterion is prescribed.

An advantage of the IT model over both
additive models is that it allows different sets
of traces, governed by different parameters, to
be active at the same time, which may allow
the modeling of complex effects. This point
is developed later.

A Test of the Models: Howarth and
Buhner's ( 1956) Data

Howarth and Bulmer (1956) reported results
that can be used to compare the models. They
used the single intensity procedure: Every 4
sec the same stimulus, a half-sec light flash,
was presented at an intensity intended to give
approximately 50% detection. Their subjects
did not know that the signal was invariant and
made detection responses, YES or NO. The au-
thors report response probabilities following
different preceding response sequences.

The probability of response jR, on trial /,
following a given preceding sequence of three
responses, is written P(Ri\Ri^3Ri^2Ri^). Thus
P(l|001) is the probability of YES given that
the immediately preceding response was YES
and that the two responses before that were
both NO. We can interpret these data as re-
ferring to changes in the position of a criterion
(cf. Figure 1-2). The standardized normal de-
viate corresponding to the conditional prob-
ability of the NO response gives the position
of the criterion on a standardized decision axis
with its origin at zero (corresponding to Ms)
and a standard deviation of unity:

/a,, (7)

where z[P] is the value of c such that

f1/-OC

N(0, l)dx = P,

E is the unstandardized decision axis, and Ec
is the criterion on that axis (Treisman, 1976).

The individual results for Howarth and
Bulmer's (1956) 10 subjects were read from
their graphs, averaged, and expressed as stan-
dardized deviates. These values are plotted in
Figure 3.

The preceding sequence obviously produces
a large positive dependency. The results for
homogeneous preceding sequences, shown on
the left, suggest that the further back we define
a response, the less effect it has. Thus the dif-
ference in zc between 0 and 00 is greater than
that between 00 and 000. But it is not clear
from this graph whether or not we can dis-
regard effects extending more than three trials
back.

The points on the left are correlated because
the shorter sequences include the longer, but
those in the right-hand panel, for all possible
preceding three-term sequences, are indepen-
dent. They suggest a tendency to linearity of
criterion placement, except for a kink at the
center. The relation of these criterion positions
to the signal distribution is illustrated in an
inset.

Although decay occurs at a constant rate in
the linear models, it is limited by a threshold,
so in this respect these models are nonlinear.
To fit each model, a parameter-estimation
program employing the simplex procedure was
used to estimate the parameters, z0, A, and 8.
In each case the program commenced with zc
equal to z0 and determined successive values
of zc for a sequence of seven trials. It recorded
zc on the seventh trial, contingent on each pos-
sible sequence of responses for the three pre-
ceding trials, and attempted to minimize the
squared deviations from the data. This analysis
is adequate for the IT model provided D ̂  6.
For the additive learning models very similar
results were given whether four trials or seven
trials were considered.

As a measure of goodness of fit, the mean
squared deviation between observed and pre-
dicted values was found:

MSD = 2 (O, ~ Pt)
2/n,

i=l

and its square root was defined as the standard
error of prediction, SEP. The best fits are
shown in the right panel of Figure 3 as a con-
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tinuous line for the IT model, a dashed line
for the LAL model, and a dotted line for the
EAL model. The same parameters were used
to fit the results for homogeneous series on
the left. The parameters and measures ob-
tained are given in Table 1. Although the pa-
rameters for the IT and LAL models are quite
similar, the IT model gives a markedly better
fit. If we take the deviations from this model
to represent error variance alone, the ratio
between the MSDs would give F(5, 5) = 12.34,
p < .01, a significantly worse fit for the LAL
model. The EAL model also does worse than
the IT model, but not significantly so.

The good fit given by the IT model may
seem surprising. It might be expected that an
efficient system would use a single parameter
to represent the net effect of past events rather
than storing each trace separately. While the
EAL model does less well, the difference is

not great. A further test of the models is given
by the following single intensity experiment.

Experiment 1

Method

Subjects performed a detection task in which an auditory
signal of the same intensity was presented in white noise
on every trial.

Apparatus

An 830-Hz signal from an Advance Instruments J2E
Oscillator was mixed with while noise produced at ap-
proximately 70-db SPL by a Dawe 419C white noise gen-
erator and presented to the subject through Eagle Inter-
national SE5 headphones. Both signal and noise were pre-
sented binaurally. The white noise was continuously
present.

In front of the subject was a box on which two lights,
one amber and one green, and two response keys, labeled
tone and no tone, were mounted. Behavioural Research
and Development (BRD) logic modules were used to con-

0-6

0-4

0-2

. HOWARTH & BULMER (1956)

-02

-0-4

-06

. IND. TRACE

_ _ _ LIN. ADDITIVE

EXR ADDITIVE

0 00 "000 111 011 101 110 001 " 010 100 000

PRECEDING SEQUENCE

Figure 3. Data from Howarth and Bulmcr (1956). Detection probabilities contingent on different sequences
of prior responses were converted to the corresponding standardized normal deviates (zc), and these are
plotted as a function of the preceding sequences, arranged to give a monotonic order. (The left panel shows
homogeneous preceding sequences of lengths up to three, the right shows all possible three-trial sequences.
An inset of the signal distribution, fs(z), shows the positions of the three-trial criteria on the decision axis
z. Theoretical curves have been fitted as described in the text.)
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Table 1
Estimated Parameters for Three Models Fitted to
the Data of Hovoarth and Butmer (1956)

Model D MSI)

LAL -0.035 0.184 0.064 - 0.00421 0.0649
EAL -0.039 0.352 0.409 - 0.00064 0.0253
IT -0.041 0.276 0.068 4 0.00034 0.0185

Note. LAL = Linear Additive Learning; EAL = Expo-
nential Additive Learning; IT = Independent Trace.

trol the experimental sequence on each trial and to record
responses. A trial began with the amber light coming on.
After 0.5 s the green light came on as well, and both lights
remained on together for 0.45 s, after which both amber
and green lights were extinguished. The signal was gated
on 100 ms after the onset of the green light. It lasted 250
ms. There was a 2.98 s intertrial interval, during which
the subject made his response, then the next trial com-
menced.

Procedure

There were two conditions: signal only and noise only.
Signal only. In this condition every trial had a signal

(of the same constant intensity for a given subject) presented
in white noise. There were no trials with noise alone.
Seven subjects were tested in this condition. Each subject
attended individually for one practice and two experimental
sessions, on separate days. On the practice day, the intensity
of the signal that gave 50% detections for that subject was
found, and this intensity was used in the two experimental
sessions. In each experimental session the subject received
four blocks each of 158 trials, separated by 5 min intervals.
The same intensity of the signal was presented on every
trial, although the subject did not know this.

The first 8 trials of each block were discarded; 1200
experimental trials were analyzed for each subject.

Noise only. In this condition no pure tone signal was
given on the trials later analyzed, although the subject did
not know this. On these trials only the white noise was
presented. Four subjects were run in this condition. The
practice session was conducted as above. On each of the
two experimental sessions, each subject received five blocks
of 158 trials. The first block, as well as the first eight trials
of each of the remaining four blocks, was discarded. In
the first block the signal intensity found in the practice
session to give P(Y) = .5 was presented on every trial. In
the remaining blocks, the first trial always contained the
signal at the intensity giving P(Y) = .5. This intensity was
reduced on each of the next four trials, and the signal was
absent on all the remaining trials in the block. Thus 1,200
noise-only trials were analyzed for each subject.

Subjects

The subjects were 11 students between the ages of 19
and 33. They were told that they should expect to make
a detection on about one half of the trials.

Results

Subjects had no difficulty in performing the
tasks. (The results are shown in Figures 4 and
5 as criterion values conditional on preceding
response sequences. Thus zc = .5 corresponds
to P(Y) = .31, etc.) In the signal-only condition
the subjects did not discover that the signal
was always present at constant intensity; they
maintained their criteria at values that deter-
mined responses usually not too far from a
50% hit rate overall (see Figure 4). In the noise-
only condition the subjects did not realize that
the signal had been removed in the experi-
mental blocks and adjusted their criteria to
give false positive rates that were not too far
from 50% overall for Nl, N2, and N3, but
somewhat lower for N4 (see Figure 5).

For each subject the conditional criterion
values zc(R,_3/?/-2-K/-i) were found, and the
parameter-fitting program was used to fit each
of the models to these data. To do so it min-
imized the squared deviations between ob-
served and predicted values of zc, each
weighted by the number of occurrences of that
type of preceding sequence, JV(J?,-_3/?(-_2/J/-i).
However, the unweighted MSD is reported as
the measure of fit. Each model was fitted once
with d = 1 and once with d = — 1, and the
value giving the lowest unweighted MSD is
reported. The results are summarized in Table
2. Here Seq refers to the direction of the se-
quential dependency: A positive dependency
(assimilation) corresponds to d - — 1. If the
best fit was given with parameters generating
no sequential dependency, Seq = 0. For each
model Subjects S7 and N2—and for the LAL
model Nl—show no sequential dependency.

The models may be compared in four ways.
1. Goodness of fit for individual subjects.

We first compare the IT and LAL models. For
each model, the best fits for Subjects S7 and
N2 show no sequential dependency and are
identical. This leaves 9 subjects who may be
compared. For 7 of the 9, SEP is less for the
IT model than for the LAL model. This result
favors the IT model, though not significantly.
Its two-tailed probability is. 18. For the IT and
the EAL models, there are eight cases in which
SEP differs between them. In six cases it is less
for the IT model (p = .29). The fits given by
the models are 'shown in Figures 4 and 5.

2. Consistency of the models when the same
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data are analyzed in different ways. (By con-
sistency we mean that if a model is fitted to
data and parameters obtained, the data reor-
dered and the process repeated, a correct
model should deliver similar parameters each
time. To take a simple-minded instance, sup-
pose that an experimenter knows the individ-
ual heights of 10 subjects in Group A and 20
subjects in Group B and the mean for the
population, but he or she does not know how
these are related. A model is applied in which
the sums of the heights in each group are di-
vided by some number; the answer for each
group is weighted; and these are added to-
gether. The experimenter obtains a good fit if
he or she then divides by 10 and 20 for the
two groups, respectively, and weights the two
answers by Vs and %. If the subjects are then
randomly reshuffled into new groups of 10
and 20, and the process repeated, the exper-
imenter is likely to obtain the same parameters,
subject to random errors of measurement. This
model is consistent. But suppose that the ex-
perimenter tries to fit a different model in
which he or she first finds the products of the
heights within each group, then divides each
product by a parameter, and then weights and
sums the two results. The experimenter will
obtain some solution for his or her initial data.
But if the subjects are reshuffled and the pro-
cess repeated, it is highly unlikely that the same
parameters will give a fit the second time. The
model is wrong and the experimenter will find
it to be inconsistent.)

The results analyzed above are the proba-
bilities of a positive response following all pos-
sible sequences of three preceding responses.
To examine the consistency of each of the
present models we can compare the parameters
obtained when the models are independently
fitted to three- and four-term data. The pa-
rameters A and 5, as defined for each model
and as estimated from three- and four-term
data, are given in Table 3 for those subjects
showing sequential dependencies with each
model.

For the IT model, the three- and four-term
estimates of A and 6 differed by less than 4%
in 8 (out of 18) comparisons; for the EAL
model, the smallest disparity in 16 compari-
sons was 4.4%; and for the LAL model it
was 21.5%.

To test the significance of these differences,
the following procedure was followed. For each
subject and model the absolute differences be-
tween the three- and four-term parameters
|A3 — A4 and |63 — 64| were found. Taking
these data together for the IT and LAL models,
the median of all 34 values is .090. For the
IT model, 15 (out of 18) results were less than
this median, and for the LAL model two (out
of 16) differences were less than the median.
Fisher's exact probability test (Siegel, 1956)
applied to these results gives p = 0.00004, a
decisive rejection of the LAL model. For the
IT and EAL models, 12 (out of 18) IT results
and 6 (out of 16) EAL results are below the
median for the combined data (.0425). This
result borders on significance (p = .0872).

3. Nonmonotonicity under certain condi-
tions. The IT model predicts nonmonotonicity
(in relation to the order of conditions that has
been used in presenting the three-term data
in Figures 4 and 5); the LAL model does not.
This provides a further test between these two
models. If the IT model holds and the se-
quential dependency is positive, we may write

zc(\ 10) = z0 + min(-A + 36, 0)

+ min(-A + 26, 0) + max(A - 5, 0),

and

zc(001) = z0 + max(A - 36, 0)

+ max(A - 26, 0) + min(-A + 6, 0), (8)

and it is then easy to show that for A/6 > 1 ,

zc(110)Szc(001)iff A/6 I 4.

For A/d<l, ZL(\ 10) = zc(001). That is, for
D ranging from 1 to 3 only, the ascending
curves shown in Figure 4 should dip between

Figure 4. Experiment 1. Individual results for three-term-preceding sequences in the signal-only condition.
(The Independent Trace [continuous lines], Linear Additive Learning [dashed lines], and Exponential Additive
Learning [dotted lines] models have been fitted in each case, except that the Exponential Additive Learning
fit for Subject S5 is not shown (it was very similar to the Independent Trace fit). The dash-dot curve shown
for Subject S5 is discussed in the text. Fits to the unweighted mean data for Subjects S1-S6 are also shown.
The parameter D is shown for each curve.)
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Figure 5. Individual results for the noise-only condition,
plotted as in Figure 4.

the conditional criterion values for 110 and
001. If the sequential dependency is negative,
as for some subjects in Figure 5, we may invert
this prediction.

The IT prediction that zc( 110) will be greater
than zc(001) for 1 < D < 3 for a positive
dependency (and the reverse for a negative de-
pendency) is of interest because at this tran-
sition the LAL model predicts monotonicity.
Of course, it could be argued that departures
from monotonicity at this point (as may be
the case at other points in the curves where
they occur) are due to random noise. However,
we can test the IT prediction against the null
hypothesis that the relation between zc(110)
and z£(001) is wholly determined by noise and, ,
therefore, equally likely to go in either direc-
tion.

For the 9 subjects who show nonzero se-
quential dependencies with the IT model, the
obtained relation between zt(\ 10) and zc(001)
is in every case in agreement with the predic-
tions above, for the value of D and the direction
of the sequential dependency pertaining to
each case. That is, the tendency of the data is
nonmonotonic at this point for D < 4 (Subjects

SI, S3, S4, S6, Nl, N3, and N4), monotonic
for D > 4 (Subjects S2 and S5). The two-tailed
probability of so extreme a result occurring
as a consequence of chance noise hp = 0.0039.

If we restrict ourselves to the seven cases in
which the IT model predicts a reversal in ten-
dency (1 < A/5 < 4) and the LAL model does
not (as can be seen from the dashed lines), we
have a reversal in each case. This has the two-
tailed probability p = .0156.

As can be seen from Figures 4 and 5, the
EAL model, when fitted to these data, is ca-
pable of reproducing the nonmonotonicities
that are predicted by the IT model. Thus this
comparison cannot be used to distinguish be-
tween these two models.

4. Predictability of the numbers of occur-
rences of each possible response sequence in
the data. We have obtained the parameters
that best predict response probabilities con-
ditional on preceding response sequences. A
powerful test is given by using these parameters
to predict N(Ri-3Ri-2Ri-1), the actual number
of three-term sequences of each type to be
found in each subject's data. These measures
were not used in obtaining the parameters. To
make these predictions, each model is used to
find ze at each stage for every possible sequence
of six responses and from this to calculate the
probability of that sequence. These probabil-
ities are combined to give the probabilities of
every possible sequence of the final three re-
sponses. Chi-square may then be used to com-
pare the predicted and obtained numbers of
each sequence type; if the model predicts these
numbers correctly, chi-square should not be
significant.

The values of chi-square (each with 4 d/s)
are shown in Table 2. They may be summed
over all subjects. We then get, for the IT model,
X2(44, N = 11) = 30.76, which is nonsignif-
icant. For the LAL model we get x2(44, N ~
ll) = 216.19,p< .0001. This rejects the LAL
model, but the result is completely consistent
with the IT model. This test does not enable
us to distinguish between the IT and EAL
models. For the latter we get x2 = 31.60, which
is again nonsignificant.

Discussion

These comparisons give us a clear result for
the two models with linear decay. The Howarth
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and Bulmer (1956) data rejected the LAL
model (p < .01). Comparisons of goodness of
fit for the present data support the IT rather
than the LAL model although not significantly
(p = .18). The test of consistency when fitting

three- and four-term data strongly rejects the
LAL model (p = .00004). The agreement be-
tween predicted and obtained nonmonoton-
icities for the curve segment from zc,(110) to
zc(001) supports the IT model (p = .0039).

Table 2
Parameters for the Three Models

Condition and
subject

Parameter

Seq z0 A S D MSD SKP X2

Independent Trace

Signal only
SI
S2
S3
S4
S5
S6
S7

M(S1-S6)
Noise only

Nl
N2
N3
N4

+ -0.640
+ 0.510
+ -0.334
+ 0.137
+ 0.279
+ 0.655
0 -0.279
+ 0.106

0.247
0 0.348

-0.221
0.651

0.410
0.091
0.470
0.209 .
0.065
0.777

A
0.273

0.263
A

0.269
0.337

0.127
0.018
0.126
0.069
0.0002
0.339

< S
0.077

0.159
< d

0.111
0.112

3
5
3
3

324
2
0
3

1
0
2
3

0.0459
0.0177
0.0212
0.00172
0.0191
0.0153
0.00946

0.0220
0.0147
0.00579
0.0220

0.214
0.133
0.146
0.0415
0.138
0.124
0.0973

0.148
0.121
0.0761
0.148

1.512
5.027
9.594
0.285
5.186
2.081
1.124

2.089
2.786
0.034
1.039

Linear Additive Learning

Signal only
SI
S2
S3
S4
S5
S6
S7

Af(Sl-S6)
Noise only

Nl
N2
N3
N4

Signal only
SI
S2
S3
S4
S5
S6
S7

A/(S1-S6)
Noise only

N l
N2
N3
N4

+ -0.587
+ 0.529
+ -0.288
+ 0.131
+ 0.300
+ 0.577
0 -0.279
+ 0.100

0 0.288
0 0.348

-0.243
0.680

+ -0.625
+ 0.494
+ -0.324
+ 0.136
+ 0.288
+ 0.639
0 -0.279
+ 0.103

0.246
0 0.348

-0.224
0.679

0.517
0.227
0.268
0.215
0.221
0.557

A
0.392

A
A

0.325
0.503

Exponential

0.734
0.090
0.859
0.394
0.080
1.909

0.419

22.756_

0.514
0.483

0.399
0.195
0.106
0.150
0.156
0.418

< S
0.290

< 5
< S

0.223
0.391

-
-
_
__

_
-
-

-
-
-
-

0.0453
0.0285
0.0373
0.00756
0.0184
0.0551
0.00946

0.0257
0.0147
0.0104
0.0380

0.213
0.169
0.193
0.0870
0.136
0.235
0.0973

0.160
0.121
0.102
0.195

33.635
7.390

69.998
3.634
5.047

67.393
1.124

18.810
2.786
3.101
3.268

Additive Learning

0.597
0.243
0.553
0.644
0.098
0.773

0.515

0.995
_

0.690
0.541

_
_
_
_
_
-
_
-

_

_
__

0.0494
0.0182
0.0112
0.00368
0.0192
0.0143
0.00946

0.219
0.0147
0.00604
0.0223

0.222
0.135
0.106
0.0606
0.139
0.120
0.0973

0.148
0.121
0.0777
0.149

2.248
5.345
7.622
0.867
4.665
2.861
1.124

2.089
2.786
0.019
1.971
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The prediction of numbers of response se-
quences strongly rejects LAL (p < .0001). This
evidence seems sufficient to drop the LAL
model from further consideration.

These results suggest that the linear com-
bination of independent indicator traces may
provide a basis for understanding sequential
effects. It is also of interest to note the simi-
larity between the IT parameters obtained
from the present results and those given by
the data of Howarth and Bulmer (1956), de-
spite the differences in the experimental sit-
uations. Compare the IT parameters A and 5
fitted to the mean data for Subjects SI to S6
with those obtained from Howarth and Bul-

mer's (1956) mean data (Table 1). There is far
less similarity for the other two models.

The comparison between the IT and EAL
models is far less clear. No individual test is
significant. Whichever of the two models is
more nearly correct, it is evident that the other
model does a very good job of simulating it.
However, we shall defer trying to decide be-
tween these two models until some further
evidence has been presented.

Is Decay Linear or Exponential?

A main difference between the IT and EAL
models lies in the assumptions they make

Table 3
A Comparison of Parameters Derived From Three-Term and Four-Term Sequences for Models

Condition and
subject A3 A4 |A4 - A3 <?3 ^4 1^4 ~ ^3

Independent Trace
Signal only

SI
S2
S3
S4
S5
S6

Noise only
Nl
N3
N4

0.410 0.281 0.129
0.091 0.325 0.234
0.470 0.419 0.051
0.209 0.211 0.002
0.065 0.112 0.047
0.777 0.793 0.016

0.263 0.287 0.024
0.269 0.271 0.002
0.337 0.347 0.010

0.127 0.056 0.071
0.018 0.257 0.239
0.126 0.099 0.027
0.069 0.070 0.001
0.0002 0.021 0.021
0.339 0.352 0.013

0.159 0.183 0.024
0.111 0.111 0
0.112 0.114 0.002

Signal only
SI
S2
S3
S4
S5
S6

Noise only
Nl
N3
N4

0.734
0.090
0.859
0.394
0.080
1.909

22.756
0.514
0.483

Linear Additive Learning

Signal only
SI
S2
S3
S4
S5
S6

Noise only '
N3
N4

0.517
0.227
0.268
0.215
0.221
0.557

0.325
0.503

0.669
0.320
0.582
0.390
0.379
0.454

0.412
0.618

0.152
0.093
0.314
0.175
0.158
0.103

0.087
0.115

0.399
0.195
0.106
0.150
0.156
0.418

0.223
0.391

0.569
0.290
0.439
0.331
0.318
0.344

0.318
0.511

0.170
0.095
0.333
0.181
0.162
0.074

0.095
0.120

Exponential Additive Learning

0.509
0.050
0.808
0.329
0.103
1.821

16.755
0.559

0.225
0.040
0.051
0.065
0.023
0.088

6.001
0.045

0.597
0.243
0.553
0.644
0.098
0.773

0.995
0.680
0.541

0.463
0
0.534
0.580
0.227
0.763

0.994
0.712

0.134
0.243
0.019
0.064
0.129
0.010

0.001
0.022
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about the loss of information: Is decay linear
or exponential? We consider two direct tests.

The first test is based on the present data.
For the IT model we rewrite Equation 6 as
(for three preceding terms)

zc(i) = z0

where

Ji-3wt-3, (9)

A - kb, A >

.0, A <
(10)

That is, the residual effects of past criterion
deviations are represented as weights assigned
to the responses that generated them. We can
now find z0 and these weights w^k by multiple
regression on sequences of length 3. If decay
is linear and the depth of the effect is 3 or
greater (D > 3), then the weights should be a
decreasing linear function of the lag, k. But if
D < 3, then the weights should decrease to a
floor at zero after one or two intertrial intervals
and then stay constant at that level, giving a
curve resembling exponential decay.

Thus for the IT model we predict that (a)
for subjects with D > 3, the weights will de-
crease linearly as lag increases from 1 to 3 and
(b) for D < 3, the weights will decline more
sharply as lag increases from 1 to 2 than from
2 to 3.

For any subject we can draw a straight line
connecting the weight at lag 1 with the weight
at lag 3. If Z» 3, the first prediction says that
the weight at lag 2 should lie on this line. If
D < 3, the weight should lie below this line.
In testing such a prediction there is a problem
in applying the description on the line because
small random divergences may move points
up or down. Because it is points on this line
that distinguish between the IT and EAL
models, it is a conservative procedure to class
all points below the line (however little dis-
placed from it) as below, and only those iden-
tically on or above the line as on.

The alternative to linear decay envisages that
each effect produced on the criterion is caught
up in an exponential decay process. If so, we
should expect that in all cases the current
weight assigned to a past response should de-
crease more rapidly as we go from lag 1 to 2
than from lag 2 to 3. Thus exponential decay

predicts that in all cases the weight at lag 2
will be below the line joining w,_i and H",_3.

To test these predictions the best-fitting
weights were determined for each subject by
multiple regression, with d = -1 (a positive
dependency) for the signal-only condition and
d = 1 for noise only. The linear equation w/_t =
Aw - bwk was fitted to the weights so found,
and the estimated value 8W was used to trans-
form the weights to

w'i-k = Wi-klbw + 3 - w,-_i/5w. (11)

This linear transformation has the effect that
each function now takes the same values at
lags 1 and 3, so that the distribution of points
at k = 2 indicates the general form of the
decay function. If it is linear (and D> 3) these
points will be scattered about the straight line
running through the values at k = 1 and k =
3. If D < 3 or if decay is exponential, these
points will lie below the line.

Figure 6 shows these values for all subjects
except S7 and N2, who did not show depen-
dencies, and S5, whose weights were markedly
nonmonotonic. We see that one half of the
points lie above the line and one half lie below
the line. Moreover, all the points above the
line, but only one below it, have D ̂  3. This
result is markedly inconsistent with the pre-
diction based on exponential decay. How well
does it match the IT prediction?

The scattering of points about the line, in
Figure 6, could have arisen from a random
process, in which case any given weight at Lag
2 would have the same probability of lying
above or below the line as any other. Or it
could express the pattern predicted by the IT
model. To test this possibility, we classify each
point that is on or above the line, and for
which D ^ 3, as a hit and each such point
that is below the line as a miss, and do the
reverse for D < 3. This gives seven hits and
one miss. The binomial probability of this
pattern being produced by chance (one-tailed,
because direction is predicted) is p = .035.

We now turn to a second test of the nature
of trace decay. This rests on the application
of the present approach to tasks in which con-
tingent aftereffects occur or in which anchors
are used (Treisman, in press).

If we could present a stimulus that caused
the criterion to shift and could then observe
the criterion as it drifted back to its resting
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w.'-k

1 -

Figure 6. Individual weights attaching to past responses
at three lags were calculated for 8 subjects. (These weights
were subjected to the linear transformation described in
the text, which causes them to lie along the same line and
deviate from it only at lag 2. The transformed weights are
plotted. The points at k -• 1 should all lie below the line
if decay is exponential [or D < 3], near the line if decay
is linear and D > 3.)

value, we could examine directly whether the
decay is linear or exponential. There is a pro-
cedure that may allow us to do this. In this
paradigm two auditory stimuli, such as 1000
Hz and 3000 Hz (we refer to these as the stan-
dard stimuli), are presented in sequence with
an interval between them, such as 1.5 s. On
each presentation of this cycle an intermediate
tone (the bisector tone) is also given. This oc-
curs at an interval t\ after the first standard
stimulus. Thus the subject hears a sequence
of three brief tones separated by two intervals:
"1000 Hz standard-?,-bisector tone-^-3000
Hz standard." The subject's task is to adjust
the bisector tone over trials until he or she is
satisfied that it bisects the pitch interval be-
tween the two standard tones.

This procedure was introduced by Cohen,
Hansel, and Sylvester (1954) to investigate an
intermodal effect on judgment, the auditory

tau effect. This effect can be explained in terms
of the ideas presented here; the explanation is
illustrated in Figure 7. (For a fuller discussion
of this effect and the application of the ideas
developed in this article to adaptation effects
and contingent aftereffects, see Treisman, in
press.) The effects of the standards are rep-
resented by central dispersions on a decision
axis, EF, and an intermediate criterion, Ec,
identifies the point at which the distance be-
tween them is subjectively bisected. When a
standard is presented, the subject identifies it
and sets up a corresponding indicator trace.
If the lower standard is presented, this indicator
trace prescribes an upward shift, and vice
versa. (This represents a positive sequential
effect. To anticipate a later development in
this article, it corresponds to a tracking
strategy.)

In Figure 7 two possible sets of indicator
traces are shown, which correspond to different
values of the parameters A and d. In Case 1,
the indicator trace does not decay to zero until
the cycle is complete. Thus if we could observe
Ec during the cycle, we would see it return
linearly to its initial value, as indicated by the
continuous line. In Case 2, the indicator traces
return to zero before the cycle is completed.
In this case, if we could observe Ec (the dashed
line), its course would be difficult to distinguish
from exponential decay.

When a bisector tone, coming at a fixed
interval, ti, after the first standard (1000 Hz
in the figure), is repeatedly adjusted until the
subject considers it to bisect the interval be-
tween the standards, we may take it that the
central sensory effect of the final value of the
bisector approximately coincides with the po-
sition of Ec at the interval t\ after the first
standard. (For the signal detection model of
the method of adjustment on which this is
based, see Treisman, 1969.) Thus if we plot
the bisector frequency as a function of time
after the first standard, this will provide an
indication of the form of decay of the criterion
shift induced by the previous standard stim-
ulus. If the IT model is correct this will give
us a linear shift in criterion (for Case 1) or an
ambiguous result (Case 2). However, if shifts
decay exponentially we should not expect to
sec linear decay.

Relevant information is provided by data
obtained by Cohen, Hansel, and Sylvester
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(1954) in which observations were made for
three values of t\ and four pairs of standards,
and by results of Christensen and Huang
(1979) for nine values of t\. These data are
replotted in Figure 7, and the best-fitting
straight line is shown for each set of data. Each
case illustrates a positive sequential effect. For
the data of Cohen et al. (1954) it is immediately
evident that in three cases the bisector fre-
quency varies linearly with t\. The fourth case
(first standard 4000 Hz-second standard 2000
Hz) is consistent with Case 2 illustrated above.
For the data of Christensen and Huang (1979)

the linear trend was significant (;; < .001), but
the quadratic and cubic trends were not.

These observations provide strong evidence
that decay is linear and not exponential.

Independent Traces or Exponential
Additive Learning?

The IT and EAL models give such similar
results in many cases that individual tests may
not show a significant difference between them.
Nevertheless, there is not one case in our series
of tests in which the EAL model does better

APPLICATION OF INDEPENDENT TRACE MODEL TO AUDITORY TAD EFFECT

CENTRAL DISTRIBUTIONS AND CRITERION

F=WOOHz,

STIMULI

1000 Hz

BISECTOR -

3000 Hz

INDICATOR TRACES

CASE 1 CASE 2

COHEN, HANSEL & SYLVESTER 11954)

2000
WOO

CHRISTENSEN & HUANG. 11979)

1000
3000

Figure 7. Application of the IT model to the auditory tau effect. (The upper panel applies the IT model to
an auditory bisection paradigm: The subject adjusts a bisector tone presented between two successive
standards, 1000 and 3000 Hz, occurring at an interval of 1.5 s. The effects of the standards on the intermediate
criterion Ec are followed for two trials. Presentation of a standard causes an indicator trace to be set up:
Two possible magnitudes of indicator trace, and the corresponding changes in Ec, are shown. Time proceeds
downward and the decision axis £/,- is repeated for each trial. The lower panel shows data obtained by
Cohen, Hansel, and Sylvester (1954) on the left, and Christensen and Huang (1979) on the right. Bisection
frequencies are plotted against t\ in seconds. The first and second standards are shown as parameters for
each figure and straight lines are fitted.)
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than the IT model. We summarize the evi-
dence below and add some further consider-
ations.

1. Applied to Howarth and Bulmer's (1956)
data, the IT model gave a better fit than the
EAL model, though not significantly so.

2. Applied to the present data, IT gave a
better fit in six out of eight comparisons, but
the differences are very small in some cases,
and the overall result is not significant (p =
.29).

3. When the models are applied to three-
term and four-term analyses of the same data,
the IT model shows considerably greater con-
sistency, but again the difference is not sig-
nificant (p = .087).

4. Both the EAL and IT models show the
nonmonotonicities at the z^HO) — zc(001)
segments of the curves in Figures 3, 4, and 5
that are predicted by the IT model. Thus, the
satisfaction of these predictions does not ex-
clude EAL. Nevertheless, they present a prob-
lem for this model for the following reason.
It is clear why the nonmonotonicities occur if
the IT model holds. They follow from the
mathematical structure of this model, as ex-
pressed by Equation 8. But why should they
be produced by exponential decay (if the EAL
model holds) in just those cases in which they
are predicted by the value of a parameter, D,
which is estimated by applying the IT model
and which has no valid meaning if EAL holds?
(D measures the depth of the dependency, a
concept that does not apply to exponential
decay.) Predictions of this sort are not required
by anything in the structure of the EAL model;
if the latter is correct, why should it never
produce results that violate the IT predictions?
If the IT model is correct, however, but the
EAL model is applied, then it will demonstrate
these predictions simply because parameters
can be found for this model that allow it to
simulate the IT model very closely, so that it
will show nonmonotonicities if the latter
does so.

5. Chi-square for the numbers of response
sequences predicted and observed is negligibly
less for the IT model (30.76 as against 31.60).
(It is noted below that a further development
of the IT model allows the result for Subject
S5 to be re-analyzed to give D = 3 in place
of the outlier value of 324, and this subject's
X2( l , W = 1) is then 0.626.)

6. The regression analysis in Figure 6,
which looks directly at trace decay over time,
supports the IT model (p = .035).

7. The auditory bisection data (Figure 7)
provide direct evidence that traces decay lin-
early and not exponentially.

The balance of this evidence favors the IT
model. But for most tests, differences are not
significant and some observers might prefer
the EAL model. In many applications this
choice may not be important because if the
wrong model is chosen, it is nevertheless a
very good approximation to the correct one.

We add some general considerations.
8. It might be argued that the EAL model

is the more parsimonious. This is dubious.
The two models have the same number of
parameters, and there is no reason to consider
a linear function less parsimonious than an
exponential function. In fact, linear decay as
a representation of changes in the continuing
relevance of past experience to the current
environment is theoretically more satisfying.
Some stimuli, once present, are likely to persist
for some time with little change. Others are
transient and fugitive. Others depart at more
or less steady rates. Linear decay in the re-
tention of information about past states of the
world seems a reasonable approximation to
this range of possibilities. But exponential de-
cay implies that the relevance of a past ob-
servation falls off rapidly when it is recent but
slowly when it is remote. This does not seem
to give an intuitively satisfying picture of these
possibilities.

9. It may be argued that studies of memory
provide evidence of exponential decay (Wick-
elgren, 1967, 1968). But there is no necessary
conflict between the IT model and such results.
The assumption of linear decay of indicator
traces does not necessarily imply linear decay
of other memory traces. And if their decay is
linear, this does not exclude the possibility that
experiments involving direct retrieval of
memories might produce data that appear ex-
ponential. For example, suppose that such a
task involves two stages: first, retrieval of a
trace, with the probability of retrieval being
a function of the strength of that trace, and
second, identification of the trace with the
probability of doing so correctly being again
a function of its strength. Then the final prob-
ability of a correct response will be determined
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by the product of these two probabilities and
will resemble an exponential function.

10. The IT model has an important poten-
tiality that will be exploited in the theoretical
developments presented in the remainder of
this article. In considering the characteristics
of assimilation, contrast, and feedback, and
their relations, we will show that it is useful
to expand the present model by allowing in-
dicator traces from different sources and rep-
resenting information of different types to co-
operate in determining the criterion while
being governed by different decay rate param-
eters. Without such an assumption it is difficult
to account for the conjoint occurrence of both
assimilation and contrast with different rela-
tions to past trials. If we wish to apply the
EAL model, we meet the difficulty that no
simple equivalent way of expanding it is avail-
able. Criterion shifts induced by different fac-
tors could determine the addition of different
values of A to a common EAL criterion. But
once this criterion has been shifted, the same
decay parameter applies to the merged residual
effects of all past shifts, whatever their disparate
sources. They cannot be distinguished, and
this presents a limitation to the application of
this model to some of the problems dealt with
below. The greater power of the IT model in
this respect is perhaps the single most impor-
tant reason for preferring it.

We conclude that in some applications the
IT and EAL models cannot be reliably distin-
guished, and it is open to an experimenter to
choose either model, in the knowledge that if
it is not the correct one it will at least provide
a very good approximation to it. However, the
balance of the evidence appears to favor the
IT model, and in the developments we present
below, this model can be applied in a straight-
forward way; for these reasons we prefer it.

Some further points deserve comment.
a. The signal-only data show a positive se-

quential dependency, as is usually found with
detection. But the direction of the dependency
reverses in the noise-only condition. This re-
lation between the direction of the dependency
and the strength of the signal deserves dis-
cussion, but this will be deferred until later.

b. The presence and magnitude of criterion
variance is a topic of theoretical interest
(Wickelgren, 1968) that has not been much
discussed, perhaps because of the difficulty of

estimating it separately from noise produced
by physical and sensory causes. But the mag-
nitude of criterion variance can be estimated
relatively simply for data of the present type.
The values of the conditional criteria reflect
trial-to-trial variation arising from sequential
effects, though not random trial-to-trial vari-
ation, and thus their variance provides a lower
bound to the criterion variance. For the Ho-
warth and Bulmer (1956) data the estimated
variance of the eight criteria shown in the inset
to Figure 3 is <r% = .079 (when the sensory
variance, a2

s is denned to be 1). For the present
experiment, the mean value of al for 11 sub-
jects for the three-trial analyses is .0816, and
for the four-trial analyses it is . 1011. Thus the
variance of the criterion appears to be of the
order of 7%-10% of the total variance in a
detection task.

The possibility of estimating al raises the
question of how best to define d'. We may
write ffs = a] + al, where <rj represents the
total central variance associated with the sig-
nal-only condition, and <r? represents the com-
ponent deriving from physical and sensory
sources of noise; similarly a2

N = a% + al. d' is
customarily defined as d' = (Ms — Mn)/<rN.
Here criterion noise is lumped with noise from
other sources, because it is not usually possible
to separate them. But if we can use an analysis
of response dependencies to partial out cri-
terion noise arising from sequential effects, we
could estimate a value of a sensitivity param-
eter, d't, equivalent to d' but intended to be
free of criterion noise, d', - (Ms — Mn)/<rn.
Whether it is worth the trouble to estimate
such a measure, free of criterion variance, de-
pends on the use to which it will be put. For
many practical purposes there would be no
especial benefit in finding d', rather than d'. d'
is intended to be a measure of sensitivity, and,
in the long term, sensitivity is restricted by
criterion as well as sensory variation. Thus a
measure that takes account of both is justi-
fiable. But for some questions, partialing out
criterion variance could be of value. For ex-
ample, if we are interested in comparing de-
tection of a binocular stimulus with that of a
monocular stimulus, we may predict different
sensory contributions in the two cases but ex-
pect the criterion variance to be the same. Or
if we wish to test a predicted relation between
the variance of two-alternative forced choices
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and yes-no judgments, it may be more useful
to examine <r? than tr|.

c. If the IT model is correct it may provide
a sidelight on some aspects of memory. It pro-
vides information on the dynamics of memory
traces that is obtained not by the possibly ob-
scuring mediation of the mechanisms of re-
trieval that underlie verbal report, but by in-
ference from the effects of retained traces on
the ongoing process of perception. The models
we have tested constitute analogs of two views
of memory retention. On the one hand, in the
IT model, memory is based on independent
differentiated traces that do not interact and
that undergo no changes except decay. A very
influential alternative view of memory was put
forward by Bartlett (1932) in his description
of the schema as

an active organisation of past reactions, or of past expe-
riences . . . which operate . . . as a unitary mass . . .
All incoming impulses of a certain kind . . . build up an
active, organised setting . . . There is not the slightest
reason. . . to suppose that each set of incoming impulses
. . . persists as an isolated member of some passive patch-
work (p. 201).

The continually modified criterion of the ad-
ditive learning models is similar in principle
to Bartlett's schema. To the extent that the
present results support the IT model, they
provide some evidence in favor of the "passive
patchwork."

d. The IT model allows us to estimate the
depth of sequential effects: For the present
data, the median value of D is 3. This could
represent three trials or 12s: Time and trials
are confounded in the present study. Collier
(1954a) found that a measure of intertrial de-
pendency was a decreasing function of inter-
trial interval, which suggests that time is the
relevant variable, but further work is needed.

e. A further question arises about the IT
model. We have assumed that indicator traces
are determined by responses. But it could
equally well be the sensory inputs that deter-
mine them. If the input on trial / is z,, the
detection response will be YES if z, — zc > 0
or NO if the reverse is true. Thus sensory input
and response are completely confounded in
single intensity experiments. Howarth and
Bulmer (1956) tried to determine whether
there is an effect of sensory input as such by
comparing dependencies contingent on re-
sponses with long and short reaction times, on

the assumption that the latencies reflect the
magnitude of z, - zc\, and found almost no
effect. But a more direct way to determine
whether |z, — zc has an effect of its own is to
use a task in which the signal alternates ran-
domly with noise. An experiment using this
paradigm is reported below.

Experiment 2

Method

Subjects performed a detection task using the rating
procedure with four categories of response. A single signal
intensity was used, and signal and noise trials were ran-
domly alternated.

Apparatus and Procedure

The following modifications were made to the apparatus
and procedure of Experiment 1. The subject had before
him four response buttons that corresponded to the re-
sponses "certainly yes," "probably yes," "probably no,"
"certainly no." (These will be referred to as Responses 1,
2, 3, and 4.) The signal was presented on a proportion
P(s) of trials, in random order.

In Condition 2.1 each subject did four sessions. The
first was a practice session. In this session a signal intensity
was found that gave approximately 50% detection. Each
of the three experimental sessions consisted of four blocks
of 158 trials, with the signal present on each trial with
the probability P(s) = .5. The first eight trials in each
block were discarded. Thus 1,800 trials were analyzed per
subject.

Condition 2.2 was a replication with modifications.
There was one practice session and four experimental ses-
sions. On two of the latter, f ( s ) = .2, and on the other
two, l'(s) = .8. The order of the sessions varied for different
subjects. Thus 1,200 trials were analyzed for each subject
for each signal probability.

Subjects

In Condition 2.1,6 subjects were used. They were mem-
bers of the departmental subject panel and ranged in age
from 19 to 28. Condition 2.2 used 7 new subjects from
18 to 23 years of age, from the panel.

Results

The probabilities of each of the four re-
sponses, contingent on the events of the pre-
ceding trial, were found for each subject. The
preceding events were classified as (sv-i) (pre-
ceding signal) or (w,-_i) (preceding noise) and
YESi-i (Responses 1 or 2) or NOj~\ (Responses
3 or 4). The conditional response probabilities
were used to estimate the three corresponding
criteria, zc\, zc2, and zc3, ordered as in Figure
1-4, in the usual way (Green & Swets, 1966).
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If a value of 0 was obtained for a probability
(13 cases for P(s) = .5; 5 for P(s) = .2; 10 for
P(s) = .8), zc was assigned the value 2; if the
probability was 1.0 (2 points for P(s) = .2), it
was assigned —2. (The choice of these values
is not likely to have affected the results; the
conclusions reached are unchanged if these
points are treated as missing data and are es-
timated.)

The criterion estimates are plotted against
their nominal values in Figure 8. Analyses of
variance were performed on the data from each
condition, the factors being the stimulus on
the current trial, the nominal criterion, the
stimulus on the last trial, the response on the
last trial, and subjects. As we would expect,
the current stimulus and the nominal criterion
have major effects. More surprisingly, P(s) did
not produce a significant effect in Condition
2.2. The main effect of the previous response
is highly significant (p < .005 for 2.1, p < .025
for 2.2). This effect is a positive sequential
dependency.

Because the average excess of the sensory
input above a criterion is greater when the
signal is presented than when noise is pre-
sented, any effect of the magnitude of the sen-
sory input as such should manifest as an effect
of previous stimulus. But this factor had no
detectable main effect in the present experi-
ment. For 2.1, F(l, 5) = 0.000046; for 2.2,
F([, 6) = 0.1152. Although denial of an effect
of sensory input would rest on failure to reject
the null hypothesis, these results do at least
establish that any direct effect of the sensory
input in the preceding trial is small. Thus they
support the assumption that the source of the
indicator traces is the response made, at least
in the present type of experiment.

Two interactions were significant. In 2.1 (but
not 2.2) there was an interaction (p < .05)
between current stimulus and criterion, in-
dicating a difference between signal and noise
slopes. In 2.1 (p < .025) and in 2.2 (p < .05)
there were significant fourth-order interactions
between current stimulus, criterion, previous
stimulus, and previous response. We do not
attempt to interpret this, but we note that the
involvement of previous stimulus does not
necessarily imply an effect of sensory mag-
nitude: It may be a consequence of the lumping
together of the previous responses, 1 and 2
and 3 and 4, in the analysis. If the extreme

responses, 1 and 4, have different or stronger
effects than the intermediate responses, it is
relevant that the balance between Responses
3 and 4, and between Responses 1 and 2, will
be different for signal and for noise.

Discussion

Experiment 2 has again produced a positive
dependency, with evidence that indicator traces
are determined by the responses made, rather
than by the magnitudes of the sensory inputs
generating them. Further evidence on this
point is given by a reexamination of the data
of Experiment 1 . In a single intensity exper-
iment, the sign of the sensory deviation, the
deviation of the input on a given trial from
the current criterion, (z/ - zc), is necessarily
confounded with the response made. We also
see from Equation 3 that 7X0 will have the
same magnitude whatever the size of the sen-
sory deviation; it is independent of the mag-
nitude of the latter. However, if the indicator
trace was directly determined by the sensory
deviation itself instead of by the resulting re-
sponse, we would have, in place of Equation
3, the relation

That is, in the sensory-determination case the
magnitude of the indicator trace is determined
by a constant, As, multiplied by the magnitude
of the sensory deviation. In this model the
magnitude of the shift is not independent of
the sensory deviation. We can test between
response determination and sensory-input de-
termination by substituting Tx(i) for 7X0 in
the IT model and seeing which version gives
the better fit to the data of Experiment 1 .

There is one difficulty. In fitting the re-
sponse-determined IT model using the simplex
procedure, the value of the criterion zc was
followed through seven trials for each possible
sequence of responses for each set of param-
eters examined. At each trial, two responses
are possible and have to be considered. But
in the sensory-input-determined model, the
set of values of (z, - zc) that may occur on
each trial is infinite. Therefore, in fitting this
model the program was made to calculate the
expected values of |z, - zc\ given that z, > zc,
or given that z, < zt, at each trial, and it used
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this approximation in finding Ts(i) for that
trial.

For the signal-only condition, the results
were unequivocal. For the 6 subjects who
showed a positive dependency, SEF was less
for the response-dependent model than for the
sensory-input-determined model in five cases,
and chi-square was less for the former model
for every subject; %2(24, N = 6) = 23.685 ns.
(from Table 2). For the sensory model, x2 (24,
N = 6) = 126.349, p < .001, which rejects
sensory input determination of the positive
dependency.

For the noise-only condition, the results are
equivocal. Here 3 subjects showed a negative
sequential dependency. For the response-de-
termined model, one subject had a smaller,
two had larger values of SEP than for the sen-
sory model. For the former model, 2 subjects
had smaller, one had a larger value of chi-
square. For neither model is summed chi-
square significant. Thus the choice between
determination by response or directly by sen-
sory input remains open for negative sequen-
tial dependencies.

A Theory of Criterion Setting

A model based on independent indicator
traces derived from past responses appears to
give the best account of the present evidence
on sequential dependencies. But three impor-
tant questions remain. First, why is the direc-
tion of the effect different in different exper-
iments? In Experiment 1, why did the signal-
only condition give positive and the noise-only
condition give negative dependencies? Second,
why are sequential dependencies ubiquitous
in a whole range of tasks ranging from detec-
tion to magnitude estimation? Parsimony re-
quires us to seek a single explanation for these
observations, if it is possible to find one. Third,
why do sequential dependencies occur at all?
Do they have a functional role that would ex-
plain the observations we have discussed? De-

pendencies are usually regarded as errors, im-
perfections in the system, as a nuisance stand-
ing in the way of fitting our preferred
theoretical accounts. But it would indeed be
surprising if a system as complicated as the
IT model had come into existence merely to
obstruct psychophysicists.

The proposal we now make is that sequential
dependencies arise from and reflect the op-
eration of a system that attempts to place cri-
teria at those positions that are optimal at any
given moment and to keep them there, and
that this same system is at work in all the tasks
in which dependencies have been observed.
The system consists of a long-term criterion-
setting process and two mechanisms that
modify criteria by making short-term adjust-
ments. There are also further devices that make
use of feedback. We make some basic as-
sumptions about this system and then examine
its application to the observations.

The Reference System

Criterion setting involves two stages: first,
a general problem of getting in range and sec-
ond, a requirement for fine adjustment as the
environment and past experience change. It
is the latter that determines dependencies.

How the long-term value of the criterion is
specified is a question that has received con-
siderable theoretical consideration, mainly
concerned with its normative prescription
(Birdsall, 1955; Green & Swets, 1966; Treis-
man, 1964). Optimal criteria such as the max-
imum expected value criterion or the Neyman-
Pearson criterion can be denned for detection.
In practice, an observer who wishes to employ
the maximum expected value criterion needs
more information (knowledge of the forms of
the signal and noise distributions, P(s), and
the payoffs) than is necessary to employ the
Neyman-Pearson criterion (the frequency of
false alarms). But Boneau and Cole (1967)
have shown that, given sufficient feedback, the

Figure 8. Criterion estimates derived from rating responses to signal and noise, expressed as standardized
deviates from the means of the signal and noise distributions, respectively. (The results for Experiment 2.1
[P(s) = .5] are shown in the middle panel and for Experiment 2.2 [P(s) = .2 and .8] in the side panels.
They are plotted against the nominal criteria, separately for signal and noise trials, for the preceding response
either YES [Responses 1 or 2] or NO [Responses 3 or 4], and for the previous stimulus, either signal or noise.
Circles represent responses to the current signal, triangles responses to noise. Empty symbols = previous
signal; filled symbols = previous noise.)
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minimally informed observer can approximate
the first, and it is evident that feedback about
false alarms should allow the second to be
located (Treisman, 1964). But in many real
situations feedback is not available or is not
wholly reliable. Even here, however, past ex-
perience of similar situations in which feed-
back has been available may allow reasonable
initial values of criteria to be specified. We
assume that for any task there is a long-term
criterion-setting process that determines initial
or reference criteria, such as za, on a basis
that may be related to some definition of op-
timality. Thus, in a detection task, this process
might aim at a criterion roughly equivalent
to the maximum expected value criterion or
Neyman-Pearson criterion and it will take ac-
count of past experience, that is, the final or
mean position of the criterion in any previous
similar task, and of global parameters of the
current situation, such as the signal probability
and payoffs. The setting of the long-term cri-
terion component, z,,, would also be affected
by instructions and information from the cog-
nitive system. Once z0 has been specified in
this fashion, accumulation of information over
a period or change in parameters such as P(.v)
may cause it to be further modified.

In a task such as absolute judgment, the
subject may use his or her initial encounter
with the range of sensory inputs to define upper
and lower limits and may then place reference
criteria at equal intervals, or in accordance
with some other scheme, between these limits.

Once the system has specified a value for
the reference criterion, this should remain
substantially constant over short sequences of
trials. But from trial to trial, fine adjustments
may be necessary to ensure that the criterion
in use is optimally placed. A weighted com-
bination of these short-term adjustments and
the reference value will determine the resultant
criterion.

There are two sets of considerations that
may lead to short-term adjustments. They have
opposite implications, and they result in op-
posite strategies.

The Tracking System

Outside the laboratory, trials are rarely
wholly random. A series of detections probably
means that there really is something out there

at the moment; a series of nondetections may
mean the reverse. Given that a generally re-
liable reference criterion, z0, has been selected,
it may be beneficial to adjust this from time
to time in accordance with momentary
changes in our assessment of P(s). A predator
who has just sighted and failed to capture prey
has a chance of making further valid sightings.
But if he has seen nothing for some time, a
positive response becomes relatively more
likely to be a false alarm. In the absence of
valid feedback, the best evidence for a raised
or lowered P(s) is the occurrence or absence
of recent positive judgments. The more recent
the evidence, the more highly it should be
weighted: The external world changes. Given
recent detections the criterion should be low-
ered; following recent rejections it should be
raised.

This strategy of tracking the presence or
absence of a possible stimulus is just what is
achieved when the IT model operates with d =
— 1 to give positive sequential effects dependent
on past responses. The LAL model would fail
for this purpose: Faced with the continuous
presence or continuous absence of a signal, it
would send the criterion infinitely low or in-
finitely high. But the IT model sets sharp upper
and lower limits to the range of criterion vari-
ation, determined by the values of A and <5.

The Stabilizing System

If the long-term position of the criterion is
uncertain or unreliable, the first priority must
be not to maximize the momentary match to
the state of Nature but to use incoming in-
formation to position the criterion in an ap-
propriate position and keep it stable. From
this point of view, a sustained series of YES
responses provides information that the cri-
terion is too low, repeated NOES indicate that
it is too high. The stabilizing strategy requires
that a YES should be followed by a rise in
criterion, a NO by a fall in criterion. In the
simplest case, this tends to move the criterion
to a position such that the probability of YES
equals the probability of NO. Consequently,
the stabilizing strategy tends to maximize the
information transmitted by the subject's re-
sponses. This strategy would be realized by
the IT model functioning with d = 1 to give
a negative dependency.
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A simple way to envisage these strategies
operating would be to assume that the system
may switch from one strategy to the other by
setting d = — 1 or d = 1. For example, we may
suppose that normally the detection criterion
rarely wanders below a lower limit, zrf, and if
it does it becomes unstable (cf. Figure 1-1).
Then if the criterion does drift below zd, d
would change from —1 to 1, switching into
the stabilization mode. This assumption might
apply in some simple cases, but it is not ad-
equate in all cases, and it is not the assumption
that is made here. Instead we note that it is a
strength of the IT model that it can accom-
modate two strategies that are operating in
parallel at the same time with different deter-
minants and that are controlled by different
parameters, so as to serve their two purposes
simultaneously. We assume that one strategy
may be in operation, or the other, or both
simultaneously, depending on the require-
ments of a given task.

Determinants of tracking. Because the
subject's recent past decisions constitute the
best available indication he has of the mo-
mentary state of Nature, these are used to
determine the indicator traces for the tracking
strategy. This strategy will have parameters Af
and 5r. Because the dependency is normally
positive, we drop the parameter d and replace
Equation 3 by

T,.(O = -/A, (12)

Because the most reliable information is the
most recent, Ar and 5, are usually relatively
large and D is fairly small. This will also have
the effect that, although criterion fluctuations
produced by tracking may be relatively
marked, they will also be fairly evanescent and
should not have much effect on the long-term
mean position of the detection criterion.

Determinants of stabilization. Not only can
a series of YES responses indicate that the cri-
terion is too low, but the magnitudes of the
differences between the sensory inputs and the
criterion z, — zc(i)\ provide information that
strengthens or weakens this indication. This
makes input-criterion differences the best de-
terminants of successive moves in a stabilizing
strategy. Furthermore, the larger the sample
of sensory indicator traces that determines the
current criterion value, the more reliable their
mean effect and the less susceptible to mo-

mentary changes in P(s). This favors relatively
small values of the parameters A, and d,, giving
relatively slow decay of the traces. Thus we
assume that the stabilizing strategy is stimulus
dependent and is realized by using indicator
traces that are functions of past sensory input-
criterion differences. Equation 3 becomes

,(z, - zc(i)\ k - z,(0l < *v

(13)

Here A., is a positive constant of proportion-
ality; Z[/ is a large positive number. Its function
is to exclude the effects of stimuli wholly out
of range (where they are not already excluded
by forming part of inappropriate perceptual
complexes). Thus if clicks are being detected,
an unusually loud click may be taken into
account, but an intruding door slam would
be prohibited from producing a wild rise in
criterion.

The indicator trace decays toward 0 at the
rate 5S, so that its value, k trials after its cre-
ation, is

s(l' '
fmax(rs(/) - fcfi,, 0), Ts(i) > 0
min(rs(0 + k&,, 0), Ts(i)<0'

(14)

It follows that stabilization adjustments are
not produced by deviations \zt — zc(i)\ that are
less than an intrinsic lower limit z/_ = 3«/A.v.
Deviations less than or equal to ZL produce
sensory indicator traces that decay to 0 within
one intertrial interval and thus cannot con-
tribute to stabilization. Thus if 5S = As, only
deviations more than one standard deviation
from the criterion can have an effect.

The two strategies may operate in parallel,
their relative effects depending on their pa-
rameters. Usually, but not always, we expect
response indicator traces to decay rapidly, but
larger samples of more slowly decaying sensory
indicator traces to determine stabilization.
Thus recent trials may produce predominantly
positive and more remote trials, predomi-
nantly negative dependencies. One or the other
strategy may be suppressed entirely by setting
Ar < 6,. or Aj = 0.

Because the initial absolute value of the
sensory indicator trace is not a constant, unlike
Tr(f), the depth of the sequential dependency
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produced by stabilization is not constant either.
A large, remote input-criterion difference may
still affect a current criterion when a smaller
more recent difference has ceased to be effec-
tive.

The discussion above applies to detection.
In more complex tasks such as absolute judg-
ment there are several criteria that may be
affected by the events on a past trial. Thus if
Response 1 is made (cf. Figure 1-4) there are
several possibilities. The corresponding track-
ing indicator traces may (a) shift all the criteria
the same distance to the left on the next trial,
(b) only decrement the criterion (zcl) that im-
mediately determined the response, or (c) shift
zci and other criteria also, but to a lesser extent.
What happens in any case will have to be de-
termined by experiment.

Feedback. The present model provides a
basis for a theory of feedback. Feedback may
produce effects that vary with subjects and
situations. Four possible ways of employing
the information provided by feedback are sug-
gested.

1 . Selective stabilization. If reliable feed-
back is available, it could be used to select
those sensory inputs that should contribute to
stabilization. That is, trials on which the feed-
back FBj confirms the response R/ made on
that trial would be allowed to produce effective
sensory indicator traces, because the feedback
excludes the possibility that the input-criterion
difference arose from a miss or a false alarm.
We may represent this effect of feedback by
adding a multiplier to Equation 13. We define

kf= 1, FBi = Rt

kf=0, FBi + Ri

and kf~ 1 in the absence of feedback.
Then Equation 13 becomes

(15)

O,

\Zi - zc(i)\
\z, - zc(i)\

(16)

2. Stabilization suppression. It is possible
that feedback, being cognitively mediated,
cannot be applied to individual sensory de-
viations, but only by the reference system.
Then the receipt of reliable feedback over a
period might be used to estimate global pa-
rameters that in turn determine the long-term

criterion component z0—and the weight given
to the stabilization procedure would then be
reduced, or that mechanism might be sup-
pressed entirely.

3. Selective tracking. It is possible that
feedback might determine the responses to be
given weight in tracking. Then the response
Ri would contribute to a positive dependency
only if Rj = FBj. This would correspond to
multiplying T^i) by kf, as defined by Equation
15. This might parallel simultaneous selective
stabilization or stabilization suppression.

4. Feedback-based tracking. If the re-
sponses made are unreliable, so that they rarely
agree with the feedback, it may be advanta-
geous to substitute the feedback for the re-
sponses as a basis for tracking. Then FBt would
determine the tracking indicator trace on every
trial i, whether or not FBt = R,.

The resultant criterion. The resultant value
on trial; of the criterion produced by the ref-
erence, tracking, and stabilization mechanisms
may be written as

zAi) = z0+ 2 Tr(h,i-h)

+ 2 W,i-h). (17)
h=l

The relative weight of each component may
be varied by modifying the parameters A,, 8r,
A,, and 5S.

Because long-term factors (such as prior
knowledge of P(s) or payoff values) are em-
bodied in the choice of z0, we may expect that
tasks that are likely to give this criterion com-
ponent a high weight, such as well-practised
detection against a continuous background of
familiar noise, will most clearly demonstrate
the expected features of optimal criteria as
defined by SDT; for example, a fall in criterion
with increase in P(s). But if the conditions are
unusual or difficult and z0 is uncertain, short-
term strategies will dominate, diluting the
weight of global factors and perhaps resulting
in different relations.

Criterion maintenance when not performing
the task. For most of our lives, most of our
decision criteria are not in use. In some cases
(e.g., deciding which house to buy) the oc-
casions for their application are clearly defined
and easily anticipated. But in other cases (e.g.,
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was that a shooting star?), though rarely used,
they must be constantly available. How then
can criterion setting and maintenance be en-
sured during periods when the appropriate
stimulation for such decision criteria does not
occur? For example, consider a detection task
and suppose that the system is set to maintain
a Neyman-Pearson criterion giving a fixed false
alarm rate, e. When stimulation and feedback
are available they provide a basis for estimating
the false alarm rate and denning a correspond-
ing value of z0. But how can this criterion be
maintained during periods when no stimu-
lation is presented and no overt responses are
made?

The simplest possibility is that the previous
value of z0 is stored in long-term memory.
There are difficulties with this: First, the stored
memory of the criterion might decay, causing
apparent drift in its position, and there would
be no check on this. Second, the background
noise level might alter in the interim, changing
the false alarm probability given by the old
criterion value and requiring a revised value.

A possible strategy is suggested by the ob-
servation that during a period without stim-
ulation, false alarms may occur. This tells us
that the sensory input (determined by noise)
is sampled from time to time. Such regular
samples could be allowed to activate the sta-
bilization mechanism, even though no overt
responses are made. We refer to this as latent
stabilization. We assume that regular samples
are taken and that each is compared with the
current criterion. As a result, an indicator trace
is set up that produces an upward shift if the
sensory input-criterion difference is positive,
or a downward shift if it is negative. Because
samples usually fall below the initial detection
criterion, however, it is evident that if upward
and downward shifts are given the same weight,
the criterion must drift down toward the mean
of the noise distribution and so abandon the
Neyman-Pearson criterion. This difficulty is
met by having an asymmetry between upward
and downward shifts realized by giving As dif-
ferent values according to the direction of the
shift. Thus we substitute Asu for As in Equation
16 when an upward shift is indicated and A.!(/
when a downward shift is required, and give
Asu and A.5</ values appropriate to maintaining
the desired criterion. If the stabilization strat-
egy is applied under stable conditions, it is

reasonable to suppose that the value of the
long-term sum of sensory indicator traces var-
ies about an equilibrium point, ze. We can
identify this value by making the supposition
that ze is the point at which the expected ab-
solute value of an upward shift is equal to the
expected absolute value of a downward shift.
If so, because the mean of the normal distri-
bution truncated at a is given by /(«)/( 1 —
(F(a)), and disregarding the effects of decay
and the contribution of z0, we may write

eAJtt[/(ze)/e - ze]

) / ( l -€ ) + zJ, (18)

where t = 1 — F (ze) and gives the Neyman-
Pearson false positive rate for suitable Ara and
A«/. (We do not have a proof for this conjec-
ture, but it has been tested and is supported
by computer simulations.) It follows that

f(ze) - eze (19)

from -which we see that to maintain ze at the
value that will give e = 0.05, for example—
despite any drift in the sensory noise level—
will require Aid/Ara = 0.0126/1 = 1/80. As
A^ increases, so the equilibrium point moves
down. Thus if Asd and AJU are set at appropriate
initial values, latent stabilization (a negative
dependency determined by sensory noise in-
puts) can ensure appropriate adjustment of
the criterion as the sensory state of the subject
changes, even in periods of nonstimulation.

Because Ts(i, k) is subject to decay and so
is summed over a limited number of terms,
its average effect at any time is a partial shift
in the direction of ze that makes a weighted
contribution to the resultant criterion. If z0 is
unreliable or uncertain, increased weight can
be given to latent stabilization by increasing
the magnitudes of A.,,/and A5H without altering
their ratio, or by decreasing 8S, thus increasing
the relative weight of ze as compared with z0.

Latent stabilization could maintain a Ney-
man-Pearson criterion in the absence of stim-
ulation and formal feedback. Alternatively, it
might be used to approximate a maximum
expected value criterion denned for given sig-
nal and noise distributions and signal prob-
ability, if Asd and A.VM are determined as func-
tions of the probabilities of signal and noise,
d', and the payoff values.
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Some Applications of Criterion-Setting
Theory

The theory has now been outlined, mainly
as it applies to detection. It will be developed
for other applications elsewhere (Treisman,
1983a, 1983b, in press; Treisman & Faulkner
1983a, 1983b, in press.) At this point we stop
and ask how well it can account for the better
established features of sequential effects. We
consider detection and identification tasks first,
followed by absolute judgment and magnitude
estimation.

Detection and Identification

Further consideration of Experiment 1. The
theory suggests that tasks that employ well-
established criteria should show positive se-
quential dependencies, but more difficult or
unfamiliar tasks should be characterized by
increased salience of stabilization, resulting in
negative dependencies. It is of interest to re-
consider Experiment 1 in relation to these
possibilities. The signal-only condition is rep-
resented by Figure 1 -2. Here, the decision cri-
terion in use is likely to be the subject's prior
and long-established detection criterion. In this
experiment, an initial practice session was used
to find the signal intensity that gave P(Y) =
.5. Such a signal will have a sensory distri-
bution whose mean Ms is at or near zc, the
subject's precstablished criterion. So this con-
dition required the subject to employ an ha-
bitual criterion, leaving him free to give prior-
ity to tracking. This argument predicts—and
it will be remembered that we found—positive
sequential dependencies in this condition.

The noise-only condition is represented by
Figure 1-1'. The absence of a signal, and the
instruction to aim at P(Y) = .5, should force
the subject to shift his criterion far to the left
of its familiar position. It will move to a new
lower value z'c that coincides with the mean
of the noise distribution. We have supposed
that normally the criterion rarely wanders be-
low a lower limit, zd, and that if it does so it
becomes unstable. So we expect stabilization
to be the prime concern in this condition, giv-
ing negative sequential dependencies, and this
was what we found.

These results support the assumption that
the salience of tracking or stabilization will
depend on the conditions of the task. The as-

sumption that stabilization may be suppressed
when the criterion is well established and in-
put-criterion differences are small also finds
support in the lack of a stimulus effect in Ex-
periment 2, a detection task with a constant
noise background and a single signal alter-
nating with noise.

Is it possible that both strategies were op-
erating in Experiment 1 but that the less salient
strategy was overlooked? To examine this
question, the results were re-analyzed. For each
subject the data were fitted to Equation 17,
the parameter-fitting program being used to
find five parameters, z0, Ar, dr, A.s, and ds, for
seven trial sequences. There was no clear ev-
idence of an improved fit for any subject.
However, for Subject S5 the assumption that
the two mechanisms were in simultaneous op-
eration gave more reasonable parameters than
tracking alone had done: D was reduced from
324 to 4.

Another possibility that was considered is
the following. Because subjects were receiving
an intensity at the 50% detection level alone,
in one condition, and no signal at all in the
other, it is possible that a latent stabilization
strategy might continue to operate during the
experiment. To examine this, a model was fit-
ted that combined tracking and stabilization
with separate parameters Ayu and A«/. Again,
this produced no clear improvement over the
single strategy results for any subject except
S5. However, for this subject, the parameters
z0 = 0.092, A,. = 0.330, 5, = 0.090, A,tt =
1.184, A,d = 0, and 5, = 0.431 give MSD =
0.00747, SEP = 0.0864, and x20, N = 1) =
0.626. This is considerably better than the re-
sult for a single value of As, %2(2, N = 1) =
8.830, and D now has the reasonable value 3.
The improved fit is shown as a dashed and
dotted line in Figure 4.

Task conditions, especially novelty or fa-
miliarity of the task. The predicted relation
between the conditions of the task and the
direction of the dependency is also supported
by the data of Sandusky and Ahumada (1971).
In place of the positive dependency usually
seen with detection against a constant noise
background, these authors found that if the
signal and the noise are gated on and off to-
gether, there is a negative sequential effect.
They relate this to the absence of the frame-
work of reference constituted by a constant
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noise background. In terms of our assump-
tions, the absence of this framework has its
effect by reducing the reliability of placement
of zn and thus requiring more active stabili-
zation.

An unfamiliar identification task, in which
only a single stimulus is presented on each
trial, should induce uncertainty about the cri-
terion and therefore should require stabili-
zation. Parducci and Sandusky (1965) provide
data on such a task. A light was shown briefly
to the subject in one of two positions, left or
right, in the dark. A reference light was present
and no feedback was given. They found that
the probability of a correct response was in-
creased for a stimulus alternation as compared
with a repetition. This indicates that the cri-
terion had moved toward the previous stim-
ulus, illustrating a negative stimulus depen-
dency. Other experiments (e.g., Tanner et al.,
1967) that support this result are discussed
below.

Probability of the signal. Criterion-setting
theory predicts that a stable criterion largely
determined by z0 will show the changes pre-
dicted by SDT in response to variation in P(s),
but that a criterion largely determined by the
short-term strategies will not. There is no lack
of detection studies in which well-practised
subjects exposed to familiar noise backgrounds
vary their criteria in response to changes in
P(A-) in the directions predicted by SDT (Green
& Swets, 1966). We may contrast this situation
with the identification task, in which the sub-
ject may be exposed to randomly alternating
intermittent presentations of, say, tones at 68.5
db or 70 db and must categorize them. This
is a much less familiar task than detection in
daily life, and the subject is likely to have spe-
cial difficulty in maintaining a fixed criterion
for it. Here the stabilization mechanism should
be important in determining the position of
the criterion, that is, ze will be weighted large.
If so, the effects of change in P(s) on z0 should
be less evident in the behavior of the resultant
criterion.

What effect should P(s) have on zel To an-
swer this question, we extend Equation 18 to
apply to the two distributions used in a typical
identification task. The stimulus s\ (see Figure
1-3) is assumed to occur with probability P(xt),
and s2 with probability 1 — P(s\). If we take
the equilibrium value of the criterion, ze, as

the point on a standardized scale at which the
expected magnitude of shift in either direction
is the same, let the mean of the s, distribution
be d' and the mean of the s2 distribution be
zero, with a standard deviation of one in each
case, and define

= MO, l)dz

for $2, and

«i
/*oo

Jzf-d'
N(0, l)dz

for st , we have

A.W{(1 - ns,))e2[/(z,)A2 - zj

+ P ( s l ) f l [ f ( z e - d ' ) / f l - ( z e - d ' ) ] }

= Asd{(l - P(sl))(\ - e2)[/(z,)/(l - e2)

- «i)[/(zc - d')/

-£ , ) + zc-<sn}. (20)

(This is supported by computer simulation.)
For A.Vd = A.VM = Av, this simplifies to

ze = P(st)d'. (21)

The implications of this relationship are il-
lustrated by the variation in the probability
of the response S\, P(Sl), as P(s}) varies, which
is shown for two values of d' in Table 4.

Most experiments of this sort are run with
d1 of the order of one. Evidently, as P(s\)
changes, P(Si) will remain almost constant at
about 50%, to the extent that ze determines
the criterion in use.

Relevant evidence is provided by Parducci
and Sandusky's (1965) position identification
experiment, in which the accuracy data
showed a negative dependency, indicating ac-
tive stabilization. For three probabilities of the
left stimulus, .2, .5, and .8, the probability of
the response LEFT was .48, .52, and .53, re-
spectively. This indicates that there is a shift
of the criterion toward s\ as P(s\) increases,
as can be seen in Figure 2 of Sandusky (1971).
Tanner et al. (1967) performed an identifi-
cation experiment using two 1000-Hz 100-
msec tones, the louder at 70 db, the softer
reduced to a level at which about 70% of re-
sponses were correct. There was no feedback,
and the effect of increasing P(loud) from . 1
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Table 4
Identification Task

d'= 1 «"= 2

0.1
0.2
0.5
0.8
0.9

0.496
0.494
0.500
0.506
0.504

0.475
0.465
0.500
0.535
0.525

Note. Values of the overall probability of the response Si,
P(S,), for different values of P(.i>), the prior probability
of presenting the stimulus s\, predicted by Equation 21.

to .9 was to give a small increase in P(LOUD),
from .52 to .60. Tanner et al. (1970) performed
a similar experiment. In an initial no-feedback
condition, P(LOUD) increased from .54 to .56
as P(loud) varied from .2 to .8. But after fur-
ther experience (12 sessions with feedback), a
repetition of this condition resulted in P(LOUD)
increasing from .43 to .69, indicating an in-
creased weighting for z0 as a result of this
lengthy training. (With feedback, P(LOUD) in-
creased from .18 to .81 as P(loud) went from
.2 to .8, which shows that feedback increased
the weight given to z0. This supports the hy-
pothesis that feedback causes stabilization
suppression rather than selective stabilization.)
Parducci and Sandusky (1970) interpolated an
intermediate tone between successive presen-
tations of their experimental loud or soft tones.
In one condition the interpolated tone was de-
scribed as a standard, in the other, as a warning.
The probability of the loud stimulus was .2,
.5, or .8. In the standard condition the cor-
responding values of P(LOUD) were .50, .46,
and .50. In the warning condition they were
.56, .54, and .54. These various results accord
with the prediction derived from Equation 21.

Further support is provided by Sandusky
and Ahumada (1971). In a detection task in
which both signal and noise were gated on and
off together, the criterion shifted to the right
when P(s) increased from .25 to .75.

Criterion-setting theory assumes that both
stabilizing and tracking mechanisms may op-
crate at the same time. Several lines of evi-
dence support this claim: Some of the data
are illustrated in Figure 9.

Collier and Verplanck (1958) used the single
intensity detection procedure, with a stimulus

of fixed luminance. Because the stimulus in-
tensity is the same on every trial, the criterion
is likely to be near Ms (Figure 1-2). Some of
their data are replotted in the first panel of
Figure 9. The points labeled single intensity
give P(Y) following all sequences of two pre-
ceding responses, such as two YESES (11), and
so forth. These points show a positive depen-
dency on both the preceding response and the
penultimate response. In a second condition,
occasional stimuli were interpolated that were
either 0.5 log units greater or 0.5 log units less
than the fixed luminance. Trials on which an
immediately preceding interpolated strong
stimulus elicited YES or a weak stimulus NO,
grouped also according to the penultimate re-
sponse (to the standard luminance), are shown
under the heading Forced Response. Here
again P(Y) is higher for an immediately pre-
ceding (forced) YES, and higher for an (un-
forced) YES on the trial before that. But this
positive dependency on the preceding response
is now reduced as compared with natural two-
trial sequences: 11 exceeds 10, and 01 exceeds
00 to a smaller extent when the final 1 cor-
responds to an enhanced stimulus, the final 0
to a dim stimulus. This demonstrates that an
operation that has increased the expected val-
ues of \Zf — zc(i)\ has amplified an underlying
negative effect of the stimulus that subtracts
from the positive effect of the response.

Tanner et al.'s (1967) results for identifi-
cation of the loudness of a tone, without feed-
back, are illustrated in Figure 9 for P(loud) =
0.5. They obtained similar results for four
other values of P(loud). Similar results are
reported by Tanner et al. (1970), and the same
picture emerges from Sandusky's (1971) anal-
ysis of the data of Parducci and Sandusky
(1965). It is evident that P(LOUD) is greater
on the current trial if the preceding response
was LOUD than if it was SOFT, a positive de-
pendency on the last response, but P(LOUD)
is less if the preceding stimulus was loud than
if it was soft, a negative dependency on the
past stimulus.

In an identification experiment by Haller
(1969), three closely spaced tones were iden-
tified in two categories, LOUD and SOFT, by
10 subjects. s\ was 70 db, s3 was at an average
of 68.5 db, and s2 was intermediate. There
were four conditions, which differed in the
distributions of probability over the three
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Figure 9. Some experimental results on sequential depen-
dencies, (a) Collier and Verplanck (1958): The single in-
tensity procedure. The data replotted here compare P(Y)
following a naturally occurring pair of responses with P(Y)
following a pair in which the first response (1 for YES or
0 for NO) was made to the standard intensity; the second
response was forced by a reduced or increased intensity
stimulus (forced response), (b) Tanner, Haller, & Atkinson
(1967): The probability of a LOUD response to a loud
stimulus is plotted against P(LOUD\soft) for the four possible
conjunctions on the previous trial, (c) Haller (1969): The
position of the identification criterion is plotted against
the stimulus on the previous trial (where 1 = loud and
3 = soft). The continuous lines represent a previous LOUD,
the dashed lines a previous SOFT response.

stimuli. All three stimuli were employed in
three of the conditions. The data for these three
conditions have been re-analyzed as follows:
The standard deviate corresponding to each
probability of LOUD was used as an estimate
of zc on a scale with its origin at the mean of
the corresponding stimulus, and mean values
of zc for each combination of preceding stim-
ulus and response was found. The subjects fell
into two groups: 7 subjects' mean scores are
plotted on the left; 3 subjects' mean scores,
on the right.

In both cases, the stronger the previous
stimulus, the higher the criterion—a negative
effect. For 7 subjects, the previous response
had the reverse effect, giving a positive de-

pendency. For these subjects, an analysis of
variance gave highly significant (allowing for
two missing data points) main effects (prob-
ability condition, p < .025; current signal, p <
.001; preceding response, p < .025; preceding
signal, p < .001), but no interaction, at any
level, was significant. This accords with our
assumption that the effects of previous stimuli
and of previous responses combine by linear
addition. For the remaining 3 subjects, the
previous stimulus and response both produced
negative dependencies, although these were not
significant.

For all the subjects, zc increased when the
relative probability of s, increased and de-
creased when the probability of s3 increased,
which accords with Equation 21. (Although
this relation is produced by the stabilization
mechanism, which is also responsible for the
effect of preceding signal in the analysis of
variance, it arises as the resultant effect of a
series of previous trials, and thus probability
condition manifests as a separate additive
factor.)

John (1973) and McNicol (1980) also pro-
vide evidence that the current response is as-
similated to the preceding response and con-
trasted with the preceding signal in identifi-
cation tasks.

The effects of feedback. Four possible
strategies for utilizing feedback were derived
from the theory. The first two proposed that
stabilization may either be selective, or it may
be suppressed in favor of a higher weighting
for the long-term component of the criterion.
Evidence from a number of sources may allow
us to choose between these two alternatives,
for detection and identification tasks.

If feedback produces selective stabilization
(Equations 15 and 16), it should cause a neg-
ative dependency similar to, but more marked
than, that given by stabilization when there is
no feedback. Stabilization suppression would,
of course, eliminate the dependency. Parducci
and Sandusky (1965) report a negative de-
pendency on the previous stimulus when there
is no feedback, but not when feedback is given.
This indicates suppression. Support for this is
provided by Haller's (1969) comparison of data
obtained by Kinchla (1966; as reported by
Haller, 1969) and by Tanner et al. (1967); both
studies examined identification using the same
stimuli and apparatus. As we have already
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Figure 10. Data from an identification experiment by Tan-
ner, Rauk, & Atkinson (1970) in which subjects judged a
tone as LOUD or SOFT. (In the upper panel the probability
of the LOUD response is shown as a function of the response
on the preceding trial; in the lower panel it is shown as a
function of the preceding stimulus. There were three con-
ditions with no feedback and one with feedback.)

seen, P(LOUD) changed very little as P(loud)
increased from 0.1 to 0.9 in the latter study,
in which no feedback was given and a negative
stimulus dependency was shown. But P(LOUD)
closely matched P(loud) in Kinchla's (1966)
experiment, in which feedback was given. So
it seems that (at least for identification) feed-
back may suppress stabilization and enhance
reliance on z,,, which is determined by P(s)
in accordance with SDT, and so will tend to
give probability matching. Dorfman, Saslow,
& Simpson (1975) also report probability
matching when feedback is given.

Tanner, et al. (1970) ran four identification
conditions in succession with the same sub-
jects. Feedback was given in the second con-
dition but not in the other three. From their
Table 1 we may calculate the average values
of P(LOUD) contingent on each possible stim-
ulus, or response, on the previous trial. These
values arc plotted in Figure 10. In every con-
dition, we see a positive dependency on the
previous response and, except in the feedback

condition, a negative dependency on the pre-
vious stimulus. In the feedback condition, the
probabilities contingent on the previous stim-
ulus are almost identical, indicating that sta-
bilization was suppressed. It is in keeping with
this interpretation that P(LOUD) matched
P(loud) closely in the feedback condition but,
when feedback was absent, not at all in naive
subjects and much less so in experienced sub-
jects.

If feedback in a single-interval detection task
suppresses a negative dependency on the pre-
vious stimulus, this should have the effect of
reducing criterion variance and so should in-
crease a measure of sensitivity. Gundy (1961)
reported small effects of feedback on ds, not
all in this direction. However, because he used
a constant noise background, any negative de-
pendency may have been small to start with.
Carterette, Friedman, & Wyman (1966) found
a lower P(C) in a 2IFC procedure with con-
tinuous noise background when feedback was
sometimes incorrect than when it was always
correct or not given. It is possible that the
incorrect feedback induced an increase in cri-
terion variance. Friedman, Carterette, Nak-
atani, & Ahumada (1968) examined single-
interval auditory detection against a contin-
uous background, with P(s) varying from .25
to .75. In both their low- and high-signal-in-
tensity conditions, P(hit) and P(false alarm)
both varied over larger ranges as a function of
P(s), in the direction of probability matching,
when correct feedback was given than in a no-
feedback or in a random-feedback condition
(which suggests that the random feedback may
have been disregarded).

Friedman et al. (1968) also found that it
feedback was random on signal trials but cor-
rect on noise trials, the criterion was very high,
and in the reverse condition it was very low.
This is an intriguing finding that provides fur-
ther evidence against the possibility that feed-
back produces selective stabilization in detec-
tion. Consider random feedback on signal
trials, with correct feedback on noise trials.
Assuming that selective stabilization occurs
when feedback and input-criterion differences
agree, the main effect would be to nullify about
half of the differences arising on the signal
trials (on which the greater proportion of the
sensory deviations would be positive), and this
would cause an imbalance in favor of the neg-
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ative dependency produced on the noise trials.
Consequently, the criterion would move down.
But in fact it did not. An explanation for this
result is provided by the third feedback strat-
egy, selective tracking (which may have been
combined with stabilization suppression). If
feedback in disagreement with a response in-
validates it for tracking, then in the signal-
random, noise-correct case, the major contri-
bution to tracking shifts would have been made
by responses to noise. As most of these would
be NO, which causes the criterion to rise, this
would explain the high criterion value found.
Selective tracking can also explain the relative
reduction in the positive dependency on the
previous response that is seen in the feedback
condition of Tanner et al.'s (1970) identifi-
cation experiment, as illustrated in the upper
panel of Figure 10.

Overall, the evidence from these tasks sup-
ports the hypothesis that reliable feedback can
substitute for short-term stabilization and can
provide a basis for maintaining confidence in
the long-term criterion, z0. There is no evi-
dence that it can be used to give selective sta-
bilization. But there is support for the occur-
rence of selective tracking.

Absolute Judgment and Magnitude
Estimation

Absolute judgment results obtained by
Ward and Lockhead (1971) are illustrated in
the upper four panels of Figure 11. Their sub-
jects judged 10 tones separated by 1 db, and
the responses were the numbers 1 to 10. For
each stimulus, the average departure from its
nominal value was found. In the figure, the
average error for all stimuli on trial / is plotted
for the case when the stimulus on trial / — 1
was 9 or 10 (lag 1), when the stimulus on trial
/ - 2 was 9 or 10, whatever the stimulus on
i — 1 (lag 2), and so on. A similar curve is
shown for trials preceded by Stimuli 1 or 2 at
the various lags. The curves for other preceding
stimuli, which are not shown in Figure 11,
were largely intermediate between those that
are shown. On the right, the same data are
plotted in relation to preceding responses. The
upper panels show a condition with, and the
middle panels a condition without, feedback.
Similar results have been obtained for other
sensory modalities, and using magnitude es-

timation with different response ranges (King
& Lockhead, 1981). Lockhead and King
(1983) used a successive ratio-judgment task
in which subjects were asked to respond to
the current stimulus 7n by giving the ratio of
its loudness to the loudness of the immediately
preceding stimulus (I,,-\). They derived the
equivalent magnitude estimation data from
these ratios: These show sequential dependen-
cies very similar to the absolute judgment re-
sults in Figure 11. Other authors have reported
similar findings (e.g., Jesteadt et al., 1977;
John, 1973).

These data show features that demand an
explanation. Considering the feedback con-
dition first, we see a positive dependency on
the immediately preceding trial and a negative
dependency on earlier trials. Because stimuli
and responses are correlated, the overall pic-
ture is similar whether plotted for past stimuli
or for past responses. These findings can be
explained by the assumptions that (a) both of
the short-term mechanisms are active, (b) the
stabilizing strategy establishes a negative de-
pendency extending over several trials, and (c)
the tracking mechanism adds a positive de-
pendency that is more marked but is limited
to more recent responses. These assumptions
are supported by the observations that in these
data the negative dependency appears greater
when the curves are classified by preceding
stimuli than by preceding responses, and the
positive dependency is more evident when the
data are analyzed in relation to past responses
than in relation to past stimuli.

When feedback is omitted, we see a marked
increase in the positive dependency that is
especially evident when the data are classified
by past responses (note the doubled scale units
for the right middle panel of Figure 11). This
may be explained by the third strategy for
handling feedback information, selective
tracking. When this strategy is applied, only
if Rj — FBi does the response affect the cri-
terion: Complete or close agreement with
feedback is required if the response is to con-
tribute to tracking. If so, when feedback is
given, many responses will be ineffective for
tracking, allowing the effects of stabilization
to bulk relatively larger. But in the absence of
feedback, all responses will be effective, pro-
ducing a larger positive dependency. This "re-
lease of tracking" is what we see in the no-
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feedback panels. It is, of course, more evident
when plotted against past responses than
against past stimuli.

The evidence that stabilization occurs both
with and without feedback shows that in ab-
solute judgment (unlike detection or identi-
fication), stabilization is not suppressed by
feedback. Because the absolute-judgment task
requires many more criteria than detection or
two-category identification (nine in this case),
it must be correspondingly more difficult to
use feedback alone to establish and maintain
a set of stable long-term reference criteria, and
so the stabilization strategy remains essential.
In detection, feedback may provide an estimate
of P(s) that can be used to determine the best

value for z0. It is not evident that it can play
a similar role in absolute judgment, in which
it is the distribution of the stimuli, not the
probability of a single signal, that is important
for locating the criteria. The apparent increase
in the negative dependency when feedback is
given can probably be attributed to the relative
reduction of the positive dependency on re-
sponses produced by selective tracking.

To demonstrate that Equation 17 is capable
of producing patterns of this sort, a computer
simulation of the no-feedback case was run.
It was not intended to fit the Ward and Lock-
head (1971) data parametrically—to do this
would require more information than we have
at present about the effects of a stimulus or
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response on criteria remote from those deter-
mining the response—but to examine whether
the present theory would produce a qualita-
tively similar pattern of results. The simulation
was based on the following assumptions: Four
equally spaced stimuli with means 1,2,3, and
4, and producing normally distributed effects
(SD = 0.5) on a central scale are presented in
random order on successive trials. The sensory
input on each trial is compared with criteria
with initial values zc\ = 0.75, zc2 = 2.5, and
za = 4.25, to give one of four responses. (If
z, < zc\ then 1, if zci *£ z/ < zc2 then 2, etc.)
The stabilization and tracking parameters are
A, = 0.5, 5S = 0.05, Ar = 2.0, and 8r = 1.0,
giving D = 1. The short-term mechanisms are
assumed to act on every trial.

At the beginning of each trial the criteria
are updated. For this purpose rules are needed
to prescribe adjustments to remote criteria
following a given input and response. For the
purpose of the simulation, the following rules
were employed, (a) A past response affects ev-
ery criterion equally. Thus, if the response on
trial / - k was 2, then on trial i, zc\ is dec-
remented by max(Ar — kSr, 0), and zc2 and
zc3 are both raised by this quantity, (b) A pre-
vious input-criterion difference affects neigh-
boring criteria more than distant ones, the ef-
fect decreasing inversely with distance. Thus,
if the response on trial i — k was 2, we must
have had zc\ < Zj-k < zc2 on that trial, giving
two input-criterion differences of absolute
magnitudes Difu = Aj(z/_* — zc\) and Difd =
A.s(zC2 - Zt-k). Then on trial /, zc\ is raised
by ma\(Diflt — kds, 0), zc2 is decreased by
ma\(Difd — k8s, 0), and zc3 is decreased by this
quantity divided by 2. For a third criterion
the divisor would be 3. In updating criteria
the program considered only the previous eight
trials. Three thousand trials were simulated
and the results are shown in Figure 11.

These results show a general parallel to Ward
and Lockhead's (1971) no-feedback condition.
It is likely that changes in parameters and in
the rules for the effects on remote criteria
would allow still greater agreement.

Lockhead and King (1983) made two in-
teresting observations using their successive
ratio-judgment task. First, if two successive
stimuli, /„_! and /„, are identical in auditory
intensity they do not necessarily give an av-
erage ratio judgment of one. Furthermore, the

result given is affected by preceding stimulus
presentations. Some of their results for stim-
ulus pairs of the same intensity are shown in
the left panel of Figure 12: As the stimulus
pair increases in intensity, the subjective ratio
of the second presentation to the first increases.
And if In-2 was a low stimulus the judgment
is higher than if 7B_2 was high. We have ex-
amined whether our model would give a sim-
ilar result. Similar ratios were calculated from
the simulation illustrated in Figure 11. Mean
ratios of the responses given to successive
stimuli of the same nominal value are shown
in the right-hand panel of Figure 12; the pa-
rameter for each curve is the nominal value
of the stimulus preceding the pair. Except for
a decrease in two of the curves at the highest
stimulus value, the results parallel those of the
experiment: The ratios increase with stimulus
intensity, and the values are higher if 7n_2 was
low than if it was high.

There is not much evidence on the extent
to which and the range over which responses
or sensory inputs may produce shifts in remote
parallel criteria. Purks et al. (1980, Figure 3)
show shifts in absolute judgment criteria zcj
away from the preceding stimulus. These shifts
appear to increase initially as the separation
of the criterion from the previous stimulus
increases, but return to zero at greater dis-
tances. On the present interpretation, this pos-
itive effect is a function of the preceding re-
sponse (not stimulus), and the initial increase
in the magnitude of the shift with distance
may simply reflect the increasing proportion
of the responses to the preceding stimulus that
lie on the same side of zcj as it becomes more
remote. Holland and Lockhead's (1968) data
also suggest that the induced positive shift may
be greater for nearer criteria, but Ward and
Lockhead (1970) provide evidence that the
shift is the same for all criteria, suggesting that
response-induced tracking may have a similar
effect on the whole scale.

Some further points deserve comment. A
phenomenon identified by Parducci (1965)
may be explained by the stabilization strategy.
He showed that in category judgments there
is a tendency for category boundaries to shift
so as to equate the frequencies with which
different responses are used. Such an effect
could be caused by stabilization. Consider
three criteria distributed as in Figure 1-4, and
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suppose that the stimulus s^ is presented more
frequently than the stimulus s2. Then more
sensory inputs will lie in the interval zc3 <
z/ < zc2, generating the response 3, than will
lie in the interval zc2 < z,- < zc\. The effect of
each sensory input falling in the first interval
will be a tendency to shift zc3 upwards and zci
down, which will extend over several subse-
quent trials: A similar effect will apply for in-
puts falling in the second interval. Because s3
is more frequent, so that more sensory inputs
fall between zc3 and zc2, the net effect will be
to move zc2 downwards, thus decreasing the
number of occasions when inputs are classified
as 3 and increasing the number eliciting the
response 2. If 53 is more frequent than s4 there
will be a similar net upward shift of za, nar-
rowing the interval from zc3 to zc2. The overall
effect will be to reduce an initial excess of 3
responses.

Ward and Lockhead (1970) reported that
shifts in the stimulus range from one day to
the next result in constant errors related to
the previous day's range. This illustrates the
relative long-term stability of reference cri-
terion values. Ward and Lockhead (1971) per-
formed a mock absolute judgment experiment
in which no stimuli were presented, subjects
were required to guess, and feedback was given.
The main sequential dependency shown was
a strong positive effect of the previous stimulus
(i.e., the feedback given), with no effect of pre-
vious responses (guesses). The absence of a
response effect, with a strong positive effect of
feedback is what would be expected if feed-
back-based tracking were substituted for re-
sponse tracking: When responses are highly
unreliable only feedback inputs can usefully
be used to generate tracking shifts. The same
authors obtained almost identical results in a
very difficult line-length absolute judgment
task with feedback. The perceptual difficulty
of the task implies that the sensory differences
were small and so any negative dependency
would be small, and only a low proportion of
responses would be validated by feedback. The
absence of any effect of responses, with a pos-
itive effect of feedback, implies that subjects
employed the feedback-based tracking strategy
here, as in the guessing experiment.

Further evidence on how information fed
back to the subject may be used is provided
by an experiment of Wagner and Baird (1981)

that is similar to Ward and Lockhead's (1971)
guessing experiment. Again, subjects guessed
integers and were given feedback. In this case,
however, they were told that they were partic-
ipating in an extrasensory perception exper-
iment. These results also demonstrate a strong
positive effect of feedback at lag 1, but there
is also a somewhat weaker positive effect of
the response made, extending back for several
trials. It appears that here—perhaps because
the subjects' responses were dignified as pos-
sible ESP rather than guesses—positive de-
pendencies were induced both by recent feed-
back and by past responses, the two tracking
mechanisms having different parameters. If
this is the correct account, feedback may not
only be substituted for responses, it may also
serve in its own right as a parallel basis for a
third system of short-term adjustments.

In both the guessing experiments the anal-
yses in terms of feedback show a small contrast
effect. The feedback, being a number, is iden-
tical in form to the missing stimulus (an un-
known integer) that the subject is attempting
to divine in each case. It is possible that it was
processed as such a stimulus, producing a sta-
bilization effect.

Magnitude estimations of tones obtained by
Ward (1973) and plotted by Jesteadt et al.
(1977) in relation to preceding stimuli show
sequential effects. There is a marked positive
dependency extending back for at least five
trials, and no evidence of contrast at any lag.
A multiple regression analysis of their own
magnitude-estimation data by Jesteadt et al.
(1977) shows a large positive regression coef-
ficient on the previous response (0.38) and a
much smaller negative regression coefficient
on the previous stimulus (—0.05). Such results
accord with the account we have given. As
there is no feedback, all responses are effective
in producing a positive dependency, which
may therefore be considerable. As responses
are correlated with stimuli, it is possible to see
this positive dependency in an analysis against
past stimuli. The following considerations sug-
gest that stabilization is negligible in this pro-
cedure. The defining feature of magnitude es-
timation is that the subject has unlimited scope
to choose the form of his response. We may
view the effect of this on the input-criterion
differences as follows. The numerical system
with which the subject compares his sensory
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inputs corresponds to the set of criteria in an
absolute-judgment task, with the difference
that in magnitude estimation the subject may
employ numerous criteria and can interpolate
additional, more closely spaced criteria (based
on finer subdivisions of the numerical scale)
whenever there is any significant separation
between a sensory input and the nearest cri-
terion initially employed. This will ensure that
input-criterion differences are small and so
remove or greatly diminish the basis for a neg-
ative dependency. Thus the absence of such a
dependency in Ward's (1973) data and its small
size in the data of Jesteadt et al. (1977) is
readily understandable.

Conclusion

We have described and reviewed experi-
mental evidence that provides support for a
model of criterion setting in which the criterion
is given by a linear combination of a long-
term reference value and indicator traces de-
termined by previous stimuli and responses
and in some cases by feedback. This theory
has been shown to provide an account for
many features of sequential dependencies.

If the arguments presented here are correct,
then sequential effects should no longer be
viewed as bothersome errors arising from in-
stabilities or inadequacies in our imperfectly
designed detection and categorization systems,
hindrances to the experimenter. Instead they
provide evidence for the existence of a so-
phisticated control system that is able to com-
bine information from a number of sources
to determine the best position of the decision
criterion from moment to moment. Factors
such as past experience, knowledge of signal
probability, and perhaps privileged sensory
inputs such as stimuli denominated as anchors
or a constant background, determine an initial
long-term reference criterion. This may be dif-
ferently weighted according to its reliability in
different tasks. Best determinations of the cur-
rent stale of the world embodied in the sub-
ject's most recent responses, and weighted by
their immediate relevance, produce shifts in
criteria calculated to facilitate repeating those
observations that appear currently valid: the
positive sequential effect. We reject the idea
that this represents a confusion of the present
stimulus with, or assimilation of it to, a past

input. Rather, it results from a rational re-
sponse to the short-term nonrandomness of
the real world. And because this nonrandom-
ness is short-term—the longer we wait the less
likely are we to find the same things still about
us—the effect normally decays quite rapidly.

Additionally, evidence about the prevailing
flux of sensory inputs, usually sampled over
longer intervals to increase its reliability, is
used to place criteria centrally in relation to
this flux, so stabilizing criteria at positions that
favor maximum information transmission.
Thus Equation 17 combines past experience,
an assessment of the current state of the world,
and a requirement for optimal information
transmission.

If this interpretation is right, sequential ef-
fects reveal the intelligence of the sensory sys-
tem in operation. Application of the model to
observations in the literature has revealed no
serious difficulties and has suggested a number
of refinements. There is a small amount of
evidence suggesting the possibility that the di-
rection of tracking may be reversed, so that
responses may generate negative dependencies,
perhaps because of particular difficulty in sta-
bilizing the criterion—which we may under-
stand as the suppression of tracking when every
resource must be recruited for stabilization.
Although the negative response dependency
shown by three subjects in Mailer's (1969) ex-
periment (see Figure 9) did not reach signif-
icance, similar effects can sometimes be found
in other data. For example, two of Sandusky's
(1971) subjects showed a positive and two a
negative response dependency. As we have
seen, we cannot say whether the negative de-
pendencies for the noise-only condition of Ex-
periment 1 represent reversed tracking or nor-
mal stabilization. But there is no evidence from
any source to suggest that stabilization can
reverse its direction.

The theory suggested ways in which feed-
back information might be used, and the lit-
erature review has provided relevant evidence.
We have seen that in detection and identifi-
cation, the presence of feedback may cause
stabilization to be suppressed, so that the long-
term criterion (which takes account of the in-
formation, such as P(s), that feedback supplies)
is weighted more highly. But stabilization
suppression does not occur when a number
of response categories must be used. In no



SEQUENTIAL DEPENDENCIES 109

case has evidence been found for selective sta-
bilization. Tracking, however, can be modified
in detail: Selective tracking may occur when
feedback information can be used to improve
it by invalidating those responses with which
it conflicts. Feedback-based tracking may sub-
stitute entirely for response tracking when the
latter is highly unreliable, and both response
and feedback-based tracking may coexist. Se-
lective tracking or feedback-based tracking
may explain such varied effects as the detection
criterion shifts seen when only signal (or noise)
trials receive random feedback (Friedman et
al., 1968), the release of tracking in no-feed-
back conditions in absolute judgment, and the
positive dependency on the previous stimulus
(i.e., on the feedback) but not on the previous
response in absolute judgment with extremely
difficult or nonexistent stimuli (Ward & Lock-
head, 1971). The transition from positive de-
pendencies at short lags to negative depen-
dencies at long lags seen in absolute judgment
provides a demonstration of the conjoint op-
eration of the different mechanisms, and the
negligible or absent negative dependency in
magnitude estimation is also explained by cri-
terion-setting theory.

If it is correct that selective tracking can
occur, but not selective stabilization, this has
interesting implications. It suggests that sta-
bilization may occur at an early level in a hi-
erarchy of sensory processing at which it is
susceptible to suppression by higher mecha-
nisms, or alteration in its parameters, but not
to step by step control, but that response and
fed back information are made use of at a
higher level in the hierarchy that is susceptible
to modification on a trial-by-trial basis.

The problem of the maintenance of a cri-
terion during periods when the appropriate
stimulation does not occur was discussed. A
latent stabilization strategy may explain this.
Some support for this strategy is given by the
observation that the data for Subject S5 in
Experiment 1 were best fitted on the assump-
tion that for him latent stabilization continued
during the experiment.

Alternatives to the IT model were consid-
ered. A linear additive learning model can be
rejected, but an additive learning model with
exponential decay does appreciably better, al-
though marginally not as well as the IT model.
But it does provide a reasonable approxima-

tion to the latter. However, it does not account
for the direct evidence of linear decay, and it
is not evident that it could be elaborated in
any simple way to handle possibilities such as
the simultaneous operation of different strat-
egies, including latent stabilization and re-
sponse-based and feedback-based tracking,
each with different decay rates.

If the IT model is valid, its implications for
memory are of interest. The indicator traces
record the implications for decision, not the
occurrence, of past sensory inputs or respon-
ses. They decay, apparently linearly, at rates
that may differ for different types of trace.
These decay rates do not represent an un-
avoidable loss of information from the system
but are parameters that weight the information
provided by a past event by its current sig-
nificance for decision and that it may be open
to the system to modify.

Many points remain open that require fur-
ther investigation. Criterion-setting theory may
be of importance not only in relation to the
features of sequential dependencies that we
have discussed. Papers in preparation consider
its application to a number of further problems
in psychophysics (Treisman, 1983a, 1983b;
Treisman& Faulkner, 1983a, 1983b, in press).
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