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There are few truisms in the field of psychology, but
one of them is surely that measurement error is found in
all experiments. Data are inevitably produced that do not
perfectly reflect the logic imposed by the experimental de-
sign. To the extent that a psychological experiment suc-
ceeds in measuring something or in making some sort of
distinction, the data will partially reflect the design, and
this leads to a way of thinking about data that is found
throughout all the experimental sciences: data � signal �
noise. This innocent equation almost always contains an
implicit but critical assumption: that the noise may be re-
garded as independent samples from some distribution—
typically taken to be the Gaussian distribution. In this
way, the residual error is conceived of as a featureless
background of white noise in which the interesting part,
the treatment means, are more or less buried.

Often this conception of data is justified. Whenever
there is random assignment to cells and each participant
contributes a single datum, errors may be expected to be
uncorrelated. However, in all of sensory psychophysics
and most of cognitive psychology, single individuals re-
spond to entire blocks of trials in a given experimental
session. Here, the residual error will develop correlations
by virtue of the circumstance that the response history
was laid down by a nervous system that has memory. In
many situations, these correlations are little more than a

nuisance created by explicit recollection of responses on
previous trials. This is the case, for example, in magnitude
estimation, where the fact that people tend to reiterate
their chosen responses (a response, say, of loud is likely
to engender another response of loud; Luce, Nosofsky,
Green, & Smith, 1982; Staddon, King, & Lockhead, 1980;
Verplanck, Collier, & Cotton, 1952) makes it difficult to
extract a meaningful relation between distal signals and
their subjective experience. More generic, and poten-
tially much more interesting, are those situations in which
explicit memory is not implicated, and then the correla-
tions and the memory system that created them may be-
come the focus of inquiry.

The study of sequential correlations has been particu-
larly intensive in reaction time (RT) methodologies. This
body of work has revealed numerous forms of response
contingency that are collectively referred to as priming.
Almost any aspect of a past stimulus or response may in-
fluence the speed at which subsequent decisions and dis-
criminations are made (see Bertelson, 1963; Hale, 1967;
Luce, 1986; Pashler & Baylis, 1991; Rabbitt, 1968; M. C.
Smith, 1968). The issue of relevance here is the range of
influence that a given trial has on the trials that follow.
Typical ranges are 5–10 trials, and for this reason, prim-
ing is thought to be served by a short-term—in most
cases, implicit—memory system that decays primarily
through interference (Maljkovic & Nakayama, 2000). If
priming effects were the only mechanism through which
RT histories became internally correlated, then on all
scales larger than a few trials, the latencies would form a
white noise in any experimental design in which the stim-
uli were randomly interleaved. Because priming is local,
it is unable to create large-scale structures in response
history that are not already present in the stimulus se-
quence. There are, however, numerous demonstrations
that repeated measurement generates response histories
that are globally distinguished from white noise (Gilden,
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Two distinct families of statistical processes are considered in the production of psychophysical time
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tures of the underlying dynamics are better described in terms of short-range autoregressive moving-
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that fractals are correctly identified and that ARMA processes will rarely be misconstrued as belong-
ing to the fractal family. Spectral likelihood classification illustrates an extremely general framework
for testing competing spectral hypotheses and is offered for use in measuring the specific character of
fluctuations in designed experiments.
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1997, 2001; Gilden, Thornton, & Mallon, 1995; Van
Orden, Holden, & Turvey, 2003; Van Orden, Moreno, &
Holden, 2003; Wagenmakers, Farrell, & Ratcliff, 2004),
and it is apparent that there may be a serious gap in our
understanding of what is being measured in psycho-
physics and, generally, in experimental psychology.

The processes that create global correlations in psycho-
physical methodologies are distinguished from response
bias and priming effects in three important ways: They
appear to be generic across task and stimuli, they have an
enormous range extending over all resolvable trial scales,
and they often appear to have an identifiable and lawful
form as 1/ƒ noise (the power spectrum denoted S(ƒ) goes
as ƒ�1; for details, see the Short- and Long-Range Pro-
cesses and the Statistical Background sections below).
All three aspects of this form of memory have important
implications for psychological theory. Its universality
implies a dynamic common to choice and discrimina-
tion. That it is long range entails that this particular dy-
namic has no characteristic time scale. And finally, to the
extent that episodes of repeated measurement are re-
vealed to have power spectra that fall off inversely with
frequency, cognitive psychology may find itself allied
with modern theories of complexity in which these noises
are actively being investigated (Bak, 1990, 1992; Bak,
Tang, & Wiesenfeld, 1987, 1988; Handel & Chung, 1993;
Li, 2003).

It is clear that the import and relevance of any of these
claims rests upon the assertion that repeated measure-
ment generates a structure that may be fairly described as
fractal (Mandelbrot & Van Ness, 1968; Schroeder, 1991)
and, in particular, a fractal that has the specific structure
of 1/ƒ noise. In several articles (Gilden, 1997, 2001;
Gilden et al., 1995) we have demonstrated that data sets
drawn widely from the corpus of psychophysical method-
ologies are well fit by a family of whitened 1/ƒ noises.
Yet agreement between model and data, however com-
pelling, is not proof that the model is correct. There is an
enormous difference between post hoc data fitting and
the prior specification of a theoretical model that has
been shown to agree with data (Roberts & Pashler, 2000).
Insofar as there are no theoretical models of cognition
that predict the correlations we observe, the interpreta-
tion of them as 1/ƒ noise is vulnerable. There may be
nonfractal processes that generate the observed data, and
they may just happen to look like 1/ƒ noises. This possi-
bility is a central concern of this article (see also Wa-
genmakers, Farrell, & Ratcliff, 2004).

Here, we entertain the proposition that there are viable
models of psychophysical time series that are nonfractal.
The particular nonfractal family of models that we shall
consider is the autoregressive moving-average (ARMA)
process. It has been argued recently that the ARMA fam-
ily provides a natural foil to 1/ƒ noises and to the entire fam-
ily of fractional Brownian motions (hereafter variously
referred to simply as fractals) in terms of a key distinc-
tion relating to whether the internal correlations are of
long or short range (Wagenmakers, Farrell, & Ratcliff,

2004). Aligned with this distinction is whether a process
is scale free or governed by a controlling time scale. Frac-
tal noises have a symmetry referred to as self-affinity
(Mandelbrot, 1985), and this property entails both the
absence of discernible scales and the presence of long-
range correlations (see Gilden, Schmuckler, & Clayton,
1993; Mandelbrot, 1983; Maylor, Chater, & Brown, 2001;
Schroeder, 1991, and the references therein). The exact
sense in which time scales and the range of correlations
intertwine will be discussed in detail below.

There are two central issues that are addressed in this
article. The first concerns whether the ARMA process is
a viable explanation for the correlational structure ob-
served in psychophysical time series. Answering this ques-
tion involves more than just fitting ARMA processes to
data, because we must also consider what sort of statis-
tical framework will be used in drawing conclusions.
Wagenmakers, Farrell, and Ratcliff (2004), have recently
posed this problem by nesting ARMA within a more gen-
eral long-range model known as ARFIMA (autoregressive
fractionally integrated moving average). Their method
involves determining whether there is sufficient evi-
dence to reject the short-range ARMA as the default
model for any given time series. We will argue that this is
not a good approach to analyzing psychophysical time
series and that the true state of affairs is better illumi-
nated if we allow fractals to compete with ARMAs as
two independent families.

The second issue bears on the degree to which the
ARMA family can be discriminated from fractal noises
in practice. This concerns the possibility that select mem-
bers of the ARMA family may effectively masquerade
as fractals. In the absence of a theory of cognition that pro-
vides a principled account of the observed correlations,
this threat is an ongoing concern. There is only one way
to address this problem, and that is to construct a classifi-
cation scheme that is accurate and unbiased. The latter
part of this article will be devoted to a detailed descrip-
tion of optimal spectral classifiers that solve the dis-
crimination problem through explicit calibration on the
ARMA and fractal families. Spectral classification offers
a powerful method for discriminating long- from short-
range processes. It decides the classification problem for
any two families, with no requirement that they bear any
particular relation to each other. Furthermore, spectral
classifiers of the sort presented in this article are entirely
general and permit the testing of any potential hypothe-
sis that might be of interest, provided that the hypothesis
can be adequately formalized or simulated. Moreover,
they can easily be extended to include information regard-
ing the prior probability of the models, the prior proba-
bility of parameter values, and model complexity.

Short- and Long-Range Processes
The mathematical distinctions that make a process

short or long range are of some subtlety, and it helps to
have a set of concrete examples that illustrate the pivotal
role of time scale. This is especially true in the present
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psychological context, where we will contemplate sta-
tistical processes that are formally of short range, yet
have no relationship to short-term memory. As we shall
discuss in some detail below, the short-range ARMA pro-
cesses that are candidate models for psychological data
create correlations between scores of trials, not the 5 to
10 that might be attributed to some aspect of a short-
term memory system.

Short-range processes are not peculiar to psychology
and have relevance across a range of disciplines. The for-
mal expression of a short-range process is given by the
Langevin equation. This equation is the point of depar-
ture for most discussions of fluctuations in statistical
physics, and it expresses quite generally the relaxation
of a system to equilibrium following a perturbation. It is
a first-order equation and involves only the first-order
terms that arise when the perturbation is small, yet larger
than the mean size of the random fluctuations that exist
in the equilibrium state (for an introductory treatment,
see Landau & Lifshitz, 1958). It is written

(1)

where X is some state variable, τ is the relaxation time,
and ε is a source of white noise with uncorrelated incre-
ments. The relaxation time τ acts here as the time scale
over which the perturbation dies and the system returns
to the equilibrium state. It reflects the various physical
properties that mediate this return, and it will be differ-
ent in different systems.

The relaxation time is essentially what defines a short-
range process. It provides the ruler that measures the
time over which the state variables are self-correlated.
Where such a ruler exists, the autocorrelation function
� (k) will decay exponentially with e-folding time τ (the
time it takes for the correlation to decay by a factor of e),
and this determines the exact sense of short-range:

(2)

(cov and var denote the covariance and variance, respec-
tively; k is a specific choice of temporal lag). Again, we
wish to stress that since τ is completely free to vary, there
is no entailment for what kind of memory system would
be relevant were exponentially decaying correlations ob-
served in a psychological context.

What would it mean for a physical process that un-
folds in time not to have a characteristic time scale? Es-
sentially, this would mean that there is no information
coming out of the process that reveals how long the pro-
cess has been observed. There are no features present in
a scale-free process that inform on the sampling rate and,
hence, on how the number of samples relates to the over-
all observation interval. In the context of spatial fractals,
the absence of scale entails that there is no information,
say in a photograph, about the size of the objects in the
image or of the camera distance. This kind of symmetry,
termed self-affinity, is well understood, and it forms the

basis of fractal geometry (Mandelbrot, 1983). The frac-
tal that is of importance in long-range memory systems
is known as fractional Brownian motion (fBm). These
are random fractals that have autocorrelation functions
that decay as power laws (see Peitgen & Saupe, 1988).
Power laws generally arise in discussions of scale-free
dynamics and are, in fact, the empirical evidence that a
system is scale free (see Schroeder, 1991, for an excel-
lent introduction to scale-free processes).

Scale-free processes may come about in any number
of ways. The simplest scale-free process that is relevant
to psychology is the random walk. Besides arising in the
calculation of any mean quantity (the numerator viewed
as a sequence of partial sums is a random walk), they are
often used in theoretical models of speeded choice and
discrimination where information acquisition is thought
to occur incrementally (e.g., Link, 1975; Ratcliff, 1978;
Ratcliff & Rouder, 1998; P. L. Smith, Ratcliff, & Wolf-
gang, 2004). The particular scale-free processes that
generate the 1/ƒ noise structure visible in the records of
human performance are, however, neither simple nor
well understood. The theory of 1/ƒ noise is a current
problem in biophysics, statistical mechanics, and the the-
ory of complexity (see the articles in Handel & Chung,
1993; Li, 2003, and the references therein). It will suf-
fice for our purposes here to sketch the kinds of pro-
cesses that produce 1/ƒ noise.

In a definite sense, 1/ƒ noises are intermediate between
white noises and the contours of random walks, also known
as Brown noises (after their application in the kinetic the-
ory of gases, where molecules describe random walk
paths referred to as Brownian motion). The simplest way
to demonstrate this relationship is via the power spec-
trum. The power spectrum of a time series can be com-
puted by taking the Fourier transform of the autocorre-
lation function, and in this way, we go from a discussion
of correlations at different temporal lags to a treatment
of power at different spectral frequencies (denoted by ƒ,
or the inverse of wavelength). In the spectral domain, we
see that Brown, 1/ƒ, and white noises have a very simple
and organized relationship: Their power spectra are given
by ƒ�2, ƒ�1, and ƒ0, respectively. The steep spectral falloff
of a Brown noise (ƒ�2) is what makes it so predictable,
the point-to-point variations induced by each step are
small perturbations of slowly varying trends. In contrast,
white noises (ƒ0) have no predictability, since the ab-
sence of spectral falloff implies the absence of any trend
that might allow prediction. The 1/ƒ noises (ƒ�1) are
intermediate in predictability, and the kinds of processes
that can create them must incorporate aspects of both
order and disorder. An example of such a process is the
random random walk, where the probability of a positive
increment varies at each walk position (in contrast to the
usual random walk, where this probability is stationary).
Here, the underlying transition probabilities are them-
selves unpredictable in terms of walk position, and they
modulate the otherwise highly correlated random walk to
produce a true 1/ƒ noise. Another example in this vein is

ρ τ( )
cov[ ( ), ( )]

var[ ( )]
k

X t X t k

X t
e
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=
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the tangent bifurcation observed in some iterated maps
(Devaney, 1992)—the logistic map in particular (Keeler
& Farmer, 1986; Pomeau & Manneville, 1980). In these
maps, there are parameter values at which the output
orbit generally bounces around chaotically but is occa-
sionally trapped where it executes a highly predictable
cycle. The overall signal is 1/ƒ. Perhaps the most signifi-
cant development in the theory of 1/ƒ noise is Bak’s (1990,
1992; Bak et al., 1987, 1988) theory of self-organized
criticality. In this theory, 1/ƒ noises are thought to be the
natural fluctuations emanating from metastable systems
that have converged to a phase transition between order
and chaos.

In addition to dynamical models, various schemes have
been proposed that effectively average over the fluctua-
tions arising from a number of subsystems with different
fixed time scales.1 Brute-force approaches to averaging
procedures that produce 1/ƒ noise are well known and
have even been the subject of a “Mathematical Games”
column by Martin Gardner (1978). Gardner shows how
1/ƒ noises may be generated using only three spinners of
the type popular in board games. Cognitive psycholo-
gists who have endeavored to account for 1/ƒ noises have
generally followed this logic by identifying three levels
of cognitive activity and showing how their outputs may
be summed to create 1/ƒ noise (Pressing, 1999; Wagen-
makers, Farrell, & Ratcliff, 2004; Ward, 2002). The lat-
ter accounts have no physical motivation and cannot be
viewed as anything more than an elaboration of Gard-
ner’s three-spinner game. A greater problem for this ap-
proach is an observation made by Hausdorff and Peng
(1996) that spinner models of 1/ƒ noise require careful
tuning to produce the desired 1/ƒ spectrum, tuning that
has never been addressed by any psychological theory.

Although the distinctions governing long- versus short-
range statistical processes are formal and, indeed, foreign
to current discussions of memory, they may nevertheless
be highly relevant to how we view the memory processes
that are implicated by correlations in temporally ordered
data (Gilden, 2001). Most important, if it is the case that
human performance generates an underlying 1/ƒ noise
signal, cognitive theory must eventually reckon with the
problem of how it is that sequences of decisions manifest
complex structure. Making this case requires careful
analysis of the signals that derive from iterated perfor-
mance, and the first question that must be addressed is
whether these signals are indeed long-range—that is,
fractal (for a similar logic, see Wagenmakers, Farrell, &
Ratcliff, 2004). Deciding which fractal best exemplifies
behavior is predicated on showing that fractal descrip-
tions are necessary in the first place.

Statistical Background

The temporal properties of data sequences may be an-
alyzed directly in the time domain, as correlations at dif-
ferent lags, or indirectly, in terms of spectral power at
different frequencies. We prefer the spectral description
for three reasons. First, as we have previously pointed

out, fractional Brownian motions that include random
walks and 1/ƒ noises have extremely simple spectra; they
are straight lines in the log-frequency–log-power plane.
Short-range processes also generate a well-defined and
coherent family of spectral shapes. Second, the proper-
ties of the Fourier transform are well understood, and the
influences of averaging and windowing are easily han-
dled here. Finally, we are interested in a realistic long-
range model for choice RT in which pure fBms mix with
additive white noise (Gilden, 2001); in the spectral domain,
these kinds of processes enjoy a relatively straightforward
and transparent formulation.

The basic statistical problem in deciding whether a
given process is short or long range inevitably rests upon
an analysis of the shape of the power spectrum. Often,
this analysis focuses on the low-frequency part where the
spectrum has the greatest variability but where it is also
particularly diagnostic. Consider, for example, the Debye–
Lorentzian, which is the spectrum associated with the
Langevin equation and any process that has an exponen-
tially decaying autocorrelation function (see Schroeder,
1991, p. 123). It is given by

(3)

where ƒ is the frequency measured, say, in inverse trial
number (the natural unit that replaces Hertz when data
are received in discrete trials as opposed to a regular
sampling interval). This spectrum is illustrated in Fig-
ure 1 for τ � 1. Note the low-frequency white plateau.
Because low frequencies in the spectral domain corre-
spond to large time lags in the time domain, the plateau
reiterates the fact that the process is uncorrelated over
time scales greater than τ ; that is, the process is short
range. Much of this article concerns whether or not this
plateau is discernible in data sets that are collected within
the practical constraints set by human observers.

S f
f

( ) ,=
+ ( )

τ
π τ1 2

2

Figure 1. Debye–Lorentzian power spectrum characterizing
the short-range process. Note the whitening at frequencies lower
than the reciprocal of the characteristic time scale.
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Autoregressive Processes
In this article, we analyze a class of short-range pro-

cesses known as ARMAs. These processes combine
single-parameter autoregressive and moving-average
processes (i.e., two first-order processes) and are de-
noted by ARMA(�, � ), where � and � denote the mod-
el’s two parameters (Priestley, 1981). First-order ARMA
models are the simplest descriptions of short-range be-
havior that have parameters capable of estimation from
the kind of data received in typical psychophysical ex-
periments. More important, they are characterized by
correlations that decay over a single time scale, and this
makes them useful as a statistical foil in assessments of
long-range structure (Wagenmakers, Farrell, & Ratcliff,
2004). In contrast, higher order ARMAs have multiple time
scales (Granger & Morris, 1976) and so become increas-
ingly more like a true long-range process as time scales
are added (Granger, 1980). In this article, we are interested
solely in distinguishing long-range fractal processes
from those processes that are governed by a single time
scale. Although higher order ARMAs and AR-mixture
models do arise occasionally in psychology (e.g., in
some models of bipolar disorder, as in Benedetti, Barbini,
Colombo, Campori, & Smeraldi, 1996; or in criterion
learning models, as in Busemeyer & Myung, 1992), they
are more applicable in such fields as electrical engineer-
ing, where they provide descriptive approximations to
analog filter functions and various order differential
equations (Karl, 1989; Priestley, 1981).

The short-range ARMA(�,� ) process may be expressed
recursively as a rule that prescribes how a current output is
generated from random inputs and the previous output.
The autoregressive part takes the form of a leaky integrator:

(4)

where Ot is the current output, Ot�1 is the previous out-
put at time (t � 1), and εt is the current random input.
The parameter � may take on both positive and negative
values, but only the positive branch generates time se-

ries that look anything like psychophysical data and so
we will restrict our discussion to � � 0. In the limit that
� → 1, the process described by Equation 4 becomes a
nonstationary long-range Brownian motion [also called
a random walk or Brown noise, S(ƒ) � ƒ�2]. All first-
order autoregressive processes defined on | � | 	 1 are
stationary and short range. Equation 4 may be expanded
as a weighted sum over a sequence of random inputs where
the weights form a geometric series in �; the weight at
time (t � k) is equal to � k. When | � | 	 1, � k decays geo-
metrically with look-back time, and this leads to an au-
tocorrelation function defined on the output sequence Ot
that decays exponentially with increasing lag.2 By defi-
nition, then, Ot is a short-range process. However, we
wish to stress that when � is near unity (as is often true for
fits of the model to RT data), the decay of the auto-
regressive process will be quite slow, and there may be
palpable correlations between current values and those
in the remote past. Consequently, the sense of short range
associated with these models should not be confused
with the capacity limitations of working memory or with
the short-term effects due to repetition priming (see
Luce, 1986).

The power spectrum of a first-order autoregressive
process is written

(5)

and is graphed in the left panel of Figure 2 for � � .7.
As is shown, the spectrum is dominated by power at the
low frequencies, a reflection of the fact that leaky inte-
gration generates discernible hills and valleys in a time
series. Like the Debye–Lorentzian spectrum shown ear-
lier in Figure 1, the autoregressive spectrum also has a
brown region where power falls sharply [S( f ) 
 f�2].
The knee where the flat white noise region connects with
the brown noise region occurs at a frequency that scales as
�log(�). The similarity between the Debye–Lorentzian
and the autoregressive spectral functions is no accident;

S f
f

( )
cos( )

=
− +⎡⎣ ⎤⎦

1

1 2 2 2φ π φ

O Ot t t= +−φ ε1 ,

Figure 2. Comparison of power spectra associated with autoregres-
sive and fractal processes. The autoregressive spectrum plots Equation 5
for � � .7. The whitened fractal spectrum plots Equation 9 for � � �1
and � � 1. The inset dashed line has a slope of �1 for reference.



414 THORNTON AND GILDEN

formally, the autoregressive process is a first-order differ-
ence equation that approximates the Langevin differential
equation (Equation 1) in discrete time. Accordingly, the
autoregressive spectral representation is simply the dis-
crete parameter version of a continuous parameter Debye–
Lorentzian where � � e�1/τ.

In applied settings, the single-parameter AR(�) process
is not particularly useful as a descriptive tool, simply be-
cause it does not have enough flexibility to adequately cap-
ture the shapes of typical psychophysical spectra (e.g.,
Pressing & Jolley-Rogers, 1997). For this reason, the auto-
regressive process must be augmented by a moving-
average component to form a two-parameter ARMA
model. The additional degree of freedom that defines the
hybrid model is obtained by adding in a fraction � of the
previous random input at step (t � 1) so that the full
ARMA(�, �) process is written recursively as

(6)

In practice, the parameter θ can take either positive or
negative values, and this allows the moving-average
component of the model to implement two qualitatively
distinct types of filtering: smoothing and differentiation.
For � � 0, the moving-average component averages the
sequence of random inputs over a single time step—
producing a spectrum that is flat at low frequencies with
sharp attenuation of power at high frequency. For � � 0,
the moving-average component implements a one-step
differencing of temporally adjacent inputs. In this case,
the moving-average power spectrum rises linearly with fre-
quency, and in the limit of � � �1, the moving-average
reduces to a pure derivative operator whose spectrum is
linear with a slope of �2. In the description of psycho-
physical data, only the negative � branch is relevant. The
positive branch generates time series that are much
smoother (by virtue of averaging) than is observed in
psychophysics. Putting the two pieces together, the power
spectrum of an ARMA(�, �) process is written as the
product of its constituent parts:

(7)

The range of spectral shapes achievable through Equa-
tion 7 is quite remarkable. The generality of ARMA
models corresponds, roughly speaking, to the class of ra-
tional functions (i.e., functions that are ratios of two
polynomials; Priestley, 1981). To be precise, ARMA(�,�)
models can reproduce exactly any spectral function that
can be expressed as a ratio of first-order polynomials.
This is the f irst indication that, as a class, the two-
parameter ARMA(�, �) model is of very high complex-
ity and so may not be of much use as a theoretically
meaningful description of behavior. Given that typical
spectra associated with psychophysical and cognitive
time series are monotonic and have, at most, the struc-
ture of a quadratic (in log–log coordinates), we should
expect the first-order ARMA to do a fair job in describ-

ing global trends in these data, provided its parameters
are appropriately chosen. In the work described below,
we will identify these parameter regimes in some detail,
but we will also make it quite clear that the typical ARMA
process generates spectra that look nothing like those
observed in psychophysical data.

Fractal Processes
For the long-range process, we will consider a family

of models in which white noise is added into a purely
fractal process. White noise is used to modulate the rate
of spectral descent in this family in much the same way
that the moving average modulates autoregression. We
denote this class of process as fBmW, to emphasize its
hybrid structure, and write its time domain expression
formally as

(8)

where the first term on the left denotes the current value
of a fractal sequence (i.e., a fractional Brownian motion
with exponent �), and the second term denotes the cur-
rent value of an independent white noise sequence whose
variance is �2. We have had considerable success using
this hybrid model to describe the fluctuations associated
with choice RT tasks (Gilden 1997, 2001; Gilden et al.,
1995). The fact that Equation 8 is written only in terms
of the present time (t) should not be construed to imply
that earlier times are not implicitly involved in the cre-
ation of the fractal dependence. Equation 8 is, in this
sense, heuristic, and not constructive as in the ARMA
definition. It is the case that the constructive time domain
function for the fBmW(�, �) process, were it specified
by a physical, biological, or statistical model, would in-
volve feedback of the kind made explicit in the ARMA
expression—although in this case, the recursion would
necessarily be of infinite order, or at least on the order of
the entire series (e.g., see fractional differencing; Hosking,
1981). This highlights one of the key reasons that we chose
to frame the classification problem in the frequency do-
main. Here, long-range processes such as the fBmW,
which have a complicated expression in the time domain,
enjoy a relatively succinct and transparent description as
spectral power laws plus white noise.

Accordingly, the power spectrum of the hybrid fBmW
(�,�) has a straightforward expression built from its cor-
related and uncorrelated parts:

(9)

This expression is graphed in the right panel of Figure 2
for � � �1, � � 1. The leading normalization constant
N(�) on the right-hand side is necessary to ensure that
the fBm component has unit variance in the time do-
main. Thus, 1��2 gives the total variance of the random
process, and �2/(1��2) and 1/(1��2) are the represen-
tative fractions of total variance attributable to the white
and fractal components of the process. The power spec-
trum of the fBmW(�,�) process has two regimes: a low-
frequency linear region that terminates in a high-frequency

S f N f( ) ( ) .= +α βα 2

Ot t t= +fractal white( )( ) ,α β

S f
f

f
( )

cos( )

cos( )
=

+ +⎡⎣ ⎤⎦

− +⎡⎣ ⎤⎦

1 2 2

1 2 2

2

2

θ π θ

φ π φ
..

O Ot t t t= + +− −φ ε θ ε1 1.



PROVENANCE OF CORRELATIONS IN PSYCHOLOGICAL DATA 415

roll-off. The locus of the transition point (denoted by the
arrow in the figure) is controlled by the white noise pa-
rameter �, and it occurs where the power associated with
the white noise component is roughly commensurate
with that of the fractal component. As � increases, this
transition point migrates to lower frequencies, and the
slope of the spectrum in the linear, low-frequency region
decreases. Note that by virtue of its fractal lineage, the
fBmW has spectral power that continues to rise even as
the frequency goes to zero. Practically what this means
is that fractal signals are correlated on all scales. Such
asymptotic behavior is the signature of long-range pro-
cesses, and it stands in direct contrast to the spectra of
short-range processes governed by a characteristic tem-
poral or spatial scale (τ ). For any short-range process,

the spectrum must turn over and flatten at frequencies
below its correlation limit.

Global Properties
Figures 3 and 4 give detailed portraits of the spectra

produced by the ARMA and fBmW processes. The pa-
rameter ranges in these figures were chosen on the basis
of data relevance. The fBmW parameters were truncated
at the boundaries suggested by our own experiments
(Gilden, 2001): �  �1 and � � 2. ARMA parameters
were confined here to intervals that contain descending
spectra that are not too steep: � � 0 and � 	 0. Auto-
regression tends to generate spectra that drop off in fre-
quency quite rapidly, as 1/ƒ2 spectra. Signals with this rapid
a spectral decay are relatively smooth and more typically

Figure 3. Power spectra associated with the family of first-order ARMA(�,� ) pro-
cesses. Each panel plots spectra for a single fixed level of the autoregressive param-
eter � across a range of � (the moving-average parameter � decreases from top to bot-
tom). Only a subset of the 400 spectra making up the ensemble used in classification
are displayed. This subset was produced by the factorial combination of 20 evenly
spaced levels of � on the interval [.1, .95] with 10 staggered levels of � defined by the
quadratic �k � �.084k �.002k2 (for k � 1, 3, 5, . . .) on the interval [�.9, �.082]. The
two bottom right panels show the power spectra expected of ARMA processes having
� � .9 and � � .95. These values of � are of particular interest because they most re-
semble whitened fractals, given an appropriate choice of � .
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associated with landform topography (Feder, 1988; Keller,
Crownover, & Chen, 1987). Visually, psychophysical
data contours are much rougher than landscape silhou-
ettes, and we have never observed time series data to
decay more quickly than 1/ƒ (Gilden, 1997, 2001; Gilden
et al., 1995). In order to be of psychological relevance,
autoregression requires an additional process to add
roughness that graduates the spectral falloff. The moving-
average part of the ARMA achieves this roughening when
� 	 0 and random increments one step back are subtracted.
In this case the so-called moving average is, in fact, a dif-
ferencing operator. Differencing produces spectra that
increase as ƒ2, permitting a judicious choice of � and �
to delicately modulate the spectral decay so that the
falloff is shallow enough to approximate behavioral data.
Note how, in Figure 3, increasing spectra are gradually

transformed into decreasing spectra as � exceeds | � |.
When � � � � 0, the balance between autoregression
and differencing is perfect, and pure white noises with flat
spectra are generated (see note 2). The degree of freedom
that balancing affords permits the ARMA to closely ap-
proximate any monotone spectrum, so long as the spec-
trum has an asymptotic white region at low frequencies.

Figure 4 illustrates the family of hybrid fBmW(�, �)
processes. Each panel of Figure 4 displays a subset of
spectra having a particular value of the fBm parameter
�. Within each panel, the various spectra are distin-
guished by the amplitude of additive white noise, �. In
these plots, there are 20 linearly spaced values of � taken
on the interval [�1, �.1] and 10 linearly spaced values
of � taken on the interval [0, 2]. These two sets of param-
eter values were crossed to yield 200 fBmW spectra. In

Figure 4. Power spectra associated with the family of whitened fractal processes.
Each panel plots spectra for a single fixed level of � across a range of � (� increases
from top to bottom). Only a subset of the 400 spectra making up the ensemble used in
classification are displayed. This subset was produced by the factorial combination of
20 linearly spaced values of � on the interval [�1, �.1] and 10 linearly spaced values
of � on the interval [0, 2]. The bottom right panel shows the spectra generated by a
pure 1/ƒ signal (� � �1) that has been contaminated by additive white noise. In gen-
eral, the fBmW is linear at low and intermediate frequencies, bowing upward at
higher frequencies where the uncorrelated noise source dominates the fluctuation.
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contrast to the family of ARMA spectra, the fBmW spec-
tra display a general family resemblance. Spectral power
falls linearly with increasing frequency before gradually
flattening. This property greatly restricts the class of
time series that may be fit by the fBmW.

The global properties of these two families of tempo-
ral correlations are evidently quite different, and this
leads to their having different utilities. The ARMA pro-
cess is a statistical jackknife and is used for a variety of
purposes in applied time series analysis (e.g., forecast-
ing); it is discussed in virtually all texts on the analysis
of sequential structure. Unfortunately, the very breadth
that allows the ARMA to fit a profusion of unrelated fil-
ter functions is the same feature that undermines it as a
theory of psychological process; because it can describe
so much, it must in turn explain very little (cf. Figure 1
in Roberts & Pashler, 2000). In contrast, whitened frac-
tals are highly constrained in their spectral appearance,
and this is what makes them useful as descriptions of be-
havior. It is meaningful and interesting to assert that human
behavior is fractal, precisely because such a claim is po-
sitioned for falsification. General engineering models
such as the ARMA are not designed for scientific con-
jecture, and fractal models describe well just those events
that do, in fact, have fractal structure. The consequences
of this observation will become increasingly obvious in
the treatment of data that follows.

THE INTERPRETATION 
OF FLUCTUATIONS 

IN PSYCHOPHYSICAL DATA

Now that these two families of statistical processes have
been introduced, we may meaningfully address what roles
they might play in understanding psychophysical data.
We will return to the two issues that guide this inquiry.

1. Is the short-range ARMA process an appropriate
hypothesis for describing the structure of correlations
found in repeated psychophysical measurement? We will
present analyses of data from four experiments that pro-
vide motivation for discarding the ARMA as a viable ac-
count of psychological process. These analyses will con-
trast the poor fits of the ARMA model with the fits of a
long-range fBmW model, which successfully captures
the bowed shapes evident in all four power spectra. Im-
portantly, we show that not only does the best-fit fractal
model outperform the best-fit ARMA model in every
case, but also that the data are embedded within the frac-
tal and ARMA families in a categorically distinct and in-
formative manner. To anticipate, our analyses show the
data to be highly similar to a large fraction of the exem-
plars defining the fractal family and, at the same time, to
be highly dissimilar to all but a vanishingly small subset
of relatively poor-fitting ARMAs.

2. In laboratory practice, how reliably can short-range
autoregressive time series be discriminated from long-
range fractal time series? Here, we ignore the irrelevance

of the ARMA as a theory of psychological process and
focus instead on its utility as a short-range statistical foil
to the fBmW. In this regard, we build on the early in-
sights of Davies and Harte (1987) and Pressing and 
Jolley-Rogers (1997), who pointed out the potential for
short- and long-range processes to be confused in certain
regimes, as well as the more recent work by Wagenmak-
ers and colleagues, who introduced the ARMA as a more
stringent means to test for long-range structure (Wagen-
makers, Farrell, & Ratcliff, 2004). Although this issue
has received some preliminary quantitative treatment
(Wagenmakers, Farrell, & Ratcliff, 2004), we go substan-
tially beyond that work to examine the discriminability
of two entire families of short- and long-range processes
in the spectral domain. In so doing, we hope to provide a
complete account of where, in each model’s parameter
space, there is the potential for confusion.

To attack this problem, we have constructed a spectral
likelihood classifier that uses the shape of the power
spectrum to decide among competing short- and long-
range descriptions of data. We show this classifier to be
both highly sensitive and unbiased in discriminating
fBmW processes from their most confusable ARMA rel-
atives. The construction of the classifier is proof that the
provenance of correlations can be reliably decided using
realistic length data sets and, more important, that the
two families of process are not as confusable as analyses
limited to first-order spectral slope measures might sug-
gest. We illustrate the practical utility of the classifier by
applying it to sequences of word-reading RTs from a
study by Van Orden, Holden, and Turvey (2003) that has
been at the center of a recent controversy concerning the
nature of the observed fluctuations (Wagenmakers, Farrell,
& Ratcliff, 2005; Van Orden, Holden, & Turvey, 2005).

A Framework for Deciding 
the Provenance of Fluctuations

There are at least two distinct logics for the catego-
rization of time series data, and the occasions for their
respective usage will depend critically on what we know
about the categories and their relational structure. For
example, suppose that we believe that all the objects to
be classified have a particular attribute p that makes
them instances of a Class A, unless they also have an at-
tribute q, in which case they are in Class B. In such a
world, Class A is nested within Class B, for we may re-
gard the objects in A to have the null value of q. In this
way, we can construct an inferential statistical frame-
work for class membership; any given object is to be
placed in A (the null hypothesis) unless there is evidence
for presence of the defining attribute q. This approach to
the interpretation of time series has been explored in
some detail in a recent article by Wagenmakers, Farrell,
and Ratcliff (2004). In their framework, there are two
processes that generate time series: ARMA and ARFIMA.
ARFIMA augments the ARMA process through an ad-
ditional parameter d. When d � 0, the ARFIMA process
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generates time series with long-range correlation func-
tions. When d � 0, ARFIMA reduces to ARMA. Wa-
genmakers, Farrell, and Ratcliff (2004) conducted tests
on experimental data to determine whether the hypothe-
sis of d � 0 can be rejected. It is implicit in this frame-
work that any given time series is to be regarded as short
range (ARMA) unless there is evidence to the contrary
that it is long-range (ARFIMA).

The nested models logic of ARMA 	 ARFIMA does
succeed in providing the necessary structure for setting
up an inferential framework, but it does so with both the-
oretical and statistical costs. The theoretical costs are in
fact quite numerous, the first being that a default hy-
pothesis should be a plausible outcome, and we might
ask whether we are ready to accept the ARMA process
as the default interpretation of psychophysical time se-
ries. As this article will make quite clear, the ARMA
family makes no substantial contact with psychophysical
time series and, consequently, a default ARMA inter-
pretation is not an inference one should draw in the ab-
sence of strong evidence to the contrary.3 In an inferen-
tial framework based on a null hypothesis, there is
generally a bias to accept the null. And since the classi-
f ier devised by Wagenmakers, Farrell, and Ratcliff
(2004) presumes the ARMA as null, it has a much larger
miss rate than false alarm rate in tests of long-range
structure. Although this logic makes sense in situations
in which the null has face validity (no effect, say), we see
no reason to embrace the ARMA process in the absence
of positive evidence for its descriptive relevance.

Second, the classification framework adopted by Wa-
genmakers, Farrell, and Ratcliff (2004) is theoretically
beholden to autoregression. Autoregression is but one
possible biological dynamic that might be considered in
choice and discrimination, and just as there is more to
physics and biology than diffusion, there may also be
more to psychology. There are places where autoregres-
sion does appear in psychological theory (e.g., in mod-
els of criterion learning; Busemeyer & Myung, 1992,
and the references therein; Dorfman & Biderman, 1971)
and it is ironic, at least from our point of view, that it is
primarily in the theoretical modeling of RT that auto-
regression has found its most profound psychological
applications. Models of RT use autoregression to gener-
ate diffusion to a decision boundary (Ratcliff, 1978; Rat-
cliff & Rouder, 1998; P. L. Smith & Vickers, 1989; Usher
& McClelland, 2001). This is an enormously elegant
framework, and we have used aspects of it in our work on
visual search (Thornton, 2002; Thornton & Gilden, 2005).
However, and this is a key point, in diffusion models of
RT it is bits of information or perceptual evidence that
accumulate, whereas in autoregressive models of RT it is
RT itself that accumulates. A model that describes how
individual latencies are produced may have nothing to
say about their correlations, and typically, diffusion mod-
els assume that latencies are uncorrelated. If there are
reasons to believe that autoregressive processes are ac-
tive in the formation of correlations, they have not been
articulated within the corpus of psychophysics.

The third cost to the inferential approach as practiced
in Wagenmakers, Farrell, and Ratcliff (2004) arises from
within the logic of hypothesis testing with nested mod-
els. The more general class, ARFIMA, is virtually guar-
anteed to fit data better than ARMA does, because it has
the extra parameter, d. Even if there were no long-range
dependencies in the data, d would permit some ARFIMA
configuration to fit the sampling error better than any
ARMA does. Here badness-of-fit measures must be re-
placed by some criterion that takes into account the ad-
ditional degree of freedom that ARFIMA possesses.
Such a criterion would determine whether the additional
parameter d was justified, given that ARFIMA has three
parameters and ARMA only two. However, this problem
is not as easily solved as might appear from the psycho-
logical literature. The AIC criterion (Akaike, 1974) used
by Wagenmakers, Farrell, and Ratcliff (2005) is, in fact,
one of a panoply of possibilities (Myung, 2000). This is
not a situation in which a one-size-fits-all correction for
degrees of freedom is prudent or judicious. When mod-
els have unequal degrees of freedom, the selection pro-
cess ultimately involves answering questions centering
on generalization and theoretical relevance (Forster, 2000;
Myung, 2000). The theoretical relevance of the ARFIMA
is an unavoidable issue, and it appears that its sole util-
ity arises from its nesting relationship to the ARMA, an
irrelevance in the practical matter of deciding the classi-
fication problem.4

In this article, we advocate a second route to classifi-
cation that is unbiased, does not assume autoregression
in the construction of long-range models, and does not
create the statistical uncertainties that come from asso-
ciating nested ARMA/ARFIMA models with short- and
long-range processes. This route is Bayesian in spirit and
is built around the notion of allowing models to compete
on the basis of prior probability and likelihood. We for-
mulate the classification problem in terms of Bayesian
inference by replacing ARFIMA with the family of
whitened fractional Brownian motions (fBmW). This
class of fractals has long-range correlations and is en-
tirely suitable for evaluating psychophysical time series
in terms of the long-range/short-range distinction.

The benefits of this reformulation are immediate. First,
the ARMA process no longer represents a default hy-
pothesis through which all data are presumed to be short
range unless there is strong evidence to the contrary.
Rather, in our approach, the ARMA becomes simply a
candidate description of data that competes with de-
scriptions based on the fBmW. This manner of catego-
rizing assigns provenance to the model with the highest
single likelihood or the largest marginal likelihood (i.e.,
true Bayesian selection). Second, the connection to au-
toregression is replaced by a theoretically richer class,
one that makes contact with the statistical literature in
physics, biology, physiology, astronomy, and meteorol-
ogy (see the references in the introduction). In particular,
the specific fractals known as 1/ƒ noises have generated
a great deal of theoretical attention, as evidenced by the
wide variety of nonautoregressive mechanisms that have



PROVENANCE OF CORRELATIONS IN PSYCHOLOGICAL DATA 419

been considered—self-organized criticality, extremal
dynamics, and tangent bifurcations, to name only a few.
ARFIMA, in contrast, despite its popularity in the fields of
econometrics and geology (see Tong, 2001), is arguably
little more than a mathematical formalism that lacks a
supporting theoretical literature. Finally, the whitened
fBms are defined by two parameters and compete with
the ARMA family on somewhat equal footing. The sta-
tistical subtleties of unequal degrees of freedom are, for
the most part, avoided. Within a Bayesian perspective,
the question of whether fractals or ARMAs provide a
better description of psychophysical time series will be
decided on the basis of likelihood, since we have no
knowledge of the prior probabilities of the two classes.
The arguments that derive from this kind of analysis are
quite strong. Not only will we be able to evaluate which
class has the member with the greatest likelihood, but
also we will be able to obtain a clear picture of how the
two classes as a whole embed the data. The latter dis-
tinction is important because it reflects model-specific
differences in complexity (Navarro, Pitt, & Myung,
2004; Pitt, Myung, & Zhang, 2002), a dimension that
may prove critical in assessing whether the ARMA or the
fBmW is a better description of psychophysical data.

The data in contention derive from RT methods. This
is the domain that Wagenmakers, Farrell, and Ratcliff
(2004) consider and it is especially important in view of
the global use of RT in experimental psychology. We
have considered RT methods in earlier work (Gilden,
1997), and we will use those data to illuminate the prop-
erties of the ARMA and fractal families here. The rele-
vant experiments involve speeded judgments in mental
rotation, lexical decision, serial visual search, and paral-
lel visual search. The experimental methods are given in
Gilden (1997), and we will confine our present com-
ments to the construction of spectra.

In each of these studies, there were 6 observers, and
they responded to over 1,024 trials in an experimental
session. The sequences of RTs were treated identically,
independently of study. Cell means were removed to cre-
ate sequences of residuals, and these were then linearly
detrended and standardized to have zero mean and unit
variance. Eight-point spectra for each residual sequence
were computed, using the methods described in detail in
Appendix A. These spectra were then averaged over the
6 observers. The effects of observer averaging are dis-
cussed in Appendix B. Models were evaluated by comput-
ing the summed �2 of the residuals (i.e., a weighted least
squares cost function) between the observer-averaged
spectra and the theoretical spectral expectations deriv-
ing from a subset of the ARMA and fBmW families.
This subset was chosen to include all processes that have
descending spectra and are no more correlated than a
pure random walk. RT spectra never ascend, and pure
random walks provide an effective upper bound on the
observed correlations. In this way, we allow all poten-
tially relevant members from each family to compete for
the data. The results of these calculations are shown in
Figures 5A and 5B.

Figure 5A illustrates the best-fitting models to the data.
It is clear that, in each experiment, there is a whitened
fractal that does indeed fit the data quite closely. The
ARMA fits are not good, and were it not for rigorous
error checking of the code, we might wonder whether
these are, in fact, the best fits. The ARMA models are
obviously hamstrung by the presence of a time scale that
leads to flattening at low frequency. The ARMA pro-
cesses are forced to snake an S-shape through data that
continues to ascend through the low frequencies. Frac-
tals have exactly the property required to fit every data
set: scale freedom.

There is no question that the best-fitting fractal mirrors
the observed spectra much better than the best-fitting
ARMA does. Still, it must be recognized that these fits
are made without the benefit of a prior theory. We are de-
cidedly not comparing data with the predictions of a the-
ory. There is no assurance that the best-fitting models are
generic to their class. It could be the case that the ARMA
family has greater likelihood (smaller �2) generally and
that the best-fitting fractal is atypical of its class. Stronger
statistical arguments are mandated, and we attempt to
supply these through Figure 5B. In this figure, we have
plotted the value of �2 from its minimum value up to 20
times the minimum value. The central ovals in each of
the fractal plots mark out those models that were within
10% of the minimum �2. The upper triangle in the ARMA
space is grayed out, because it contains only ascending
spectra and none of these will fit the characteristic de-
scending spectral data. We have found these plots to be
instructive.

Figure 5B makes it clear that almost the entire ARMA
family has low likelihood. The few ARMA processes
that resemble data are confined to the edge of the param-
eter space, where the process is a combination of a pure
random walk with a pure differencing operator. The con-
finement of the best ARMA fits to this region of the pa-
rameter space is noteworthy for two reasons. First, it in-
dicates that the only way a short-range process can
approximate the observed data is to incorporate near-
perfect autoregression. Accordingly, we see that all the
ARMA fits cluster near the boundary � � 1. Recall that
this boundary represents a qualitative divide separating
the class of short-range processes from the class of long-
range random walks (i.e., nonstationary processes with
�  1). Apparently, the ARMA process is able to mimic
data only when the parameter � is very close to the limit
of stationarity and the moving-average parameter � is
negative with a slightly lower absolute magnitude. In this
configuration, the substantial correlations induced by an
autoregressive process with � ≈ 1 end up being attenu-
ated with anticorrelated differencing via the moving-
average (� 	 0) process, and this allows the full ARMA
process to attain a global approximation to data. When
the two parameters are equal in absolute value, there is
cancellation, and the ARMA generically reduces to white
noise with a flat spectrum (this occurs for all �, � pairs
along the major diagonal in Figure 5B). Thus, we see that
the ARMA achieves its snakelike parody of smoothly
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descending power law spectra only when its autoregres-
sive and differencing components respect a very specific
configuration. The isolation of the ARMA fits to such a
small subset of the full parameter space means that the
fits are not generic to the process. This reiterates the sec-

ond key insight provided in Figure 5B: The probability
of selecting an ARMA process that actually resembles
data is close to zero. This result was presaged in Fig-
ure 3, where it is evident that the ARMA process gener-
ates a profusion of spectral shapes. Despite its diversity,
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the ARMA family is unable to produce a single process
that succeeds in fitting our RT data.

Now consider the portraits of �2 in the fBmW family;
these serve to illustrate that the best-fitting fractal mod-
els are generic to the process. In contrast to the ARMA
case, here the data literally light up a large portion of the
parameter space, and we see that there are many exem-
plars from this family that resemble the data. This is not
a demerit but the best evidence that the family embeds
the data within a framework that is robust to perturba-
tion. Figure 5B also shows that the fractal family is sen-
sitive to the specific spectral shapes of the data. Each
data set generates a different portrait of �2 with a differ-
ent oval of best fits. Again, this is not a demerit but evi-
dence that parameter estimation within this family is
meaningful. The search data have lower values of � and
�, whereas the lexical decision and mental rotation data
have higher values of both parameters. This is just the
sort of information we want from a model, because it sug-
gests a distinction that might bear on the dynamics that
create the correlations in the first place. The ARMA fam-
ily, because its diversity is not an expression of the data,
can produce only the same poor-fitting models, regard-
less of the experiment from which the data were derived.

The experiments that produced these data were se-
lected only to typify experimental practice. They were
not selected to fit fractal models. This is an unbiased
sample of choice RT data, and Figures 5A and 5B make
it clear that the short-range ARMA process is not a vi-
able model of any member of the sample. We have iden-
tified a process that does naturally fit residual spectra,
and the derived parameters are indeed within the range
of what have been termed 1/ƒ noises.

Spectral Tools for Deciding Provenance

The demonstration that a few experiments in choice
RT are more likely fractal than ARMA does not establish
the case that correlations are necessarily produced by a
complex dynamic that emits fractal structure. In fact, no
set of positive instances of fractals will constitute proof,
although for an optimal decision maker it may change
the prior probability that fractal descriptions are correct.
In the absence of a psychological theory of correlation,
we are faced with the problem that data from each and
every experiment remain vulnerable to misinterpreta-
tion. In this theoretically uninformed state, the only re-
course is to develop a statistical tool that allows the two
classes to be discriminated.

The remainder of this article will present a set of analy-
sis tools that we have developed that can be used to de-
cide the nature of fluctuations in psychological data sets.
First, we provide a low-variance method for estimating
the form of the power spectrum. This method is greatly to
be preferred over standard Fourier estimates, which are
too noisy to be of much use in the issue of deciding the
provenance of single sequences. We then present the de-
tails and calibration results of a powerful classification
framework based on spectral likelihood and Bayesian in-

ference. The spectral classifier allows us to rationally
solve the data interpretation issue by assigning prove-
nance to whichever description is most likely, given the
data. This particular decision framework is known to be
optimal, in that it maximizes long-run classification ac-
curacy. With these tools, we can be fairly certain that
short-range processes cannot successfully masquerade
as fractals, and we will not be fooled into thinking that
objects are fractal when they are not. From a practical
standpoint, the spectral classifier provides a standard
benchmark for research in this area.

The “Whole-Spectrum” Approach
Traditionally, long-range structures in empirical time

series have been assessed in the frequency domain by fit-
ting power laws to spectral estimates (i.e., spectral tilt
analyses). In double-log coordinates, this reduces to sim-
ple linear regression, where the slope of the best-fit line
is taken to estimate the fractal exponent of an fBm. When
empirical spectra are linear—for example, in production
experiments (Gilden, 2001; Gilden et al., 1995)—this
practice makes some sense and can be used to distin-
guish serially correlated fluctuations from white noise.
However, when our spectra are not linear, as is the case
for all choice RT data, the fitting of lines has the poten-
tial to lead to confusion, especially when the models we
are interested in testing cannot be distinguished in terms
of slopes (Wagenmakers, Farrell, & Ratcliff, 2004). In
this domain, the correct approach is to try and under-
stand the underlying nonlinear forms in the data and to
see whether our models are capable of reproducing these
forms. This leads us to inquire whether there is, in fact,
sufficient information available in the shapes of choice
RT power spectra to discriminate the predictions of the
fBmW and the ARMA models.

The Classification Problem
Let us consider the worst case scenario for classifica-

tion by entertaining the following question: Is it possible
to reliably discriminate long-range processes from an
unconstrained class of short-range processes that have
been configured so as to approximate the long-range pro-
cesses? The worst case occurs when we consider a sin-
gle time series of limited length (i.e., no more than 1,024
trials). This case arises when averaging over observers is
not justified or is not prudent (Appendix B). For exam-
ple, in exploratory data analysis, one may not have a
sense yet for the range of processes at work, and in cases
in which there is sufficient heterogeneity, averaging may
actually distort the true state of affairs (e.g., computing
a d� by first averaging hits and false alarms across ob-
servers with widely different biases). The potential for
distortion via averaging is well recognized in the psy-
chological literature—most notably, in assessments of
the form of learning curves (Brown & Heathcote, 2003;
Heathcote, Brown, & Mewhort, 2000; Wixted & Ebbe-
sen, 1997), and in work on models of categorization
(Maddox, 1999). Accordingly, there has been a growing
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emphasis on supplementing standard observer-averaged
analyses with analyses based on single-observer data. In
the context of discriminating models, this inevitably
leads us into a domain in which confusability is high.
When spectral data are not averaged and, instead, rela-
tively short single-observer time series form the unit of
analysis (Van Orden, Holden, & Turvey, 2003; Wagen-
makers, Farrell, & Ratcliff, 2004, 2005), it becomes in-
creasingly possible for an ARMA foil to mimic the spec-
tra of a long-range fBmW. Avoidance of this potential
quagmire for interpretation begins with solid and reliable
techniques that transform data into spectral representa-
tions. We will show that with a high-quality estimate of
the power spectrum, there is sufficient information in a
single time series to distinguish short- and long-range
models.

Properties of the Raw Periodogram
Estimates of the power spectrum that are numerically

derived by a discrete Fourier transform have been his-
torically referred to as the periodogram. The periodogram
is computed by squaring the amplitudes of the constituent
sine waves defined at the frequencies ƒk � k/N, where
k � 1, 2, . . . , N/2 and N is the length of the sampled time
series. Insofar as the periodogram is discrete and the power
spectrum that it estimates is continuous, the estimates at
each frequency should be thought of as an averaged power
over a small window centered on each frequency (see
Press, Flannery, Teukolsky, & Vetterling, 1992).

The periodogram has the unfortunate property that its
reliability does not improve as sample length grows (Priest-
ley, 1981). This is in contrast to standard estimators,
such as the sample mean or variance, which do improve
with N. The nonconvergent nature of the periodogram
arises because increasing N generates a finer frequency
resolution but does not decrease the variability in the es-
timates of power. This state of affairs arises from the fact
that each point estimate of power derives from a sum of
N random variables and even though every member of
the sum (actually, a sample autocovariance; see Priestley,
1981, p. 432) is independent and has a variance that does
decrease as 1/N, the overall variance obtained in sum-
ming N such quantities, will not change with the length
of the time series

The thin gray lines in the upper and lower right quad-
rants of Figure 6 are the respective periodograms of sin-
gle examples of an fBmW(�1, 1) and ARMA(.95, �.79)
process (each periodogram is based on a simulated time
series with N � 1,024). These functions are typical of
the quality of spectral estimates obtained in taking a
straight Fourier transform of psychophysical data. As the
figure makes clear, the periodograms bear little resem-
blance to their theoretical expectations in the left panels
(the smooth black lines). The spectral estimates are ex-
tremely noisy functions that fluctuate wildly from fre-
quency to frequency. This feature of the periodogram is
a direct consequence of the fact that estimates of power

are, by definition, uncorrelated across frequency (Priest-
ley, 1981).

In distinguishing the fBmW from the ARMA process,
we are inevitably led to consider the low-frequency behav-
ior of the power spectrum. It is in this region that long-
and short-range processes generate unique and salient
spectral signatures. Unfortunately, periodogram esti-
mates not only are unimproved by increases in sequence
length, but also satisfy a Weber-like relation; the variabil-
ity of spectral estimates is proportional to the magnitude
of the estimated power. Because psychophysical spectra
have their greatest power at a low frequency, this is also
the regime of greatest variability. Practically, this means
that the region of the spectrum that is most diagnostic
for distinguishing short- and long-range descriptions of
data is inherently also the most unreliable.

Computation of Low-Variance Spectra
The intrinsic fluctuations of spectral estimates can be

reduced only by some sort of smoothing or averaging
process. In typical experimental designs, variability is
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Figure 6. Theoretical expectations and empirical estimates of
power spectra associated with the fBmW(�1, 1) process and its
closest ARMA relative (� � .95, � � �.79). The smooth spectral
forms on the left were derived using Equations 7 and 9. The
functions shown in the upper and lower right are estimates of
the spectral density based on a standard periodogram analysis
(light gray) and a composite spectral analysis (black symbols) in
which periodograms of overlapping segments are averaged to
form the final estimate of the power spectrum (Welch, 1967).
The estimates were obtained by analyzing a single exemplar of a
simulated fBmW(�1, 1) process and a single exemplar of a sim-
ulated ARMA(.95, �.79) process (both exemplars consisted of
1,024 trials).
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reduced by observer averaging, but this technique is not
available if the relevant data are individual time series.

Fortunately, low-variance estimates of spectral power
based on a single time series are readily available, al-
though they come at the cost of reduced frequency reso-
lution. The method we have used is elementary and is
based on the simple artifice of breaking up a given data
sequence of size N into a series of overlapping windows
of size m and averaging their raw spectra (Welch, 1967).
Averaging over windows reduces variability, but now the
lowest resolved frequency is 1/m, instead of 1/N. The
method of computing window-averaged spectra has been
in use for some time in engineering disciplines (see Press
et al., 1992) and is preferred over the straight N-point pe-
riodogram because it reduces the spectral variance per
datapoint by 9K/11, where K is the number of windows
used in the average. We have extended this technique by
allowing m to vary, in order to obtain the best estimate
available at each frequency. Appendix A gives a detailed
algorithm for the computation of the eight-point least
variance composite spectrum that is used throughout our
work. In Figure 6, the solid black symbols that overlap
the gray periodograms on the right are the estimates of
power provided by the composite spectral method (both
the standard periodogram and the composite estimates
were derived using the same input sequence). Clearly,
the estimates of power provided by the composite spec-
trum are much improved, relative to those of the stan-
dard periodogram, in approximating the true spectrum.

The second class of refinements we bring to the analy-
sis of time series is to use classification tools that empha-
size the whole spectrum. As Figure 6 makes clear, even
when the ARMA and the fBmW are aligned so as to be
maximally confusable, there will still be local features
in the shapes of spectra that are unique to each model.
These local features are critical for model testing, and
they are not captured by statistics that reduce the spec-
trum to its overall slope. In fact, any scheme based on
spectral tilt would fail to distinguish the ARMA and the
fBmW expectations shown on the left in Figure 6. The
whole spectrum approach to classification begins with a
detailed computation of spectral sampling distributions
defined at each frequency.

Sampling Distributions of Spectra
Provenance cannot reliably be assigned in the pres-

ence of sampling error without the aid of a statistical tool
that incorporates both information about expected spec-
tral shapes and the expected deviations from the mean at
each frequency. The sampling distributions of spectra
are not available in closed form, and so we have imple-
mented a brute-force Monte Carlo simulation approach
to calculating them across the entire ARMA and fBmW
parameter spaces.5 These distributions provide all of the
necessary information required to derive the likelihoods
of data, given each model.

Sampling distributions of power spectra were created
at each point, using the following procedure. The ARMA
sampling distributions were realized using a parameter

grid that consisted of the factorial combination of 20 lin-
early spaced values of � on the interval [.1, .95], along
with 20 staggered values of � on the interval [�.082,
�.9]. The fBmW distributions were realized using a pa-
rameter grid consisting of the factorial combination of
20 linearly spaced values of � on the interval [�.1, �1],
along with 20 linearly spaced values of � on the interval
[0, 2]. Subsets of each of these grids were used to gen-
erate the spectral shapes shown in Figures 3 and 4.

At each of the 400 points in the 20 � 20 parameter
spaces, 2,000 independent time series of length 1,024 were
simulated. For example, at the point [�i,�j] we simulated
the fBmW(�i, �j) process repeatedly to yield 2,000 ex-
emplar time series of length 1,024. Each series was then
normalized and transformed to yield a high quality 8-point
composite spectral representation (see Appendix C). The
resulting ensemble of 2,000 power spectra were then
used to estimate the ensemble-averaged power spectrum
at the point [�i, �j], as well as an 8 � 8 covariance matrix.
Together, the average spectrum and covariance matrix
suffices to characterize the underlying spectral sampling
distribution of fBmW(�i, �j) processes. The above pro-
cedure (i.e., estimating the average spectrum and the en-
semble covariation) was repeated for each unique pa-
rameter combination defining the ARMA and fBmW
families to yield a complete set of 800 spectral sampling
distributions.

Classification Using Maximum Likelihood
The spectral classification framework we have devel-

oped consists of two components (see Appendix C for a
complete description). The first is a reference library
based on the 800 sampling distributions generated by the
two candidate processes. This library encapsulates a rel-
atively complete range of spectral shapes that may be ob-
served in the two models. The second component is a ra-
tional decision structure based on maximum likelihood.
This component uses the library to find the most likely
source of an input data spectrum—namely, it decides
whether the given data are more consistent with an au-
toregressive or a fractal interpretation. Recognizing that
the priors for ARMA and fBmW are unknown, catego-
rization accuracy is maximized by deciding in favor of
the model with the single largest likelihood. The sensi-
tivity and bias of the classifier are determined by explicit
calculation of the hits (correctly classifying a long-range
fractal as such) and false alarms (incorrectly classifying
an ARMA as a fractal) for all parameter inputs to ARMA
and fBmW. This approach to the problem of spectral clas-
sification is nearly optimal, given the inherent limita-
tions imposed by sampling error.

An example will clarify the details involved in classi-
fication. Consider an input time series of length 1,024
drawn from either ARMA or fBmW. The time series is
standardized and then transformed into an 8-point com-
posite spectrum, using methods described in Appen-
dix A. The classification problem now reduces to deter-
mining which ARMA and fBmW processes are most
likely to have produced the input data, and this problem
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is solved by a brute-force calculation of likelihood across
the library of sampling distributions. There are 800 like-
lihoods, one at each of the 400 points defining the ARMA
(�, �) space, and one at each of the 400 points defining
the fBmW(�, �), space, that must be computed. There
will be one likelihood that is greatest, and the family to
which this belongs is assigned provenance. This proce-
dure is fair, in the sense that each model is given its best
opportunity to explain the data and the classifier always
chooses blindly among competitors.

Calibration results. Deciding whether statements of
provenance can be reliably made reduces to the question
of how well the classifier performs on a test bed of deci-
sion problems. The test bed used in this work consisted
of 2,000 independent time series at each of the 800 pa-
rameter points across the two process spaces (800,000
decisions in each space). This ensemble is sufficiently
large to construct stable estimates of the hit rates (as-
serting fBmW when it is fBmW in fact) and the false
alarm rates (asserting fBmW when it is ARMA in fact).

Figure 7 displays the calibration tests on the classifier.
The left panel of Figure 7 shows a contour plot of the
classifier’s hit rate as a function of the fBmW parameters
� and � (each line in the plot is an iso–hit rate contour).
In general, the maximum likelihood classifier had little
trouble in correctly recognizing a long-range spectrum.
The median hit rate taken over the entire range of � and
� is 78%. This number represents the overall power in

correctly deciding that long-range structure is present.
There are, however, portions of the parameter space where
whitened fractals are confusable with short-range pro-
cesses. Consider the regime where the fBmW is virtually
white, where fractal exponents are small (�.4 	 � 	 �.1),
and additive white noise is high (� � 1.5). Here, the clas-
sifier is correct in its fractal classifications only about 40%
or less of the time, indicating that for those long-range pro-
cesses that look white (i.e., nearly flat power spectra), there
is a slight bias to categorize them as ARMA. This bias
arises primarily because the ARMA processes that are con-
fusable with these sorts of fractals actually have less spec-
tral variability on the whole and so are generally preferred
by the maximum likelihood classifier, all else being equal.

In the region of the fBmW space more characteristic
of 1/ƒ noise and psychophysical data (i.e., � 	 �.5), the
power of the classifier is observed to be much higher, ex-
ceeding 85% on average. These regions are depicted in
the left panel of Figure 7 by a square for production data
and by ellipses for RT data. Production data typically
have linear spectra at low frequency and are easily dis-
criminated from the whitening at the low frequency char-
acteristic of the ARMA process. RT methods generate
data that do have palpable amounts of white noise (Gilden,
1997, 2001; Van Orden, Holden, & Turvey, 2003), but even
here the classifier misses only at a rate of about 20%.

In the right panel of Figure 7, we show a contour plot
of the maximum likelihood classifier false alarm rates—
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Figure 7. Accuracy of the spectral likelihood classifier in discriminating simulated exemplars of long- and short-range pro-
cesses. The contour plot on the left shows classifier hit rates for correctly recognizing fBmW(�,�) time series. The hit rates as-
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classifying a sequence as f BmW when ARMA is the
source of data. Most apparent is that the false alarm rates
are uniformly zero across the majority of the ARMA
space. The lower triangle is dominated by spectra that
decay as 1/ƒ 2 at high frequency, whereas the upper tri-
angle contains spectra that increase with frequency. Nei-
ther of these regions can be modeled by a fractal process
that is no more correlated than a 1/ƒ noise, and this clas-
sifier has a library that is limited to � ∈ [�.1, �1]. In
fact, only a small subset of ARMA processes are even
remotely confusable with f BmWs. The median false
alarm rate taken across the subset of ARMA processes
whose spectra decay with frequency is 8%. False alarm
rates greater than this occur only along the relatively nar-
row ridge proximal to the major diagonal. This ridge
contains sequences that are consistent with RT methods,
as shown by the ellipses (there is no region in the ARMA
plane that can produce the sort of data observed in pro-
duction tasks—i.e., a pure 1/ƒ noise—so there is no de-
marcation of production tasks here). Again, we observe
that the classifier is about 80% accurate in its assessment
of provenance for data that might be of practical con-
cern. Thus, the classifier does not achieve high hit rates
at the expense of a large false alarm rate.

Although in no other work has the confusability of frac-
tal and autoregressive descriptions been examined with
the detail attempted here, we can compare the perfor-
mance of the spectral likelihood classifier with a related
result from the work of Wagenmakers, Farrell, and Rat-
cliff (2004). There, long-range dependence was assessed
at a single point in the fBmW space, using nested ARMA/
ARFIMA models and exact maximum likelihood estima-
tion. Specifically, a three-parameter ARFIMA was used
to discriminate simulated exemplars of the fBmW(�1, 1)
process from simulated exemplars of the ARMA(.896,
�.691) nearest relative. They found a fractal hit rate of
74% and an ARMA false alarm rate of 8%. The spectral
likelihood classifier produces a hit rate of 88% and a false
alarm rate of 8% for these sequences. Although these dif-
ferences in performance are not large, they do provide
good evidence that assignments of provenance with spec-
tral maximum likelihood is at least as powerful as, if not
more so than, time domain techniques based on ARFIMA.

Bayesian Classification Based 
on Integrated Likelihood

A growing body of recent work on model selection has
highlighted the need to augment local assessments of fit
with more global metrics that take stock of the full pre-
dictive range of a model (see the articles in the special
issue of the Journal of Mathematical Psychology, Myung,
Forster, & Browne [Eds.], 2000; Navarro et al., 2004;
Pitt et al., 2002; Rissanen, 1996; Roberts & Pashler,
2000). Here, a model’s proximity to data, as well as its
generalizability to new data sets, is used in selecting the
best computational description.

This brings us to one of the principal strengths of the
spectral classification approach we advocate here: It is

general enough to incorporate virtually any other kind of
information one might want to include in selecting among
long- and short-range models, including global informa-
tion about the generalizability of the models. In particu-
lar, with a relatively minor change in the decision met-
ric, the maximum likelihood classifier becomes a proper
Bayesian classifier that uses marginal likelihoods and
parameter priors to estimate which model is more prob-
able, given the data. This extension to Bayesian selection
is possible because we have access not only to the single
maximum likelihood estimate, but also to the full set of
likelihoods of data across the entire fBmW and ARMA
parameter spaces. This means that we can easily go from
assignments of provenance based on the mode of the
likelihood distributions (i.e., max-likelihood) to assign-
ments based on the integrated distribution, with negligi-
ble change to the core framework.

In the Bayesian selection framework, we compute the
integrated likelihood of the data, given each model, as

(10)

where x and y denote particular values of the process pa-
rameters. The likelihood L of the data at each point [x, y]
in the model’s parameter space is weighted by the corre-
sponding prior probability of that parameter combina-
tion. The left-hand term is the integrated likelihood of
the data, given the model, and is simply the prior-weighted
sum of likelihood taken over the entire space of param-
eter values. In this method of selection, the best model
for a data set is that which maximizes Equation 10 (under
the assumption of equal model priors). The Bayesian
metric differs from maximum likelihood classification,
where decisions are made solely on the basis of each
model’s single maximum likelihood (taken over all x, y):

(11)

where “arg max” is just a shorthand description for an al-
gorithm that finds the maximum likelihood across each
model’s parameter space. Quite simply, decisions in
Bayesian classification are made via a comparison of
weighted means, whereas decisions in maximum likeli-
hood are made via a comparison of maxima.

We denote a classifier that computes Equation 10 as a
Bayesian classifier. Bayesian classifiers are generally
preferable to maximum likelihood classifiers because
they are sensitive to differences in parameter number and
model complexity (see Myung, 2000; Pitt et al., 2002;
Wasserman, 2000). Although the short- and long-range
models we examine here do not differ in their parameter
number, they do differ in complexity, and recent work
has emphasized the importance of using global estimates
of complexity in selecting among competing models
(Pitt et al., 2002; Rissanen, 1996; Wasserman, 2000).

The kind of complexity that is relevant here is related
to falsifiability and measures the descriptive breadth and
scope of a computational model (Cutting, Bruno, Brady,
& Moore, 1992). Highly flexible models are hard to fal-
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sify because they can take whichever shape a particular
data set demands. Protean models that generate a large
number of distinguishable predictions have higher intrin-
sic complexity than do models that produce a more con-
strained set of predictions. By this view, good models are
ones with low complexity, because they are falsifiable,
robust to perturbation, and tend to generally predict only
the specific forms observed in data (Roberts & Pashler,
2000). This is exactly the point we attempted to make
when we showed the full range of spectral shapes achiev-
able by the two-parameter ARMA and fBmW families.
In these plots, it is evident that the fBmW is not a com-
plex model, whereas the ARMA is.

One attractive feature of a Bayesian classifier is that it
allows us to adjust for differences in complexity (Myung
& Pitt, 1997; Wasserman, 2000) in models that are in-
trinsically stochastic (e.g., simulation-dependent model-
ing). All else being equal, a Bayesian metric based on in-
tegrated likelihood (Equation 10) will tend to favor lower
complexity models. This arises because low-complexity
models generate broad distributions of likelihood (shape
changes slowly with parameter variation), whereas com-
plex models generate more peaked distributions of like-
lihood (shape changes quickly with parameter variation).
Although highly peaked likelihood distributions may be
advantageous from the point of view of parameter esti-
mation (the peakedness of the distributions are related to
the confidence region), they are the defining feature of
an overly complex model (Hochreiter & Schmidhuber,
1997), especially when they occur in the context of a

large number of diverse and distinguishable predictions
(Pitt et al., 2002).

In the context of discriminating short- and long-range
models of data, these points imply that Bayesian selec-
tion based on Equation 10 will effectively penalize the
more complex ARMA model. Fits of the ARMA to typ-
ical data sets generate nonnegligible likelihood over only
a very small region of the parameter space. In contrast,
fits of the fBmW to data generate palpable likelihoods
over a fair fraction of configurations (see Figure 5B).
Because the ARMA fits are nongeneric to the process
and lead to highly confined distributions of likelihood in
the parameter space, a proper Bayesian classifier will ex-
hibit a general bias to make long-range assignments. This
bias is not a shortcoming; it is evidence that the Bayesian
metric is sensitive to the intrinsic differences in complex-
ity associated with the ARMA and the fBmW models.

Calibration results for the Bayesian classifier. In
order to facilitate comparisons, we have calibrated the
Bayesian classifier on the same families of process that
were used to calibrate the maximum likelihood classifier.
Rather than using the single largest likelihood to assign
provenance, here we estimate the integrated likelihood
given each power spectrum by taking a weighted sum
over all likelihoods in each model’s respective parameter
spaces (see Equations C4 and C5 in Appendix C).

Calibration results using this metric are shown in Fig-
ure 8. The fBmW hit rates (correctly assigning long-range
status to long-range sequences) and ARMA false alarm
rates (incorrectly assigning long-range status to short-
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range sequences) are depicted in adjacent panels as iso-
accuracy contour plots. The most striking feature of this
figure is that the results under Bayesian classification are
qualitatively indistinguishable from the maximum likeli-
hood results in Figure 7. Both classifiers have no trouble
discriminating the vast majority of short- and long-range
processes. Performance is really seen to deviate from
high accuracy only in the portion of the fBmW param-
eter space where white noise dominates the long-range
fBm signal and in a limited region of the ARMA pa-
rameter space where autoregression and differencing
variables are perfectly balanced.

Although the maximum likelihood and the Bayesian
classifiers are largely congruent in sensitivity, the cali-
brations do indicate some quantitative differences in
their respective patterns of hits and false alarms. As the
inset accuracies in Figure 8 show, when integrated like-
lihood is the basis for classification, there are model-
wide increases in both the fBmW hit rates and the ARMA
false alarm rates. The rise in false alarms is particularly
pronounced in the isolated region of the ARMA param-
eter space where short-range processes most closely
mimic global aspects of long-range spectra. The classi-
fier’s increased tendency to assign a long-range status to
these sequences reflects the fact that in those parameter
regimes in which the ARMA process looks most like the
fBmW (i.e., where � is high and just a little bigger than
|� |), there will naturally be a strong and broad distribu-
tion of likelihoods produced in the fBmW model. Under
Bayesian classification, this signal swamps the integrated
likelihood in the ARMA space, because these kinds of
short-range spectra are more like the generic fBmW than
the generic ARMA (the majority of ARMA configura-
tions generate near-zero likelihood to such spectra). This
state of affairs leads the classifier to increasingly reject
the correct ARMA interpretation and to assign prove-
nance to the model with the higher volume of likelihood.
We argue that these kinds of errors do not represent fail-
ures but, rather, reflect an optimal strategy in which
model complexity is being used to penalize the overly
complex ARMA (Myung & Pitt, 1997). Because the max-
imum likelihood spectral classifier does not take into ac-
count complexity (i.e., the peakedness and breadth of the
likelihood distribution in the parameter space), it does
not show this bias, and its assignments are made primar-
ily on the basis of goodness of fit. Although the Bayesian
classifier does have a tendency to false alarm to certain
short-range configurations, its overall accuracy is never
compromised.

This is shown in Figure 9, where we compare d�s under
Bayesian and maximum likelihood classification for dis-
criminating the family of fBmW processes from a cor-
responding set of ARMA mimics. The line along the major
diagonal has unit slope and represents the point of d�
equality. It is evident from the plot that even though the
hit and false alarm rates differ across classifiers, there is
little observable change in true discrimination sensitiv-

ity. Again, this is what we would expect if the Bayesian
classifier was simply penalizing the more complex ARMA
model by shifting its decision criterion so as to favor the
low-complexity fBmW. Such a shift predicts a change in
hit rates and false alarm rates with no reliable alteration
of d�, and this is precisely what we see in the figure.

Which Spectral Classifier to Use?
Now that we have fully calibrated the maximum like-

lihood and Bayesian classifiers on simulated time series
of known origin, it is natural to ask which of the two met-
rics is to be preferred in the analysis of empirical data
sets. Given the nearly equivalent sensitivity of the two
classifiers in discriminating short- from long-range pro-
cesses, the short answer is that it depends on the goal at
hand. In this regard, we provide the following heuristics
simply as guidelines for the appropriate uses of each
classifier.

Maximum Likelihood Spectral Classifier
Largely unbiased over the full ranges of short- and
long-range processes; equates Type I and Type II errors.

Appropriate for estimation of parameter values.

Bayesian Spectral Classifier
Incorporates differences in complexity (and parameter
number) and is, therefore, biased against protean,
overly flexible models. Offers a natural counter-
point to current usage of ARFIMA (Wagenmakers,
Farrell, & Ratcliff, 2004), where calibrations sug-
gest a bias favoring short-range interpretations.

Figure 9. Comparison of classifier sensitivity for discriminat-
ing each of the 400 members of the fBmW(�,� ) family from its
own matched ARMA process (see the text for details). The sensi-
tivity of the maximum likelihood classifier, d�MAX, is plotted on
the abscissa; the sensitivity of the integrated likelihood classifier,
d�BAYES, is plotted on the ordinate.
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Is slightly more powerful in high-noise regimes
(e.g., when � is near zero and � is high; see Figure 9,
where d�MAX 	 1).

Admits other sources of prior information that might
inform selection.

A Case Study: Analysis of Naming Data From
Van Orden, Holden, and Turvey, 2003

The necessity for a solid data-analytic framework for
time series analysis is most evident in the controversy
generated by the work of Van Orden, Holden, and Turvey
(2003). In that article, Van Orden and colleagues ana-
lyzed fluctuations in word-reading latency. Specifically,
they were interested in the question of whether these la-
tencies are complex—that is, whether they form 1/ƒ
noise. Their spectral analyses showed that naming la-
tency power spectra were distinguishable from white
noise in terms of slopes estimated from regressions of
log power against log frequency. On the basis of this re-
sult and other converging analyses in the time domain
(dispersion analyses of the fractal dimension; Caccia,
Percival, Cannon, Raymond, & Bassingthwaighte, 1997;
Eke, Herman, Kocsis, & Kozak, 2002), they concluded
that they had found evidence for fractal structure.

Wagenmakers, Farrell, and Ratcliff (2004, 2005) had a
radically different interpretation of these data. They rean-
alyzed Van Orden, Holden, and Turvey’s (2003) data in
terms of a variety of long- and short-range autoregressive
models, including the second-order ARMA. These analy-
ses indicated that although a majority of the sequences
were best fit by one of the long-range ARFIMA models in
their ensemble, the class of short-range ARMA models re-
mained competitive. This led them to reject the earlier
claims that reading latencies were unequivocally 1/ƒ noise.
In their own words: “[there was] some support for the ex-
istence of persistent serial correlations. However, this sup-
port [did] not appear to be very strong . . . . The analyses
reported by [Van Orden, Holden, & Turvey, 2003] do not
support their claim of 1/ƒ� noise” (Wagenmakers et al.,
2005). So which characterization of the Van Orden data is
correct? Our methods can be used to inform the issue.

We present three analyses of Van Orden, Holden, and
Turvey’s (2003) data in order to illustrate the different
ways spectral likelihood classification may be used to
decide provenance and to settle the provenance issue,
relative to whitened fractals and first-order ARMAs. We
begin with an analysis based on classification of indi-
vidual observer data. This involves a simple enumera-
tion of the sequences in Van Orden, Holden, and Turvey’s
(2003) sample that are more likely to have been derived
from a long-range fractal process. We then present a
more powerful analysis in which classification is based
on the observer-averaged spectrum. The final analysis
offers an alternative method for combining evidence
across observers.

Method. Van Orden, Holden, and Turvey’s (2003)
data were derived from 20 observers, each of whom pro-
vided a single uninterrupted sequence of 1,024 word-

naming RTs (see Van Orden, Holden, & Turvey, 2003,
for details). Prior to analysis we standardized and spec-
trally transformed each sequence, using the composite
routines in Appendix A. In the following analyses, we
report results using both raw and detrended versions of
the data in which overall linear trends were removed
prior to analysis (the results for the detrended series will
be given within brackets). Detrending had little appre-
ciable effect on any of the analysis outcomes.

Analysis 1: Classification of single-observer se-
quences. We visually examined the set of 20 power spec-
tra in Van Orden, Holden, and Turvey’s (2003) sample
and found that a small fraction of the sequences were vir-
tually indistinguishable from white noise (this was verified
using linear regression). Recognizing that flat spectra
provide no opportunity for deciding the issue of short-
versus long-range correlation and that the spectral clas-
sifiers have a bias to assign a short-range status to such
sequences, we excluded them from our single-sequence
analyses. This left a total of 16 remaining sequences con-
sistent with at least some type of serial correlation. These
were submitted to spectral likelihood classification, using
the algorithm detailed in the Maximum Likelihood Algo-
rithm section in Appendix C. Of the 16 spectrally colored
sequences, 14 [12] were described best as whitened frac-
tals. These results provide preliminary evidence that Van
Orden, Holden, and Turvey’s (2003) word-reading data
are generally long range in character.

An issue that reoccurs in these kinds of analyses is the
appropriateness of detrending prior to classification.
This issue is outside the purview of the classifier, be-
cause it depends critically on whether one believes large-
scale fluctuations in data are the result of secular trends.
It is standard practice in the physical sciences to remove
linear trends as a caution. In domains in which there is
theoretical cause or experience with similar data to sug-
gest higher order contaminants in a signal (e.g., cyclical
drift over time due to the environment, etc.), these trends
should also be removed to ensure proper characteriza-
tion of the fluctuations. Perhaps similar kinds of con-
cerns motivated Van Orden, Holden, and Turvey (2003)
to choose to quadratically detrend their naming latencies
prior to analysis. Nonetheless, in the problem domain
that we face of distinguishing highly confusable ARMA
mimics from long-range fractals, quadratic detrending
introduces clear dangers to interpetation (see the De-
trending Time Series section in Appendix B for a treat-
ment of the effects of detrending in this context). In par-
ticular, this practice is extremely ill suited for spectral
likelihood classification, because it makes all sequences
look short range. We know of no theory of latency that
predicts such structures, and we have never observed any
evidence of systematic quadratic contaminants in our
laboratory. Unless there is good reason to believe that
higher order secular effects are corrupting one’s data, the
best practice is to limit trend removal to first order.

Bayesian classification. In addition to classification by
maximum likelihood, we also analyzed the 16 Van Orden,
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Holden, and Turvey (2003) sequences by using the
Bayesian integrated likelihood classifier. For this analysis,
we used prior distributions as were used in the earlier
calibrations of the classifier (we also explored a variety
of alternative prior distributions, and our results were ro-
bust to these variations; for more here, see the Parameter
Priors section in Appendix C). Of the 16 sequences show-
ing some form of correlation, 15 [12] were assigned a
long-range provenance under Bayesian classification.

Analysis 2: Observer average classification. Ob-
server averaging offers a straightforward manner for re-
ducing the variance of spectral estimates and so leads to
improvements in the accuracy of our classifications (see
Figure B1, Appendix B). Preliminary visual inspection
of the average spectrum of Van Orden, Holden, and Tur-
vey’s (2003) data revealed the unmistakable signature of
an fBmW process: a bowed spectrum that saturates in
white noise at the high frequencies and rises continu-
ously as the trial windows become ever larger. A subse-
quent quantitative analysis using the maximum likeli-
hood classifier indicated that the average spectrum (over
all 20 sequences) was some 20 [31] times more likely to
have been generated by a whitened fractal than by a
short-range ARMA. These results are consistent in mag-
nitude and interpretation with data sets collected in our
laboratory using similar methods (Gilden, 1997, 2001).

Analysis 3: Combining log-likelihoods. We supple-
ment the previous two analyses with a final analysis in
which model evidence is combined across the set of
single-observer results (we thank J. Busemeyer for this
suggestion). Because each observer provides logically
independent evidence for one model over the other, a
principled combination rule is to sum the individual log-
likelihood ratios across observers (Jaynes, 2003), treat-
ing the ratios as approximate log Bayes factors (i.e., log
odds favoring one model over the other; see Wasserman,
2000). The extent to which this sum is positive indicates
that the combined evidence favors a fractal interpreta-
tion (similarly, when this sum is negative, the evidence
will favor an ARMA interpretation). For the 20 time se-
ries collected by Van Orden, Holden, and Turvey (2003),
the spectral likelihood classifier generates a combined
log-likelihood ratio of 21 [15] (exponentiation gives the
combined odds). This value clearly favors the whitened
fractal model over the short-range ARMA.

Taken together, these three analyses provide converg-
ing evidence that the most likely provenance of Van Orden,
Holden, and Turvey’s (2003) data is whitened 1/ƒ noise.
The majority of observers who showed some form of se-
rial correlation had data sequences classified as long
range (14/16 with maximum likelihood, 15/16 with inte-
grated likelihood); the averaged spectrum was approxi-
mately 20 times more likely to have been generated by a
fractal process, and the combined log-likelihood ratio
taken over all sequences provides clear and overwhelm-
ing evidence for long-range correlation in the data.

The verdict: How ARFIMA stacks up to spectral
likelihood. There is little distinction at the level of the

single observer. Single-participant analysis is intrinsically
limited in terms of statistical power and thus represents
the worst-case domain for distinguishing the nature of
observed fluctuations in data. With spectral likelihood
classification, we found that 14 of 16 sequences were as-
signed a long-range provenance, as compared with 12 of
20 sequences under ARFIMA testing. Insofar as the 
4 white noise sequences excluded from our analysis were
most likely given a null short-range assignment by
ARFIMA (Wagenmakers et al., 2005), the argument comes
down to 14 versus 12—that is, an immaterial distinction.

One of the principal advantages of our approach, how-
ever, is that it is not limited to the worst-case domain in
which there is no averaging and single spectra are the
unit of analysis. By virtue of spectral averaging, both
within and across observers, our methods move substan-
tially beyond current ARFIMA tests to reveal clear and
strong evidence favoring the long-range interpretation of
Van Orden, Holden, and Turvey’s (2003) data (see Analy-
sis 2). Although averaging over observers always carries
the caveat that it may distort our view of the underlying
processes, we will show in Appendix B that even under
realistic levels of process heterogeneity, classification of
averaged spectra remains robust and unbiased and offers
a preferred means for increasing the statistical power of
our classifications. We suspect that the primary reason
observer averaging is downplayed in the application of
ARFIMA methods is that the canned time domain algo-
rithms required for these analyses simply do not permit
such reduction (see the Ox and R routines in Doornik,
2001, and the references in Wagenmakers, Farrell, &
Ratcliff, 2004, 2005).

The spectral likelihood classifier enjoys another prac-
tical advantage over previous ARFIMA tests, in that it
has been thoroughly calibrated. We have constructed and
tested both the maximum likelihood and the Bayesian
classifiers, using two complete families of ARMA and
fBmW processes. One goal of these calibrations is to
provide a clear picture of where confusability among the
competing models is greatest and where, as researchers,
we should concentrate the bulk of our empirical efforts.
In contrast, the ARFIMA method remains largely uncali-
brated on the range of processes relevant to psychophysi-
cal data (it was calibrated on a single short- and long-
range process in Wagenmakers, Farrell, & Ratcliff, 2004).

CONCLUSIONS

The evidence is that whitened fractals provide a bet-
ter description of psychophysical data than do ARMA
processes.

The evidence from a collection of studies incorporat-
ing RT measurement is that the ARMA process is not
causal of the observed correlations. The volume of the
ARMA parameter space that generates processes resem-
bling data is almost zero. The best-fitting ARMA spec-
tra are, in fact, poor fits, because they are S-shaped and
the data are not. The data, rather, appear to be fractal, in
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the sense that the power increases through the range of
low frequencies, evidence for the absence of a temporal
scale. We do not view the rejection of the ARMA as ex-
planatory as the rejection of a null, but as the rejection
of a model that is just the wrong model. Since there is lit-
tle evidence for autoregression in the relevant data, we
see little motivation to extend the ARMA into ARFIMA
and conduct inference testing on the basis of the signif-
icance of an additional long-range parameter. Rather, we
prefer to conduct the entire discussion in terms of frac-
tional Brownian motions, which are long-range by de-
sign, are routinely used in a variety of scientific literatures,
and have growing empirical support (Gilden, 1997, 2001;
Gilden et al., 1995).

Although Wagenmakers, Farrell, and Ratcliff (2004,
2005) have provided the first published reports in which
ARMA as a competing hypothesis has been seriously
considered, we have been questioned informally on a
number of occasions as to whether fractal descriptions
are appropriate when a “simpler” first-order ARMA pro-
cess might explain our data (Gilden, 2001) equally well.
First-order ARMA processes may in some restricted
sense be simple, but more to the point, they are familiar
to practitioners within the field of time series analysis.
ARMAs have the virtue that they can be written in closed
form, they lend themselves to an elegant mathematical
formalism, and they are invariably the first process en-
countered in the practical matter of learning about time
series. We suspect that it is their familiarity and the ease
with which they may be incorporated into existing mod-
els that underlie their appeal, notwithstanding the obser-
vation that they have no prior claim on psychophysics. We
note that the ARMA apparently has no claim in the poste-
rior sense either. ARMA/ARFIMA testing has replicated
virtually all of the earlier research findings (Wagenmakers,
Farrell, & Ratcliff, 2004), strengthening the claim that
long-range fractal processes are the best explanation for
the fluctuations that characterize psychological time series.

With good tools, competing short- and long-range de-
scriptions of data are not that confusable.

We have created a powerful general purpose classifier,
based on Bayesian inference, for tackling the difficult
problem of discriminating long-range fractals from short-
range ARMAs. The classifier capitalizes on a high-quality
estimate of the power spectrum and an extensive set of
spectral sampling distributions to compute the most likely
provenance of time series data. By testing the classifier
across a broad array of simulated ARMA and fractal
time series, we demonstrated it to be highly sensitive in
distinguishing short- from long-range data. This method
is greatly preferred to analysis based only on spectral
slope and is generally more flexible and transparent than
using ARFIMA software and AIC penalties. Most im-
portant, in process regimes characteristic of typical pro-
duction and choice RT data, the classifier achieved ac-
curacies of 75%–95% correct in both hits and correct
rejections. These numbers indicate that even specially
tailored ARMA configurations that globally approxi-

mate fractal structure can be rejected when local features
in the power spectrum are used in classification. We ap-
plied the classifier to a controversial set of word-reading
data (Van Orden, Holden, & Turvey, 2003) and convinc-
ingly demonstrated that these time series are most likely
fractal in origin.

We close by emphasizing the fact that there is a large
and growing body of evidence that sequences of psycho-
physical data fluctuate as 1/ƒ� noises. To date, long-range
fractal fluctuations have been discovered in a diverse set
of measurement domains, including signal detection and
discrimination (Gilden & Wilson, 1995a), skilled motor
performance (Chen, Ding, & Kelso, 1997; Gilden, 2001;
Gilden & Wilson, 1995b), production of spatiotemporal
intervals and force magnitudes (Gilden, 2001; Gilden
et al., 1995), and both simple and choice RT (Gilden et al.,
1995; Van Orden, Holden, & Turvey, 2003; Wagenmak-
ers, Farrell, & Ratcliff, 2004). As the empirical evidence
supporting long-range fluctuations continues to build,
repeated verification of the phenomenon through statis-
tical means will become increasingly unnecessary. The
principal question that faces future research is not whether
1/ƒ noise exists in cognitive activity but, rather, what its
presence has to say about the structure of the mind.
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NOTES

1. In West and Shlesinger’s (1989) theory, 1/ƒ noises are derived from
a hierarchy of short-range relaxation processes in which the time scales
are distributed log-normally. The theoretical question here involves iso-
lating the characteristics of systems that might be expected to generate
the multiplicative probabilistic structures that lead to log-normals (the
log of a product is a sum in the log quantities, and the central limit the-
orem entails the normal). Another form of averaging is based on the the-
ory of extremal dynamics (Miller, Miller, & McWhorter, 1993). The lat-
ter theory is framed quite generally in terms of system templates that are
relevant whenever the underlying assumptions concerning extreme
value statistics are justified.

2. The first-order AR(�) process (Equation 4) may be written recur-
sively as a weighted sum of random inputs:

where | � | 	 1 is required for stationarity. There is a similar summation
for the first-order ARMA(�,� ) process (Equation 6):

Two important points are revealed by this reexpression. First, we see
that the ARMA(�, � ) process can be recast as the sum of a first-order
AR process and a source of uncorrelated noise (the right-hand term in
parentheses describes an AR process; εt is the noise; see Pagano, 1974,
and Granger & Morris, 1976, for a rigorous development of this equal-
ity). Second, whenever � � ��, the ARMA reduces to a random pro-
cess with independent increments—a white noise.

3. Personal communications from several readers of this article and
of our earlier work have been concerned with the existence of a number
of RT studies in which latency sequences were fit by models of short-
range process. These studies, it has been argued, provide the necessary
rationale to justify the use of the ARMA as a null for psychological time
series. A thorough search of the literature reveals only a single poten-
tially relevant data set. In a series of experiments on local priming of RT
(Laming, 1968; see also Botvinick, Braver, Barch, Carter, & Cohen,
2001), Laming made the informal observation that many of his se-
quences appeared to have exponentially decaying serial correlations.
However, he did not conduct any tests on the form of this decay, and his
time series were unusually short (100–200 trials) and so have little sta-
tistical power with which to distinguish exponential decay from power
law decay. We have examined the relevant figures in some detail and
have found, rather, that the decay appears to be more consistent with a
long-range process. In particular, the exponential decay model offered by
Botvinick et al. simply does not faithfully reproduce the observed auto-
correlation function.

4. To be fair, we point out that there is nothing in the general approach
of ARFIMA testing that requires a nested model relationship or the use
of AIC selection. In fact, in subsequent related work, Wagenmakers et al.
(2005) have relaxed the nesting relationship in order to examine com-
parisons between various order ARFIMA and various order ARMA pa-
rameterizations, using two different model selection metrics (i.e., AIC
and BIC). Importantly, the removal of the nesting relationship means that
the short-range ARMA models no longer have a default claim on the data.

5. In contrast to brute-force simulation, it is also possible to employ
standard optimization routines to fit analytic expressions for the ARMA
and fBmW to spectral data (i.e., using Equations 7 and 9; for an exam-
ple, see the fits in Figure 5). We have used such an approach to verify
that the solution that we derived from explicit simulation of the models
did not depend on the particulars of the discrete parameter grids; in all
cases, we found that the analytic solutions were consistent with our 
simulation-based results.
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APPENDIX A
Spectral Methods

The discrete Fourier transform, �, of a time series X(t) is written

(A1)

where ƒ is the frequency (inverse trial number), defined as

, for n � 1, 2, . . . ,

and N is the length of the time series. The periodogram estimate of the underlying power spec-
tral density is defined to be the squared modulus of this quantity:

(A2)

All the analyses reported in this article are derived from a low-variance method of spectral es-
timation from Bartlett (1950) and Welch (1967). This method consists of portioning the series
X(t) into overlapping windows and then averaging the power spectra across these windows (see
also the method in Press et al., 1992). Provided that the windows are chosen so as to overlap by half
their length, the method turns out to be nearly optimal in terms of variance reduction (it provides
a maximal number of windows to be averaged, while minimizing the interwindow correlation).
Specifically, this choice of overlap reduces the error in the estimate of the power, Ŝ( f ), by the factor

,

where K represents the number of windows available in X(t) (Welch, 1967). Window averaging
leads to a smoother spectral estimate and is, in fact, equivalent to convolving the straight power
spectrum (Equation A2) with a Gaussian-like function (i.e., a Fejer kernel of order m; see Priest-
ley, 1981, pp. 439–440).

Although window averaging leads to a less variable estimate of the true power spectrum, it has the
unfortunate consequence that estimates of power at neighboring frequencies are no longer uncorrelated

Practically, this means that accurately fitting models to these spectra requires use of the full co-
variance matrix.

The Window-Averaged Spectrum
Let X(t) represent the original intact time series of length N, where N is some power of 2

(throughout this article, N has been fixed at 1,024). We form the window-averaged spectrum by
breaking X(t) into

overlapping segments of size m:

where k is simply an index that runs over the K segments. For each segment, xk, we form a straight
m-point periodogram, using Equations A1 and A2:

(A3)

where frequency is now defined over segments of length m. The power spectrum associated with
the k th data segment is the squared modulus of the transform in Equation A3,

(A4)

and the final estimate of power in the window-averaged spectrum is simply the average over the
K power spectra in Equation A4,
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For all the calculations in this article, power spectra were estimated using FFT routines that
effectively compute Equation A3.

The Composite Spectrum
The window-averaged spectrum (Equation A5) is always defined relative to a particular choice

of segment size, m. In practice, determining the best m is an art that depends partly on the de-
gree of frequency resolution, as well as on the statistical power one requires. Choosing a large
value of m enables one to estimate power at lower frequencies, because the window is longer, but
with lower reliability, because a larger m implies fewer windows in the average. Similarly,
smaller values of m lead to more stable averages at the cost of lower frequency resolution. In gen-
eral, the lowest frequency that can be resolved within a window of size m is 

f1 �

(excluding the DC point defined by ƒ0). If one wishes to estimate power at a frequency below f1,
m must be made larger.

For all the spectral estimates derived in this article, we form the composite spectrum, C( f ), using
a combination of multiple window-averaged spectra defined over a set of m (cf. Gilden et al., 1995).
Specifically, we combine spectral estimates of low-frequency power based on large windows with
spectral estimates of intermediate- and high-frequency power based on smaller windows. In this
way, we acquire highly reliable estimates of power at each frequency by always choosing the small-
est m (i.e., the largest number of segments, K) that is available. Accordingly, all spectral estimates
in this article consist of composite spectra defined at the following eight discrete frequencies:

(A6)

corresponding to the window sizes

(A7)

To reiterate, we estimate the power at a given frequency with the least variability by choosing
the smallest window that resolves it.A1

Finally, the composite spectrum requires that spectral estimates from different-sized windows
be appropriately normalized by 1/mj . If we denote the power estimate at the lowest frequency in
a window of size mj as

then the complete eight-point composite spectrum is obtained by normalizing each of the window-
averaged power estimates by its window size and concatenating the estimates into a single spectral
vector:

(A8)

for the set of mj in Equation A7.

Normalization by mj is necessary for the proper alignment of estimates from different window-
averaged periodograms, because the overall power in any periodogram is proportional to se-
quence length (i.e., window size). In Equation A8, we also normalize by the total length of the
time series (N ), in order to bring the composite spectral estimates into accord with the theoreti-
cal expressions for the ARMA and f BmW spectral densities.

The combined estimates of power across the set F are highly reliable, because each estimate
is based on the smallest possible choice of m and so the window average is taken over the largest
possible number of segments.

NOTE

A1. The composite spectra analyzed in this work are based on eight points and do not include estimates of
power at the lowest available frequency in a sequence of length N (i.e., ƒmin � 1/N ). The lowest frequency
we use is defined at 2/N. This choice was made for a number of reasons. First, estimates of power at ƒmin are
highly unreliable, because power is generally greatest at this frequency, and spectral variability grows pro-
portionally with power. Second, estimates of power at ƒmin are especially vulnerable to secular trends in a time
series such as might occur from learning or fatigue (see Appendix B). A final reason to forgo the use of
power estimates at ƒmin is that these estimates do not enjoy the variance reduction properties associated with
window averaging; in a sequence of length N, there can be only one N-point window with which to estimate
power at ƒmin. Moreover, in the absence of window averaging, the estimates at ƒmin will be �2 distributed, and
this runs counter to the Gaussian assumptions of the spectral classifier.
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APPENDIX B
Analyses of Observer Averaging and Trend Removal

Averaging Spectra Over Observers
An alternative means of increasing reliability is to average power spectral estimates across se-

quences (observers). Provided that there are no systematic and/or large variations in the under-
lying process parameters across different observers, averaging presents a preferred means for
improving statistical power. In the following figure, we show an example of how the discrimi-
nation of short- and long-range processes improves with the number of averaged spectra (n).

The figure plots the sensitivity of the maximum likelihood classifier in correctly classifying
f BmW(�1, 2) and ARMA(.95, �.86) processes as a function of n. These particular long- and
short-range processes were chosen because each of them generates time series that approximate
the structure of choice RT data, and this fractal is especially susceptible to misclassification be-
cause 80% of its variability is due to pure white noise. Note that when n equals 1, the figure
shows the classifier’s hit rate and correct rejection rate for classifying single f BmW and ARMA
sequences. The figure also shows how classifier performance changes in categorizing averaged
spectra based on n independent exemplars of each process. It is evident that the power of the clas-
sifier improves dramatically with n, and by the time 8–16 spectra have been averaged, classifi-
cation accuracy has improved from about 75% to near-perfect levels of discrimination. Classi-
fication accuracy improves with n, as was expected, because averaging even a small number of
spectra tends to smooth out the sampling errors associated with periodogram estimation. As n
increases, the averaged ARMA and f BmW spectra converge on their smooth theoretical forms
and so become increasingly easier for the classifier to distinguish. We point out that the im-
provement in classification sensitivity with n is in no way limited to a specific parameter regime
but holds across the entire model parameter spaces. The results shown in Figure B1 represent a
worst-case situation, and we have verified that for other parameter regions in which the single
sequence performance is higher to begin with, averaging only pushes classification performance
to ceiling at a faster rate. For example, for simulations of the ARMA(.9, �.69) process, single-
sequence spectra are classified as short range with an accuracy of approximately 81%, whereas
for spectral averages formed over eight exemplar sequences, the classifier achieves 98% accuracy.

One possible reason not to use observer-averaged spectra is that the average may not reflect
the structure of any single spectrum. For example, if we form an average of AR(�) processes
that differ widely in their parameters, the averaged spectrum may end up looking fractal. It is
well known that fractal-like spectra may be approximated by taking an equally weighted sum of
multiple AR(�K) processes with logarithmically spaced time scales [e.g., let �K � exp(�1/�K),
�1 � 1, �2 � 10, and �3 � 100]. Similarly, aggregation of a very large number of AR(�K) pro-
cesses, each with a parameter drawn from a suitable beta distribution, can also generate spectral
signatures that look long-range (Granger, 1980). Physical models have capitalized on this fact
to account for the ubiquity of 1/ƒ noise in natural systems (Miller et al., 1993; West & Shlesinger,
1989). These models do require physical motivation for the spacing of time scales, and the
generic superposition is decidedly not fractal (Hausdorff & Peng, 1996). For psychologically re-
alistic distributions of the autoregressive parameters � and � (e.g., skewed beta distributions
that emphasize high levels of �), averages based on four to eight ARMA spectra generate lower
false alarm rates, relative to single exemplars. This indicates that even for ensembles of moder-
ately heterogeneous ARMA(�,� ) spectra, averaging does not generate long-range structure. We
find, instead, that averages of short-range processes converge on short-range structure, whereas
averages of long-range spectra converge on long-range structure. This point is confirmed by a
general landscaping analysis that allows one to assess the overall discriminability of two com-
peting models (Navarro et al., 2004; Wagenmakers, Ratcliff, Gomez, & Iverson, 2004). We find
that the ARMA and the f BmW models become increasingly more discriminable as more repre-
sentative spectra are averaged.

Detrending Time Series
It is well recognized in the time series literature that assessments of serial correlation will be

inaccurate when the data are corrupted by secular trends (Giraitis, Kokoszka, & Leipus, 2001).
In psychological data, such unwanted trends might be identifiable with learning or fatigue over
the course of a trial sequence, and these kinds of effects can, depending on their magnitude, in-
troduce enough nonstationarity into a time series to inflate our estimates of autocorrelation and
spectral power. For these and other reasons, many analysts typically suggest that raw time series
data be detrended prior to analysis. One standard practice is to remove linear trends, using ei-
ther least-squares regression or bridge detrending (i.e., subtracting a line connecting the end
points of the series; Cannon, Percival, Caccia, Raymond, & Bassingthwaighte, 1997). In certain
contexts, there may even be informed cause to eliminate higher order polynomial trends, so as
to further increase the stationarity of the time series.
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Although detrending may have a number of desirable features in certain problem domains, it
is important to understand that, in other contexts, it may not be justified. Consider the classifi-
cation problem we are interested in here, that of distinguishing long-range processes from short-
range ARMA mimics. In this domain in particular, it matters a great deal whether low-frequency
trends in data are treated as nuisance variation or, instead, as reflections of the process of inter-
est. Anyone who has synthesized a long-range 1/ƒ� noise knows that characteristic linear and
quadratic trends are discernable in the simulated record. In fact, arbitrarily removing linear or
quadratic effects from a pure fractal signal is at odds with the scale-free property of these noises;
detrending removes power only at the lowest scales, and so, the fractal can no longer be self-
affine.

This effect is illustrated in Figure B2, where we show the expected power spectrum of a
whitened fractal (� � �1, � � 2) with its trends intact (filled points), with a linear trend removed
(solid line), and with a quadratic trend removed (dashed line). The results are clear: As the order
of trend removal increases, the low-frequency power of the fractal is increasingly attenuated.
More problematic from our viewpoint is that detrending causes real fractals to look more like
members of the ARMA family (note the flattening of power reminiscent of short-range power
spectra).

We can quantify the relative increase in confusability caused by detrending fractal time series
by using the spectral likelihood classifier. To do so, we simulate an ensemble of exemplars from
the f BmW(�1, 2) process and then submit the ensemble to maximum likelihood analysis, using
either unprocessed or detrended versions of the same underlying sequences. This analysis indi-
cates that the detrended f BmW exemplars are mistakenly classified as short range about 50% of
the time, relative to 20% when the same time series are not detrended (similar patterns of in-
creased miss rates with detrending were found across the f BmW family, although the absolute
size of the increase was reduced with higher overall accuracy). This decrement in performance
with detrending arises primarily because the most diagnostic region of the power spectrum for
distinguishing short- from long-range processes is also the region most susceptible to the effects
of trend removal (i.e., at low spectral frequency).

Now consider what happens when we detrend a short-range sequence. In comparing classifi-
cation performance for raw and detrended ARMA sequences, we find an opposite pattern, in
which detrending leads to a slight rise in accuracy. This is expected, given that a detrended
ARMA process looks increasingly less like any long-range f BmW. From a practical standpoint,

Figure B1. The effect that averaging power spectra has on clas-
sifier sensitivity in correctly categorizing long- and short-range
time series. Hit rates and correct rejection rates of the maximum
likelihood classifier are shown for discriminating averages of
fBmW(�1, 2) spectra from averages of its nearest ARMA rela-
tive (� � .95, � � �.79); n denotes the number of spectra used
in the average. Significant increases in hit rates and correct re-
jections are realized for modest values of n. These simulations are
based on ensembles of 1,000 averages for each n.
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Figure B2. Spectral consequences of detrending a long-range
time series. In the figure, the solid points represent the expected
power spectrum of the unadulterated fBmW(�1,2) process based
on averaging composite spectral estimates from 200 exemplars
(the white points represent the eight-point composite spectra
used in this article; the single gray point denotes the estimate of
power at the lowest frequency [ƒ1] available in a series of length
1,024). The solid line is the nine-point composite spectral expec-
tation for the same set of fBmW(�1, 2) exemplars with all linear
trends removed; the dashed line is the expectation under qua-
dratic trend removal.

APPENDIX B (Continued)

the asymmetry in confusability that detrending introduces, whereby detrended f BmWs look
more like ARMAs and detrended ARMAs still look like ARMAs, leads to both a marked re-
duction in discriminability and a significant increase in the classifier’s bias to assign short-range
provenance. Together, these effects indicate that detrending has the unfortunate property that it
increases the likelihood of missing true long-range structures in data.

It is clear that the decision to detrend is a far more subtle issue than is often appreciated. The
real conundrum here is that there is no principled way to distinguish trend-induced nonstation-
arity from low-frequency fluctuations in the signal itself (Diebold & Inoue, 2001; Granger &
Hatanaka, 1964). We deal with the issue of trends using the following three guidelines. First, we
adopt a composite spectral representation in which estimates of power at the lowest frequency
(ƒ1 � 1/N ) are excluded. As Figure B2 makes clear, estimates of power at ƒ1 show the greatest
effects of trend removal. By excluding these estimates from our spectral representations, we
greatly decrease the classifier’s tendency to categorize detrended fractals as ARMAs. Second,
we remove quadratic trends only when there are good reasons to do so—either because of a spe-
cific theory or through accumulated experience with similar data. A good rule of thumb, and one
that appears to be shared by other independent assessments of long-range structure, is that trend
removal should generally be limited to first-order analyses (e.g., scaled windowed variance
analyses, Cannon et al., 1997; Mandelbrot, 1985; detrended fluctuation analysis, Eke et al.,
2002; Peng et al., 1994). As an additional means of guarding against brief nonstationarity in the
early epochs of data collection, we suggest that observers receive some preliminary practice tri-
als (e.g., by including a warm-up block that is not subject to analysis). This may seem obvious,
but it is critical.

Finally, we advocate routinely reporting all analysis results for both the raw and the linearly
detrended cases (cf. the analyses in the Case Study section). In this way, it is possible to assess
to what extent our relatively uninformed decisions regarding the need to detrend effect final as-
signments of provenance.



438 THORNTON AND GILDEN

APPENDIX C
The Spectral Likelihood Classifier

Normality of Spectral Sampling Distributions
For the purposes of classification, we treat the composite spectra as eight-element vectors, one

element for each frequency. Our analysis assumes that the sampling distribution of vectors as-
sociated with a single fixed f BmW(�, �) or ARMA(�, � ) process forms a multivariate Gauss-
ian distribution, characterized by an 8-point mean vector, �, and an 8 � 8 covariance matrix, C.
Accordingly, the sampling distribution of vectors associated with a given f BmW(�, �) process
is defined by a mean vector ��,� and a covariance matrix C�,�. Similarly, the sampling distribu-
tion of each ARMA(�, � ) process has a mean vector ��,� and a covariance matrix C�,�. For the
window-averaged spectra we form (Welch, 1967; see Appendix A), the distributions of power
are, in fact, approximately Gaussian for most of the frequencies, and any departures from nor-
mality are small and arise only for estimates at the lowest frequencies. Normality of estimates
occurs in the window-averaged periodogram via the central limit theorem; power at each fre-
quency is estimated using an average over overlapping segments, each of which is �2 distributed.

We have investigated the extent to which departures from normality might affect classifica-
tion performance. In general, the performance of the spectral likelihood classifiers appears to be
quite robust to mild violations of the Gaussian assumption of the sort that arise in the use of 
window-averaged periodograms. The validity of this assumption is important because it allows
us to use simple analytic expressions for the n-dimensional Gaussian in order to estimate the like-
lihoods of spectral data.

Simulation Details
For all the work reported in this article, sequences were explicitly simulated using either time

domain expressions for the short-range ARMA(�, � ) process or frequency domain expressions
for the long-range f BmW(�, �) process. First-order ARMA processes were simulated recur-
sively using Equation 6 over a set of Gaussian deviates with zero mean and unit variance. To en-
sure the stationarity of these processes, the first 500 values simulated for each time series were
excluded from the final analysis.

The f BmW(�,�) process was simulated by adding white noise to spectrally synthesized frac-
tional Brownian motions. Simulations of the f Bm were realized in the frequency domain by cre-
ating a 1/ƒ(� /2) amplitude spectrum with random phase angles (cf. the method of Peitgen &
Saupe, 1988). The resulting Fourier representation was then inverse transformed to yield the ap-
propriate time domain expression. To ensure sampling variability across exemplars, all f Bm
spectra were synthesized using 2,048 values, and only the first 1,024 of these were used in the
f BmW composition (without this padding, the distributions of f Bm spectra have zero variance).
Although there are a number of explicit methods for creating spectral variability across simu-
lated fBm exemplars (Davies & Harte, 1987; Peitgen & Saupe, 1988), we prefer the 2,048-point
truncation method because it allows us to build and calibrate spectral classifiers that are largely
unbiased in the regime of production and choice-RT data (see Figure 7).

The Maximum Likelihood Algorithm
A schematic of the structure of the spectral maximum likelihood algorithm is shown in Fig-

ure C1. The decision algorithm begins with an input time series (N � 1,024) that is transformed
to z scores and converted into a composite spectral representation, S�K (here, the subscript K sim-
ply denotes that the time series could be the Kth exemplar of some generating process or, alter-
natively, data from the Kth hypothetical observer).

To categorize S�K as being of either ARMA or f BmW origin, the spectral likelihood classifier
computes 800 likelihoods, 1 at each of the 400 points defining the ARMA(�, � ) space and 1 at
each of the 400 points defining the fBmW(�, �) space. The expression for the likelihood of S�K
at the point [�i, �j] in the f BmW space is

(C1)

The quantities |C� i,�j
| and C�1

� i,�j
denote, respectively, the determinant and inverse of the covari-

ance matrix at the point [�i,�j] (each covariance matrix was estimated via explicit simulation of
2,000 exemplars); the quantity n in the denominator corresponds to the dimension of the com-
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Figure C1. Schematic representation of the structure of the Bayesian spectral classifier. Panel A represents the algorithm that
is used to transform raw time series data into a high-quality composite spectral estimate. The lower panels depict the two clas-
sification metrics that are used to decide whether the data vector S� was generated by a short- or a long-range process. The max-
imum likelihood classifier (panel B) computes a map of the likelihood of S� for both the fBmW and the ARMA families, assigning
provenance to the family with the maximum likelihood; the Bayesian classifier (panel C) computes an integrated posterior
probability for both the fBmW and the ARMA models and assigns provenance to whichever model generates the higher prob-
ability.

posite spectral representation (n � 8 for all analyses reported here). Equation C1 is just the mul-
tidimensional analogue of the more familiar expression for the density of a Gaussian random
variable (the term in brackets reduces to a z2). Using Equation C1, the classifier computes a sep-
arate likelihood of the spectral data S�K at every point in the fBmW parameter space. The classi-
fier then assumes that the best fractal description of the data occurs at the point in the space with
the greatest likelihood. We denote the maximum likelihood of the data in the fBmW(�,�) space
as

(C2)

In similar fashion, the classifier computes 400 likelihoods of S�K across the ARMA(φ, θ ) space
to find the best autoregressive description of the data based on the quantity

(C3)

The final decision metric is based on a comparison of Equations C2 and C3 and reduces to as-
signing provenance to whichever model has the single greatest maximum likelihood.

L L SKMAX ARMA .( ) arg max= ( )⎡⎣ ⎤⎦
φ θ

φθ
�

L L SKMAX fBmW( ) arg max .= ( )⎡⎣ ⎤⎦
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The Bayesian Algorithm
The Bayesian integrated likelihood classifier assigns provenance on the basis of whichever model

generates the greatest integrated likelihood to an input data spectrum. Specifically, for each spec-
tral vector S�K, we compute the following two quantities:

(C4)

and

(C5)

where the left-hand terms are proportional to the marginal likelihood of the data spectrum given
each model, p(�i�j) and p(�i�j) are the respective prior probabilities of specific parameter
choices (a uniform constant for the fBmW and a truncated uniform for the ARMA; see the Pa-
rameter Priors section below), the right-hand summations represent the weighted average of 
likelihood taken over all 400 parameter combinations defining each model, and G is simply a
normalizing constant that falls out in the final decision ratio. In the state of ignorance regarding
the prior probability of the two model classes themselves, we assume equality, and this allows
us to use Equations C4 and C5 as estimates of the posterior probabilities of the models, given
the spectral data. We assign provenance to each spectral vector, S�K, using a rational strategy based
on the sign of the following ratio:

(C6)

where the left-hand term stands for the log Bayes factor.

Parameter Priors
In using a Bayesian classifier to assign provenance across the entire families of fBmW and

ARMA processes, we have assumed either a uniform or a truncated uniform distribution on the
prior probability of various parameter combinations. This is surely incorrect in the context of an-
alyzing choice RT data, because previous work (Gilden, 1997, 2001; Van Orden, Holden, & Tur-
vey, 2003) has indicated that most sequences occupy a limited region of the model parameter
spaces (cf. Figures 7 and 8). However, in the interest of calibrating the classifier over the entire
fBmW and ARMA families, the uniform assumption is justified for two reasons. First, it is the
only distribution that treats each process equally. For any other prior that has a peak value in the
parameter space, classification performance will be reduced when the peak does not coincide
with the particular process that is being tested. For example, if we assume some sort of fixed two-
dimensional Gaussian or beta prior distribution that is centered on a specific point in the fBmW
and ARMA parameter spaces—say [�i,�j] and [�k,�l]—then in calibrating the classifier on other
processes whose parameters are different from these values, the likelihoods will be arbitrarily
attenuated, depending on the particulars of how fast the prior decays from its peak (e.g., if the
distribution has low variance). The second reason that we use a uniform prior during classifier
calibration is that this is the actual distribution of processes; in the context of calibration, each
and every ARMA and fBmW process is, by definition, as likely as any other.

The truncated uniform prior. The ARMA is a highly complex family, and fully half of its
predicted spectra are inconsistent with psychophysical data; they ascend with increasing fre-
quency. It is the case that the hit and false alarm rates of the Bayesian classifier are sensitive to
the ARMA parameter integration limits and so to the range of ARMA processes that we wish to
consider as viable candidates. In this work, we adopt the conservative policy of integrating only
over descending spectra. This artificially reduces the complexity of the ARMA family and makes
those ARMA processes with descending spectra more probable.

For the calibration results reported in the Bayesian Classification Based on Integrated Like-
lihood section, we enforced a uniform prior on the fBmW parameters and a truncated uniform
on the ARMA parameters. The truncated uniform was constructed to be 0 for all ARMA pro-
cesses with ascending spectra (i.e., parameter combinations for which � � | � |); the remaining
subset of processes with descending spectra have priors set to a constant value (in all cases, the
priors were normalized to form proper probability distributions).

ln( ) log ,Bayes
fBmW

ARMA
=

( )
( )

⎛

⎝
⎜

⎞

⎠
⎟e

K

K

P S

P S

�

�

P S G p L SK i j K i j
i j

� �
ARMA( ) ≅ ( ) ⎡⎣ ⎤⎦∑ φ θ φ θ

,
,

P S G p L SK i j K i j
i j

� �
fBmW( ) ≅ ( ) ⎡⎣ ⎤⎦∑ α β α β

,



PROVENANCE OF CORRELATIONS IN PSYCHOLOGICAL DATA 441

APPENDIX C (Continued)

Priors for choice RT analyses. In the analysis of actual data, we do not know the proper pri-
ors. Although the uniform assumption is correct for calibration purposes, it does not reflect the
experiential knowledge that we acquire as researchers regarding the range of parameters relevant
to actual psychophysical data. Recognizing that only a subset of the family of fBmW and ARMA
processes are consistent with the form of choice RT spectra, we are best advised to construct
prior distributions on the parameters that reflect this knowledge (Jaynes, 2003). A conservative
approach here is to explore classification performance, using a variety of priors that respect the
basic qualitative constraints imposed by our empirical experience. In this way, we can determine
the extent to which our results are robust in the face of what is surely a misspecified prior dis-
tribution.

In using the Bayesian classifier to categorize Van Orden, Holden, and Turvey’s (2003) data, we
parameterized the priors within a family of general purpose two-dimensional beta distributions.
These distributions were constrained to peak in the parameter regions previously associated with
our own choice RT data (i.e., regions where power spectra descend smoothly with frequency and
are not linear; see the dashed ovals in Figures 7 and 8). In separate analyses the beta parameters
were manipulated to create a variety of prior distributions that differed in central tendency, vari-
ability, and skew (in all cases, the priors were normalized to form proper probability distribu-
tions). So long as the prior distributions did not overly penalize parameter regions consistent
with choice RT data (i.e., modest � and high � for the fBmW, high � for the ARMA), the final
assignments were changed little from the uniform case reported in the Case Study section, indi-
cating robustness to the specific form of the priors.

(Manuscript received May 19, 2004;
revision accepted for publication January 16, 2005.)


