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Adaptive network and exemplar-similarity models were compared on their ability to predict
category learning and transfer data. An exemplar-based network (Kruschke, 1990a, 1990b, 1992)
that combines key aspects of both modeling approaches was also tested. The exemplar-based
network incorporates an exemplar-based category representation in which exemplars become
associated to categories through the same error-driven, interactive learning rules that are assumed
in standard adaptive networks. Experiment {, which partially replicated and extended the
probabilistic classification learning paradigm of Gluck and Bower (1988a), demonstrated the
importance of an error-driven learning rule. Experiment 2, which extended the classification
learning paradigm of Medin and Schaffer (1978) that discriminated between exemplar and
prototype models, demonstrated the importance of an exemplar-based category representation.
Only the exemplar-based network accounted for all the major qualitative phenomena; it also

achieved good quantitative predictions of the learning and transfer data in both experiments.

One of the major current models for explaining perform-
ance in arbitrary category learning paradigms is the context
model proposed by Medin and Schaffer (1978) and elaborated
by Estes (1986a) and Nosofsky (1984, 1986). According to
the context model, people represent categories by storing
individual exemplars in memory and make classification de-
cisions on the basis of similarity comparisons with the stored
exemplars. The context model has proved to be successful at
predicting quantitative details of classification performance
in a wide variety of experimental settings and has compared
favorably with a variety of alternative models, including pro-
totype, independent-feature, and certain logical-rule based
models (see Medin & Florian, in press, and Nosofsky, in
press-a, in press-b, for reviews).

However, some shortcomings of the context model were
recently demonstrated in series of probabilistic classification
learning experiments conducted by Gluck and Bower (1988a)
and Estes, Campbell, Hatsopoulos, and Hurwitz (1989). In
these studies, an adaptive network model was shown to pro-
vide superior predictions of classification learning and prob-
ability judgment to those of the context model.
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The purpose of our research was to follow up on the Gluck
and Bower (1988a) and Estes et al. (1989) studies and continue
this line of investigation by comparing adaptive network
models and exemplar models of classification learning.

An important new direction was to test an integrated,
exemplar-based network model, which combines key com-
ponents of both modeling approaches (Hurwitz, 1990;
Kruschke, 1990a, 1990b, 1992; for related ideas, see Estes,
1988). The Medin and Schaffer (1978) context model and the
Gluck and Bower (1988a) adaptive network model can be
contrasted on two major dimensions. The first concerns the
nature of the basic units that are stored in memory. According
to the context model, people store individual exemplars in
memory, and classification decisions are based on the simi-
larity of a probe to the stored exemplars. By contrast, in the
Gluck and Bower (1988a) adaptive network model, people
learn associations between individual features and the alter-
native categories. A second dimension of contrast concerns
the nature of the learning rule. In the Gluck and Bower
(1988a) adaptive network model, an error-driven, interactive
learning rule is assumed. By contrast, learning in the context
model is not error-driven but consists simply of the gradual
accumulation of exemplars in memory. The exemplar-based
network model combines what we believe are key advantages
of each approach, namely, an exemplar-based category rep-
resentation that incorporates an error-driven learning rule.

We organize this article by first reviewing the main experi-
mental paradigms and models tested by Gluck and Bower
(1988a) and Estes et al. (1989). After suggesting some limita-
tions of the particular versions of the context model and the
adaptive network models that were tested, we discuss various
elaborated versions of these models, including the exemplar-
based network model. These models are then compared in
two experiments that extend the original Gluck and Bower
(1988a) and Estes et al. (1989) studies. Experiment 1 dem-
onstrates the advantages of assuming an interactive, error-
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driven learning rule, whereas Experiment 2 focuses on the
advantages of an exemplar-based category representation.

Review of the Experiments

In the Gluck and Bower (1988a) and Estes et al. (1989)
experiments, subjects learned to classify stimuli varying along
four binary-valued dimensions into two categories. The cate-
gories were defined by independent probability distributions
over the set of dimension values composing the stimuli. The
four positive values on Dimensions 1 through 4 are denoted
by f}, f3, f3, and £, respectively; the four negative or alternative
values are denoted by f¥, f¥, f¥, £f. (In some paradigms, the
positive values represent the presence of particular features,
and the negative values represent their absence, whereas in
other paradigms the terms positive and negative are arbitrary.)
The probability of each of the four positive dimension values,
given the alternative categories, was as follows:

Feature Category A Category B
fi .6 2
f 4 3
f5 3 4
fa 2 6

The probability of each of the four negative feature values
was the additive complement of the positive feature probabil-
ities, for example, P(ff|A) = | — P (f{|A) = .4. Thus, for
example, the probability of the stimulus composed of dimen-
sion values f), ff, {3, and f¥, given a Category A trial, was (.6)
(1 —.4)(.3) (1 — .2) =.0864. Note that the base-rate proba-
bility of the categories was also varied. The prior probability
of Category A was .25, and of Category B was .75.

On each trial, a category was sampled in accord with the
base-rate probabilities, and a stimulus was then generated in
accord with the category-feature probabilities listed earlier.
Subjects judged whether the stimulus belonged to Category A
or B, and feedback was then provided. In both studies a series
of test trials was also used in which subjects were presented
with single features of the training patterns and were asked to
make either probability judgments or classification choices
on the basis of the presence of these single features.

A key result of the Gluck and Bower (1988a) studies, which
was by and large replicated by Estes et al. (1989), was that
subjects exhibited a tendency toward base-rate neglect when
presented with the single features on the test trials. Specifi-
cally, the experimental design ensured that the normative
probability of Category A given feature f, was equal to the
normative probability of Category B given feature f;, namely,
.50. However, subjects in both experiments estimated the
probability of Category A given f, to be substantially greater
than .50, apparently not taking full account of the differential
category base rates. As we discuss later, these results were
consistent with the predictions of the adaptive network models
but contradicted the predictions of the context model.

Estes et al. (1989) extended Gluck and Bower’s (1988a)
findings in two major ways. First, whereas Gluck and Bower
(1988a) demonstrated the base-rate neglect phenomenon by
collecting direct probability judgments of categories given
individual features, Estes et al. showed that the phenomenon
also existed when classification choice data were collected.

Second, Estes et al. (1989) used a fixed sequence of 240 item
presentations during the classification learning phase that was
common to all subjects. This experimental method allowed
Estes et al. to fit the competing models to the sequence of
trial-by-trial classification responses observed during learning.
Estes et al. found that the adaptive network models provided
superior quantitative fits to this sequence of classification
learning data compared with those of the context model.

Review of the Models

In this section we briefly review the adaptive network model
and the version of the context model that were tested in the
previous studies of Gluck and Bower (1988a) and Estes et al.
(1989).

Component-Cue Network Model

We refer to the adaptive network tested by Gluck and
Bower (1988a) as the component-cue network model. As
discussed by Gluck and Bower, the particular version of the
component-cue network that is applied varies, depending on
whether the dimension values or features are additive or
substitutive in nature (Tversky, 1977). Additive features are
those in which a particular feature is either present or absent,
whereas for substitutive features, one of two positively existing
values is present on each trial. Here we review the version of
the component-cue model that is applied when substitutive
features are used because we use stimuli with substitutive
features in our experiments.

The component-cue model is illustrated in Figure 1. Each
dimension m is coded by a pair of input nodes, which are
activated according to the values on a presented pattern x. If
the pattern has a positive value on dimension m, then the
first input node in the pair is activated with a value of one
and the second node activated with a value of zero, a,,; (x) =
1 and am> (x) = 0; whereas if the pattern has a negative value
on dimension m, then the reverse activations occur. Following
Estes et al. (1989), in cases in which there is a missing value
on dimension m, such as occurs during the test trials when
only single features are presented, both input nodes in the
pair are set at zero.

In this study we consider an augmented version of the
component-cue model that includes a bias or context-coding
node at the input level. The activation of the bias node is set
to one on all trials. As will be seen, the bias node is necessary
if the component-cue model is to adequately characterize a
certain base-rate sensitivity phenomenon that is observed in
the transfer phase of our experiments. The bias node differs
from the null node used by Estes et al. (1989), which was
assumed to be activated only on those trials in which a null
pattern (the stimulus with no features) was presented. (The
null pattern is never presented during our training phases,
thus no learning would occur on the null node.)

The activations on all input nodes are multiplied by the
connection weights currently existing in the network, which
are then summed to form outputs. The output received by
category node A is given by

OA(X) = Eam,-(x)wmj,A + bA, (1)
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Figure 1. Tllustration of Gluck and Bower’s (1988a)
component-cue model.

where w4 is the weight on the connection that links input
node a.; to category output node A, and b, is the weight from
the bias node to output node A. An analogous expression is
used to compute the output received by category node B. The
probability of a Category A response given presentation of
pattern x is given by

P(A[x) = exp[cO,(x)]/{exp[cO,(x)] + exp[cO,()]}, (2)

where ¢ is a freely estimated scaling constant (Estes et al.,
1989).

All weights in the network are initialized at zero. Learning
of weights takes place through the delta or least-mean-squares
rule (Widrow & Hoff, 1960). When Category A feedback is
presented, output node A receives a teaching signal of z, = 1,
and output node B a teaching signal of zz = —1, whereas
when Category B feedback is presented the reverse teaching
signals are provided. The error at output node A is given by

8y = [z, — O (X)), 3)

and likewise for the error at output node B. All weights in the
network are then updated by using the rule,

AW,k = B0xa(x), (4)

where 3 is a learning rate parameter. The bias-node weights
are updated by using an analogous formula, except they are
allowed a separate learning rate parameter, 8. Note that when
By = 0, this augmented model reduces to the component-cue
model tested by Gluck and Bower (1988a) and Estes et al.
(1989).!

The component-cue model has the following three free
parameters; learning rates 8 and 8, for updating the feature
weights and bias-node weights, respectively; and the scale
parameter ¢ for transforming outputs to response probabili-
ties.

Configural-Cue Model

Gluck and Bower (1988b) also proposed a configural-cue
network model, in which the input nodes code not only the

individual feature values that compose a stimulus but also all
pairs of features, triples of features, and so forth. With respect
to our Experiment | data, it turns out that the simple com-
ponent-cue model outperforms the configural-cue model (see
Appendix). By elaborating the configural-cue model with free
parameters, we can find versions that basically reduce to the
component-cue model but provide no additional explanatory
power. For simplicity, therefore, we focus initially on the
component-cue model and then treat the configural-cue
model in more detail in Experiment 2.

Context Model

According to the version of the context model tested by
Estes et al. (1989), on each trial a presented exemplar is stored
in memory with some fixed probability. The probability that
a pattern x is classified in Category A is found by summing
the similarity of x to all previously stored exemplars of Cate-
gory A and then dividing by the summed similarity of x to all
previously stored exemplars of both Categories A and B, as
follows:

P(Alx) = ¥ s(x, a)/[Z s(x, a) + ¥ s(x, b)], (5)
aeA aeA beB
where s(x, a) denotes the similarity of x to exemplar a. Note
that the learning process here is conceptualized in terms of
the gradual accumulation of exemplars in memory.
The similarity of x to exemplar a is computed by using
Medin and Schaffer’s (1978) multiplicative rule:

s(x, a) = [] s®®, (6)
where 5, (0 < 5, < 1) is a freely estimated parameter reflecting
the similarity of mismatching values on dimension m; and 4,
{x, a) 1s an indicator variable equal to one if x and a have
mismatching values on dimension m, and equal to zero
otherwise. (The 4, in Equation 6 is not to be confused with
34 of Equation 3.) In the version of the model fitted by Estes
et al., all similarities s, were set equal to a common free
parameter s.

Nosofsky (1984, 1986) noted that Medin and Schaffer’s
(1978) multiplicative rule can be interpreted in terms of a
multidimensional scaling approach to modeling similarity
(Shepard, 1958, 1987). Let x, and a,, denote the psychological
values on dimension m of pattern x and exemplar a, respec-
tively. The distance between those objects is computed by
using the (weighted) Minkowski power model formula,

1/r
d(X, a) = [Zamlxm - am'r:| ’

' Gluck and Bower (1988a) describe 2 model in which there is a
single output node that receives a teaching signal of z = +1 when
Category A feedback is provided and z = —1 when Category B
feedback is provided. The version of the model that we describe with
two output nodes, each receiving +1/—1 or —1/+1 teaching signals,
is, under the present conditions, formally identical to the single-
output node version used by Gluck and Bower (1988a).
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where a,, 1s the attention weight given to dimension m.
Common values of r in Equation 7 are r = 1, which yields
the city-block metric; and r = 2, which yields the Euclidean
metric (Garner, 1974; Shepard, 1964). This distance is con-
verted to a similarity measure by using the transformation,

s(x, a) = exp[—«d(x, a¥}], (8)

where « is a general sensitivity parameter. Common values of
p in Equation 8 are p = 1, which yields an exponential decay
function; and p = 2, which yields a Gaussian decay function
(Nosofsky, 1985; Shepard, 1958, 1987).

It is straightforward to verify that when p = r in Equations
7 and 8, an interdimensional multiplicative similarity rule of
the form used by Medin and Schaffer (1978) is yielded (e.g.,
see Nosofsky, 1986). This relation led Nosofsky (1984, 1986)
to propose the generalized context model (GCM), in which
exemplars are represented as points in a multidimensional
space, with similarities among exemplars computed by using
Equations 7 and 8. The critical idea we wish to emphasize
here is that the differential similarity parameters that enter
into the context model’s multiplicative rule can be interpreted
in terms of an attention process in which the dimensions are
differentially weighted.

Comparison of the Models

As is apparent from the preceding review, numerous differ-
ences exist between the network and exemplar models. As
stated in the introduction, one key difference involves their
learning rules. In this section we describe the difference in
learning rules in more detail, with emphasis on how it might
underlie the models’ differing abilities to account for sequen-
tial-learning and base-rate neglect phenomena.

Sequential-Learning Phenomena

In the network-model learning rule, the connection weights
are adjusted proportionally to the error produced (Equation
4). As error is gradually reduced through learning, the weights
change less and less on any given trial. By contrast, the version
of the context model tested by Estes et al. (1989) used a
learning mechanism in which the strength of an exemplar
was incremented by a constant amount every time it was
presented, regardless of the performance of the system. This
difference between error-driven and constant-increment
learning can result in different learning behavior for the two
models. For example, suppose that each model has already
learned that a particular input pattern is mapped to a partic-
ular category. When that pattern is presented again to the
error-driven network model, the connection weights change
very little because there is very little error. However, when
the pattern is presented to the constant-increment context
model, the memory strength for that pattern is incremented
by the same amount as for all previous presentations,

The learning rule used in the network model also gave it a
built-in sensitivity to recency, whereas the version of the
context model tested by Estes et al. had none. In the network
model, the weights that are operative on trial n will be

influenced more by the stimulus pattern and feedback pro-
vided on trial # — 1 than by the same pattern and feedback
provided 100 trials earlier (assuming equal errors in prediction
at the two points in the learning sequence). The reason is that
in the network model, multiple patterns activate common
nodes, so newly presented patterns can modify and undo
connection weights that were previously learned (cf. Mc-
Closkey & Cohen, 1989; Ratcliff, 1990). By contrast, in the
version of the context model tested by Estes et al., all exem-
plars have the same influence regardless of their recency—
one simply sums the similarity of a probe to all previously
presented exemplars, with equal weight given to each exem-
plar. Assuming that recency effects occur in classification
learning, this aspect of the context model is probably another
reason for its shortcomings in predicting sequential learning
data.

Finally, the version of the context model tested by Estes et
al. assumed equal similarity parameters (or attention weights)
for all stimulus dimensions, and the value of the weights was
held fixed across the entire learning sequence. Because exten-
sive previous tests of the context model suggest that differen-
tial weighting of the dimensions occurs (e.g., Medin & Schaf-
fer, 1978; Medin & Smith, 1981; Nosofsky, 1986, in press-b),
and furthermore that similarities may change as a function of
learning (e.g., Nosofsky, 1987), this assumption does not in
general appear to be tenable. Nevertheless, as will be seen,
differential attention-weighting does not appear to be critical
for explaining sequential-learning phenomena in these exper-
iments.

Base-Rate Neglect Phenomena

Consider the context model’s prediction of the probability
that, during the test trials, a subject classifies feature f; in
Category A, P(A |f)). (Note that the object composed of only
feature f; is logically distinct from the pattern f,f£#f}.) Fol-
lowing Estes et al. (1989), we assume that similarity is com-
puted only over those dimensions that have nonmissing val-
ues. Thus, the similarity of f, to an exemplar having feature
fi 1s 1.0, and the similarity of f; to an exemplar having feature
f¥ is 5. The context model predicts the following:

P(A[f)) = [na + (Na — na)sl/{{na + (Na
— na)s] + [np + (Ns — np)sl},

®

where 7, and ng are the relative frequencies of exemplars that
have feature f, and are in Categories A and B, respectively;
and N, and N3 are the base rates of Categories A and B,
respectively. [Note that n, = NAP(f; | A) and ng = NP(f, | B).]
In the Gluck and Bower (1988a) design, Ny = .25, Np =
75, na = .25(.6), and ng = .75(.2). When the similarity
parameter s in Equation 9 is zero, the context model predicts
P(A|f) = na/[na + ng)
25(.6)/[.25(.6) + .75(.2)] (10)
= .50,

which is the normative probability of Category A given f;.
This prediction was the one that Gluck and Bower (1988a)

]



EXEMPLAR AND NETWORK MODELS 215

ascribed to exemplar models and that was contradicted by
their data (because subjects’ probability judgments of Cate-
gory A given f; were substantially greater than .50).

When the similarity parameter s in Equation 9 is nonzero,
matters become even worse for the context model. In the
extreme, when s = 1, the context model predicts the following:

P(A|f)) = Na/(Na + Np) = .25/(25 + .75y = 25, (1D)

which is the base-rate probability of Category A. Values of s
intermediate between 0 and 1 lead to predictions of P(A|f;)
that are intermediate between .50 and .25, in contradiction
to the observed data.

In sum, the context model assumes that people store indi-
vidual exemplars in memory and compute summed similari-
ties of patterns to these stored exemplars. This combination
of assumptions leads the context model to predict that base
rates will be used when subjects make probability judgments
of categories when given individual features.

As explained by Gluck and Bower (1988a), the network
model is able to predict the base-rate neglect phenomenon
because of its interactive learning rule for adapting the con-
nection weights. There is a sense in which the individual cues
of the stimuli compete with one another to become associated
with the alternative categories. Cues that are relatively better
predictors become more highly associated with the category,
that is, larger connection weights develop between those cues
and the category. Because feature f; is a relatively poor pre-
dictor of the high-probability Category B, the connection
weight from f; to Category A ends up being larger than the
connection weight from f, to Category B, and the model
therefore predicts the base-rate neglect phenomenon.

A Sequence-Sensitive Version of the Context Model

Most previous successful applications of the context model
have occurred in classification transfer situations, in which
performance is tested following the completion of classifica-
tion learning. The results of Estes et al. (1989), however,
suggest the need to augment the model with respect to its
predictions of classification learning. One goal of our research
was to develop and test some elaborated versions of the
context model that might allow it to more accurately charac-
terize processes of classification learning and trial-by-tnial
changes in category representations as a function of experi-
ence.

A reasonable starting proposal is that rather than giving
equal weight to all exemplars in computing summed similar-
ities, more recently presented exemplars ought to receive
greater weight. Recency effects are ubiquitous in the memory
literature, and such effects ought to be formalized in any
model of the classification learning process. In previous tests
of the context model the role of recency was not incorporated
because the goal was to predict classification transfer data,
and the precise sequence of training exemplars was random-
ized over subjects. However, in a fixed-sequence learning
design such as the one used by Estes et al., recency effects
may be of critical importance.

The recency-sensitive model assumes that

PAIX) = 5 M s(x, a)/[ S Ms(x,a)+ 3 M s(x, b)], 12

acA aeA beB

where M, is the memory strength associated with exemplar a.
We assume that exemplar memory strength is an exponential
decay function of lag of presentation,

a

M = exp(—Tlag), (13)

where lag is the number of intervening trials between the
presentations of pattern x and exemplar a, and T is a freely
estimated time-rate decay parameter. Although not made
explicit in the notation in Equation 12, we are treating pres-
entations of the same exemplar on different trials as distinct
memory traces, with each trace having its own memory
strength. Thus, the summations are over all previous presen-
tations of each exemplar a. (For evidence that more complex
memory-weightings of each exemplar may be involved, see
Busemeyer & Myung, 1988, and Myung & Busemeyer, in
press).

A second elaboration of the context model involves an
attempt to characterize processes that occur very early in the
learning sequence. Early in the sequence, averaged classifica-
tion probabilities for each trial tend to hover around .50 and
only gradually move away from this starting point. The net-
work model predicts such behavior because the connection
weights are initialized at zero and are adjusted by small
amounts as learning progresses. The standard context model,
however, tends to predict classification probabilities early in
the sequence that are too extreme. For example, suppose that
on Trial 1 an exemplar from Category A is presented. Then
the model would predict that the item presented on Trial 2
would be classified in Category A with probability 1.0 because
it has some positive summed similarity to the exemplars of
Category A, and zero summed similarity to the exemplars of
Category B.

To address this shortcoming, we propose that there is some
background noise in subjects’ memory representations, and
only after sufficient training do the summed similarities to
stored exemplars overcome this noise. We formalize this idea
by assuming the following:

P(A]x) = [ > M.s(x, a) + B}/

aeA

{ > M.s(x, a) + Y Mus(x, b) + 28],
beB

aA

where B is a background-noise constant. Early in the learning
sequence the background noise will dominate and classifica-
tion probabilities will hover around .50, whereas later in the
learning sequence the summed similarities will dominate and
classification will be based on the experienced exemplars. The
background-noise constant will play a major role even late in
the learning sequence if similarity is low and a particular
exemplar has been presented infrequently.
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The sequence-sensitive context model (Equations 6, 13,
and 14) has the following three free parameters: the similarity
parameter (s}, the decay rate (7), and the background-noise
constant (B).

The sequence-sensitive version of the model has little to
say about the base-rate neglect phenomenon demonstrated by
Gluck and Bower (1988a) and Estes et al. (1989). We must
point out the very simple possibility that these results could
be reflecting a response bias. Inspection of the test-trials data
reported by Gluck and Bower (1988a), for example, reveals
that the observed probability judgments lie aimost uniformly
above the normative ones predicted by the exemplar model.
With the addition of a response-bias parameter, the exemplar
model could fit these data quite well. Furthermore, there are
independent grounds for expecting that a response bias might
operate during the test trials. The probability of Category A
given any of the individual features never exceeds the proba-
bility of Category B. Thus, without bias operating, subjects
would never judge A to be more likely than B during the test
trials. Because work by Parducci (1974) suggests that subjects
often shift their response criteria in an attempt to equalize
their use of alternative category labels, the possibility that
some form of response bias was operating in the Gluck and
Bower (1988a) and Estes et al. (1989) experiments should be
examined. We test this possibility by collecting a more detailed
set of test-trials data in our study.

An Exemplar-Based Network Model

A shortcoming of the sequence-sensitive context model
proposed in the previous section is that the model still lacks
any form of error-driven, interactive learning. Furthermore,
there is no mechanism for how the dimensional attention
weights are updated trial by trial. Kruschke (1990a, 1992)
recently proposed an integrated model in which key compo-
nents of the GCM are implemented within a multilayered
connectionist network (for closely related work, see Hurwitz,
1990). This integrated model overcomes the shortcomings of
the context model noted earlier and, we will argue, offers
significant advantages over the adaptive network models
tested by Gluck and Bower (1988a) and Estes et al. (1989).

Kruschke’s (1990a, 1992) model is known as ALCOVE,
which stands for attentional learning covering map. The
ALCOVE model, illustrated in Figure 2, consists of (a) a set
of input nodes that code the values on the dimensions com-
posing a given input pattern, (b) a set of hidden nodes that
code locations in the multidimensional space in which the
exemplars are embedded, and (c) a set of category output
nodes that code the degree to which the alternative categories
are activated.

Each hidden node is activated according to its similarity to
a given input pattern, in which similarity is computed as in
the GCM. For example, if a given hidden node codes location
j in the multidimensional space, then when the network is
presented with pattern x, hidden node j’s activation 1is equal
to the similarity between locations x and j in the multidimen-
sional space. In a covering map version of the model, numer-
ous hidden nodes are randomly scattered throughout the
entire multidimensional space, whereas in a pure exemplar-

One output node per
category.

Learned
association weights.

Pa

O O

7—

Exemplar-based
hidden nodes.

\
X

Learned
attention strengths.

One input node per
psychological dimension.

Figure 2. Tllustration of an exemplar-based version of Kruschke’s
(1992) ALCOVE model. (Input nodes code values on the respective
stimulus dimensions, and these values are gated by the attention
weights, a,,. Hidden nodes code locations in the multidimensional
space in which the exemplars are embedded; each hidden exemplar-
node is activated according to its similarity to the input pattern. The
pyramids show the activation profile of a hidden node in which there
is a city-block metric with exponential decay [r = p = 1 in Equation
15]. The hidden exemplar-nodes are connected to category output
nodes by the association weights, wy. Learning of the attention
weights and the association weights takes place by using the general-
ized delta rule.)

based version, which we focus on here, hidden nodes are
established at only those locations where individual exemplars
were presented during training. For clarity, we hereinafter
refer to the hidden nodes in the exemplar-based version of
ALCOVE as exemplar nodes.

As illustrated in Figure 2, the input nodes are gated by
dimensional attention weights. These attention weights enter
into the activation function that computes the similarity
between an input pattern and each exemplar node. Suppose,
for example, that pattern x = (X, X, ..., Xum) IS presented.
Then each exemplar-node j is activated by using the function,

aj(x) = CXD{—K[ E amlxm - hmlr]p/’}s (15)

where X, is the value of the input pattern on dimension m;
b 1s the value of (hidden) exemplar-node j on dimension m;
ay 18 the attention weight on all connections that link input
node m to the various exemplar nodes; « is a general sensitivity
parameter; and r and p reflect the distance metric and simi-
larity function that determine activations in the multidimen-
sional space. In this article we assume a city-block distance
metric (r = 1) and an exponential decay similarity function
(p = 1; Shepard, 1987).

The function for computing the exemplar-node activations
(Equation 15) is formally identical to the similarity rule
assumed in the generalized context model (GCM; see Equa-
tions 7 and 8). This exemplar-based version of ALCOVE,
however, departs from the GCM in two major respects. First,
instead of simply summing the similarity of a pattern to the
exemplars of the alternative categories, ALCOVE assumes
that associations are learned between the exemplar nodes and
the categories. These associations, which are allowed to be
positive or negative, are modeled by the association weights
Wik that link each exemplar node j to each category output
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node K (see Figure 2). The output to a category node is then
given by

Ox(x) = Z a(x)Wi, (16)

where the sum is taken over all exemplar nodes. The associ-
ation weights are learned by this exemplar-based network by
using the same error-driven, interactive principles that are
incorporated in the adaptive network models of Gluck and
Bower (1988a) and Estes et al. (1989).

A second key contribution of ALCOVE is that it provides
a mechanism for how the attention weights are learned.
Although the attention weights have been critical in allowing
the GCM to achieve its precise quantitative fits to classifica-
tion transfer data, no learning mechanism was proposed.
Thus, ALCOVE provides a model of attention-weight learn-
ing, whereas the GCM has none.

Predictions of classification response probabilities are gen-
erated in ALCOVE in the same manner as described previ-
ously for Gluck and Bower’s (1988a) component-cue model
(see Equation 2). Trial-by-trial learning of the association
weights and the attention weights in the model takes place by
using the generalized delta rule (Rumelhart, Hinton, & Wil-
liams, 1986). The details of the learning algorithm are reported
by Kruschke (1990a, 1992).

The version of ALCOVE described in this section has the
following four free parameters: an overall sensitivity parame-
ter («) that enters into the similarity function for computing
the exemplar-node activations (Equation 15); a scale param-
eter (c) for transforming category outputs into classification
response probabilities (Equation 2); and learning rates (8 and
Ba1r) for adjusting the association and attention weights,
respectively. In applications in our study, however, the atten-
tion-weight learning rate is set at zero to equalize the number
of free parameters used by ALCOVE and the competing
models.?

Because the exemplar-based network model has mecha-
nisms for learning the association weights, it may prove
capable of accurately fitting trial-by-trial data obtained in
fixed-sequence learning designs. Furthermore, because it in-
corporates principles of error-driven, interactive learning, it
may accurately predict the tendency toward base-rate neglect
that is observed when subjects are tested with individual
features of the training patterns. These questions are pursued
in Experiment | of our study. Unlike the component-cue
adaptive network, ALCOVE incorporates an exemplar-based
category representation. We demonstrate the advantages of
assuming such a representation in Experiment 2 of our study.

Experiment 1

The purpose of Experiment | was to test the component-
cue network model, the sequence-sensitive context model,
and the exemplar-based network model on their ability to
quantitatively predict learning and transfer performance in a
fixed-sequence, probabilistic classification paradigm. The ex-
periment involved partial replications and extensions of the
experiments reported previously by Gluck and Bower (1988a)
and Estes et al. (1989). We tested the same abstract category
structure as was tested in these previous studies; indeed, we

used the same sequence of training items and category feed-
back as did Estes et al. (1989). However, instead of using
stimuli composed of additive (present vs. absent) features, as
did Estes et al. (1989), we used stimuli composed of substi-
tutive features. One advantage of using substitutive-feature
stimuli is that it removes some potential ambiguities that arise
during the single-feature test trials. For example, as discussed
by Shanks (1990), when additive-feature stimuli are used, the
training pattern f,f¥f¥f} is simply the feature f,. During the
test trials, when the experimenter presents f; alone with no
information provided about the values of the other features,
it is possible that the subject may confuse the single feature
with the pattern f f¥f¥ff. Estes et al. (1989) attempted to
remove this source of confusion during the test trials by filling
the missing-feature locations with asterisks. Despite their ef-
forts, we believe there is still room for concern about confusing
the single-feature test trials with the single-feature training
patterns. If any such confusion existed, the tendency for
subjects to estimate P(A | f)) greater than .50 would be easily
explained, because the normative P(A | f,f¥f#f}) is substantially
greater than .50. We argue that by using substitutive features,
there is no realistic possibility of confusing the single feature
f, with the pattern f,f¥f¥f¥, because f¥, f¥, and ff are positively
existing feature values (cf. Gluck & Bower, 1988a, Experiment
3).

In addition to using substitutive-feature stimuli, we extend
the Gluck and Bower (1988a) and Estes et al. (1989) studies
by collecting a richer set of test-trials data during the transfer
phase. In these earlier studies, the researchers collected prob-
ability judgments or classification choices of the alternative
categories given single features of the training patterns. In
Experiment 1, we collect probability judgments and classifi-
cation choices of the alternative categories given all possible
single features, pairs of features, triples of features, and quad-
ruples of features (i.c., the complete patterns). In addition, we
test subjects with the null pattern. By collecting this richer
data set, we are able to conduct more detailed and rigorous
quantitative tests of the competing models than were possible
in the Gluck and Bower (1988a) and Estes et al. (1989) studies.

Method

Subjects. The subjects were 144 undergraduates from Indiana
University who participated as part of an introductory psychology
course requirement. The categorization group consisted of 84 subjects
who made classification choices during the test trials, whereas the
estimation group consisted of 60 subjects who made direct probability
estimates during the test trials.

Stimuli and apparatus. The stimuli were visually displayed charts
of four binary-valued symptoms, as follows: stuffy versus runny nose,
high versus low blood pressure, diarrhea versus constipation, and
muscle relaxation versus muscle tension. The symptoms appeared in
a vertically arranged list. Each chart was to be classified into one of
two fictional disease categories, burlosis versus midrosis. The stimulus
charts and feedback were presented on the screen of an IBM PC, and
the subjects entered their responses on the computer keyboard.

? Although attention-weight learning is a fundamental aspect of
ALCOVE, it is not critical for explaining performance in this exper-
imental paradigm.



218 R. NOSOFSKY, J. KRUSCHKE, AND S. McKINLEY

Procedure. The abstract design of the learning phase of Experi-
ment | was the same as the one used in the study of Estes et al. (1989,
Experiment 1). Subjects learned to classify a sequence of 240 patterns
into two probabilistically defined categories. The abstract structure of
the sequence was the same for all subjects. The sequence had the
property that, over the 240 trials, the base-rate probability of Category
A was .25 and of Category B was .75, and the conditional probabilities
of the individual features given each category were as described
previously. The assignment of feature names to the abstract codings
of the stimuli was randomized for each subject, as was the assignment
of disease names to Categories A and B. Also, the assignment of
dimensions | through 4 to lines | through 4 of the list was randomly
determined for each subject. Corrective feedback was provided on
every trial of the learning phase.

As in the Estes et al. study, after every 60 trials of learning, a set
of test trials was inserted. During the test trials, single features of the
training patterns were presented. Because there were four binary-
valued dimensions, there were eight such single-feature test trials. The
order of presentation of the single features was randomized for each
subject. Subjects in the categorization group classified each feature
into either Category A or B, whereas subjects in the estimation group
made direct probability estimates of the categories given each feature.
Half of the subjects in the estimation group made these probability
judgments with respect to Category A (i.e., “What is the probability
that a patient with this symptom belongs in Category A?”), and the
other half made their judgments with respect to Category B. No
feedback was presented during the test trials.

Following the training sequence, a transfer phase was conducted.
Subjects were presented, in random order, with all possible single
features, pairs of features, triples of features, and quadruples of
features, plus the null pattern (i.e., the stimulus with no features).
Patterns with mutually exclusive features (e.g., runny nose and stuffy
nose) were not presented. Subjects in the categorization group clas-
sified each configuration of features into either Category A or B,
whereas subjects in the estimation group made direct probability
estimates, half with respect to Category A and half with respect to
Category B. No feedback was presented during the transfer phase.

Results

Classification learning. The probabilities of correct re-
sponses during classification learning, averaged over ten-trial
blocks, are displayed separately for the estimation and cate-
gorization groups in Figure 3. The choppy appearance of the
learning curves arises because the same sequence was used for
all subjects, thus the blocks contain items of varying difficuity.
The close match between the learning curves of the two groups
attests to the reliability of the data.

The competing models were fitted to the learning data on
an individual, trial-by-trial basis, by minimizing the sum of
squared deviations (SSD) between predicted and observed
response probabilities. The best-fitting parameters and sum-
mary fits for the models are reported in Table 1. As can be
seen in Table | the models provide essentially equal fits to
the learning data in both groups. Thus, the advantage for the
simple adaptive network (the component-cue model) over the
context model that was reported by Estes et al. disappears
when the context model is elaborated with a memory-decay
parameter and a background-noise constant. Additional anal-
yses revealed that the background noise constant played a
critical role in allowing the context model to fit these data,
whereas the memory-decay parameter played a relatively
minor role (Nosofsky, Kruschke, & McKinley, 1991).
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Figure 3. Probabilities of correct classification responses during
learning, averaged over ten-trial blocks, in the estimation and cate-
gorization conditions. (The dashed lines denote the observed data,
and the solid lines give the predictions of the exemplar-based network
model [ALCOVE].)

The exemplar-based network model (ALCOVE) fitted the
sequence of classification learning data as well as did both the
component-cue network and the sequence-sensitive context
model (see Table 1). Thus, there is promising support for the
idea of integrating an exemplar-based category representation
with the learning mechanisms provided by adaptive networks.
Figure 3 illustrates the predicted probabilities of correct clas-
sification responses for the exemplar-based network model.
Although the model was fitted to the data on a trial-by-trial
basis, the predictions shown here are averaged over the ten-
trial blocks. As can be seen, the fits to the averaged learning
data are quite good. The component-cue model and the
sequence-sensitive context model achieved roughly the same
fits.

In summary, Estes et al. (1989) reported a uniform superi-
ority of Gluck and Bower’s (1988a) adaptive network model
over an exemplar-based model for predicting the trial-by-trial
sequence of classification learning. The finding here is that



EXEMPLAR AND NETWORK MODELS 219

Table 1

Fits of the Models to the Trial-by-Trial Learning Data in Experiment 1

Model

SSD RMSD %Var

Parameters

Estimation condition

Component-cue network 2.254
Context 2.135
Exemplar-based network (ALCOVE) 2.142

0969 669 pg=.022,8,=0,¢=2277
0943 68,6 s=.215 B=.666, T=.0203
0945 685 «k=52233=.069,c=1.158

Categorization condition

Component-cue network 1.969
Context 1.959
Exemplar-based network (ALCOVE) 1.926

0906 724 B=.023,6=0c=2.344
0903 725 s=.201,B=.632,T=.0192
0896 730 «=5.049,8=.072,c=1.176

Note. SSD = sum of squared deviations; RMSD = root mean squared deviation; % Var = percentage
of variance accounted for. ALCOVE = attentional learning covering map.

when the exemplar model is augmented to include assump-
tions about learning processes, it fares as well as the Gluck
and Bower (1988a) network model at predicting the data.
Note that an error-driven learning mechanism is not needed
to characterize these learning data because the standard con-
text model with background noise fares as well as the com-
ponent-cue and exemplar-based networks.

Classification transfer. The complete sets of classification
transfer data are reported in Table 2. We begin our discussion
of the transfer data by displaying in Figure 4 the subset of
results corresponding to single-feature tests and the null pat-
tern. (The averaged data obtained on the single-feature test
trials that occurred during the learning phase were essentially
the same as the present subset of transfer data, therefore we
simply report the transfer data.) The choice function (solid
squares) gives the probability with which each item was clas-
sified in Category A (the rare category), whereas the estimate
function (solid circles) gives the (normalized) probability es-
timate of Category A membership for each item.? To facilitate
comparisons, we also display the previous results reported by
Gluck and Bower (1988a, Experiment 3) of probability esti-
mates for each item (open circles) and the normative proba-
bilities of Category A given each item (Xs).

The major qualitative result emphasized in the Gluck and
Bower (1988a) study was subjects’ tendency to estimate that
Category A was more probable than Category B given f,. This
key result, which is predicted by the adaptive network model
but not by the context model, was replicated in our study.
The estimate of Category A given f; was not quite as large in
our study as reported by Gluck and Bower (1988a, Experi-
ment 3) and was only marginally greater than .50, #(59) =
1.48, p < .10, one-tailed test. More convincing was that the
Category A choice probability for f; was extremely large and
significantly greater than .50 according to a binomial test
(z=4.58, p< .01).

Generally, as observed previously by Gluck and Bower
(1988a) and Estes et al. {1989), the probability estimates and
choices of Category A lie above the normative probabilities.
Note that the results of the single-feature tests provide hints
that a simple response-bias explanation of this tendency to-
ward base-rate neglect is not tenable. One source of evidence
against such an explanation is that the choice probability for
f¥ lies clearly below the normative probability. Furthermore,
note that the normative probability of Category A given f} is

greater than the normative probability of Category A given fi,
whereas the probability estimates reported by Gluck and
Bower (1988a, Experiment 3), and the estimates and choice
probabilities observed in our study, go in the opposite direc-
tion of the normative ones for these two features. Simply
“lifting up” the normative curve through multiplication by a
bias factor fails to account for this reversal.

Finally, the estimates and choice probabilities of Category
A given the null pattern are both below .50. This result
provides evidence that subjects have knowledge of the differ-
ing base rates for the two categories. Furthermore, this result
poses problems for the version of the component-cue model
tested by Gluck and Bower (1988a) and Estes et al. (1989). If
one faithfully applies the model to predict choice probabilities,
then when the network is presented with the null pattern, all
dimensional input nodes receive activations of zero, thus the
category outputs are both zero. Applying the network-model
choice rule (Equation 2) then leads to the prediction that the
null pattern is classified in Category A with a probability of
.50. By augmenting the component-cue model with the bias
node, it is possible to predict the base-rate sensitivity displayed
by subjects when presented with the null pattern. Analyses
reported by Nosofsky et al. (1991) indicate that the fit of the
network model to the transfer data is substantially worse
without the bias node.

Theoretical analyses. Our comparisons of the competing
models are restricted to the transfer data obtained from the
categorization group because there is no generally agreed-on
method for using the models to predict. direct probability
estimates. The models were fitted to the transfer data by
searching for the parameters that minimized the SSD between
predicted and observed response probabilities over all 81
patterns.* Following Estes et al. (1989) in fitting the context

* The normalized estimate was computed by dividing the average
estimate for Category A by the sum of the average estimates for
Categories A and B.

* In these analyses, we allowed the parameters to vary freely rather
than constraining them to be the same as the best-fitting learning
parameters. In other analyses (reported by Nosofsky, Kruschke, &
McKinley, 1991), we fitted the models simultaneously to the learning
and transfer data with all parameters held fixed. The analyses involv-
ing simultaneous fits led to the same conclusions as those reported
here involving separate fits.
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Table 2

Normative, Estimated, and Observed and Predicted Choice
Probabilities of Category A (the Rare Category) for Each of
the 81 Transfer Patterns

R. NOSOFSKY, J. KRUSCHKE, AND S. McKINLEY

Observed  Predicted

Pattern Normative  Estimated choice choice
Null
0000 .250 .364 119 226
Single
1000 .500 558 .750 586
2000 143 269 .036 075
0100 .308 .366 465 .364
0200 222 361 262 216
0010 .200 .403 .346 214
0020 .280 372 334 274
0001 100 324 215 120
0002 .400 489 .524 441
Double
1100 571 .520 679 628
1200 .462 477 512 .500
1010 429 498 .500 .543
1020 538 488 .595 616
1001 250 478 429 .388
1002 667 .526 750 .748
2100 182 282 155 182
2200 125 .201 107 .094
2010 BN 252 .095 .079
2020 163 285 .095 101
2001 .0353 189 024 045
2002 250 314 155 181
0110 250 387 381 348
0120 341 358 .393 .402
0101 129 308 310 241
0102 471 424 524 534
0210 176 326 179 210
0220 250 .364 203 257
0201 .087 299 119 136
0202 364 .450 .393 .379
0011 077 331 143 .120
0012 333 417 441 408
0021 115 328 .262 155
0022 438 410 524 482
Trple
1110 .500 470 .560 .594
1120 .609 511 .607 .643
110t 308 .408 453 478
1102 727 517 750 739
1210 .391 .400 465 470
1220 .500 483 .548 530
1201 222 428 358 355
1202 632 531 703 645
1011 .200 .409 .286 364
1012 .600 531 .655 705
1021 .280 401 453 429
1022 700 566 726 758
2110 143 304 238 185
2120 .206 .298 226 216
2101 .069 252 .083 127
2102 308 355 310 310
2210 097 264 071 099
2220 143 286 072 121
2201 045 215 071 066
2202 222 306 119 .188
2011 .040 255 .083 .050
2012 .200 .301 .179 179
2021 061 229 119 064
2022 .280 .327 238 220
oLt 100 333 .203 238
0112 400 395 488 506
0121 147 .320 226 278

Table 2 (continued)

Observed  Predicted

Pattern Normative Estimated choice choice
0122 509 466 .500 .558
0211 .067 290 .143 139
0212 .300 .368 .369 .359
0221 100 334 155 170
0222 .400 .404 .393 416

Compiete
1111 250 405 .429 456
1112 667 547 655 .704
1121 341 419 .393 503
1122 157 592 .691 742
1211 .176 421 274 341
1212 .563 .586 560 .608
1221 250 485 .357 392
1222 667 613 667 659
2111 053 287 131 134
2112 250 328 .262 304
2121 .080 .243 .083 156
2122 341 .368 262 343
2211 034 220 .059 073
2212 176 310 202 .189
2221 .053 214 071 .087
2222 250 .329 155 222

Note. For patterns, 1 = positive feature, 2 = negative feature, and 0
= missing feature. The predicted choice probabilities are for the
elaborated exemplar-based network (ALCOVE: attentional learning
covering map).

model and ALCOVE, we computed similarity only over those
dimensions that had nonmissing values.

The least-squares parameters and summary fits for the
models are reported in Table 3. As can be seen, the sequence-
sensitive context model lags behind the (biased) component-
cue network and the exemplar-based network in its quanti-
tative fits to the transfer data. The latter models perform
about equally well, with a slight advantage to the (biased)
component-cue network.

To test for the potential role of differential dimension
salience, we also fitted elaborated versions of each model to
the transfer data. In the elaborated component-cue model,
separate learning rates were allowed for each input dimension.
In the context model and ALCOVE, separate similarity or
attention-weight parameters were allowed for each dimension.
The fits of these models are shown with those of the baseline
models in Table 3. It is not surprising that adding these free
parameters improved the fits of all the models. However, the
context model clearly still lags behind the component-cue
network and ALCOVE at predicting the transfer data.

A plausible hypothesis is that the shortcomings of the
sequence-sensitive context model result from its use of a
constant-increment learning mechanism rather than the error-
driven learning mechanism found in the network models.
This hypothesis is supported by examination of the specific
predictions of the baseline version of the sequence-sensitive
context model. First, note that the context model’s best-fitting
similarity parameter (s) was zero and the best-fitting decay
rate (T) was zero. With these parameters, the predictions of
the context model are roughly the normative probabilities of
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Figure 4. Transfer results for the single-feature and null-pattern tests. (Solid squares denote Category
A choice probabilities, and solid circles denote Category A probability estimates. Open circles denote
the Category A probability estimates reported previously by Gluck and Bower [1988a, Experiment 3],
whereas Xs denote the normative probabilities of Category A.)

the categories, given each combination of features. (The back-
ground constant serves to slightly pull all of the normative
predictions toward .50.) Thus, the model tended to underpre-
dict the Category A choice probabilities for the single-feature
tests illustrated in Figure 4 and to severely underpredict the
Category A choice probability for feature f;. An extended
version of the model with a response-bias parameter fitted the
data only slightly better than the baseline version, and worse
than the three-parameter network models (SSD = .610). Thus,

the base-rate neglect phenomenon exhibited in Experiment 1
cannot be explained by the context model solely in terms of
an overall response bias toward Category A. The results of
this model-based analysis agree with our earlier observations
regarding the reversal for features ff and fi;, wherein the
normative probability of Category A is greater given  than
fs, but the observed data go in the opposite direction.
Predicting base-rate neglect. The predictions of the ex-
emplar-based network (ALCOVE) are shown with the ob-

Table 3
Fits of the Models to the Transfer Data in Experiment 1 (Categorization Condition Only)
Model SSD RMSD %Var Parameters
Baseline
Component-cue network 488 0969 86.0 B=.009,8,=.024,c= 1954
Context 669 0909 808 s5s=0,B=3.12,T=0
Exemplar-based network (ALCOVE) .530 .0809 840 «=1.879,8=.024,c=1.713
Elaborated
Component-cue network 213 0513 939  B8,=.010, 8, = .012, 38, = .003
s = .005, 8, = .045, c = 4.875
Context 450 0746 871 5,=0,5=0,85=.611,8=
136, B=1.318, T=0
Exemplar-based network (ALCOVE) .210 .0510 940 «a,=.279, ap =.691, a3 = .165,

as =.205,8=.022, c = 3.769

Note. SSD = sum of squared deviations; RMSD = root-mean-squared deviation; % Var = percentage

of variance. ALCOVE = attentional learning covering map.
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served data in Table 2. In contrast with the context model,
ALCOVE predicts the clear tendency for subjects to classify
f; in Category A with probability greater than .50. The model
is also able to predict the reversal involving f; and f*. In
general, ALCOVE predicts the tendency for subjects’ choice
probabilities on the single-feature tests to exceed the norma-
tive ones, although it fails to predict the magnitude of the
effect. Finally, the model predicts the base-rate sensitivity
observed for the null pattern.

ALCOVE predicts apparent base-rate neglect for the single-
feature tests by virtue of its error-driven learning and similar-
ity-activated exemplar representation. Consider, for the sake
of exposition, only two features. Then there is a two-dimen-
sional stimulus space, with four stimuli: (f,, £), (f;, £¥), (f¥, f),
and (f¥, f¥). Figure 5 shows the frequency of each stimulus as
a member of the rare or common category. (The feature
frequencies illustrated in Figure 5 are chosen for the sake of
exposition in this two-dimensional example.) Note that the
marginal probability of the rare category given feature f; is
15/30, or .50, thus a Bayesian classifier would not favor either
the rare or the common category, given f; alone.

Figure 5 acts as a geometric analogue of the two-dimen-
sional stimulus space. In the exemplar-based version of AL-
COVE, one can imagine four hidden nodes centered on the
four cells of Figure 5. Consider the two neighboring cells in
the lower row, ffff and f,ff. Both are more likely, given the
common category (50 of 55 cases, and 14 of 19 cases, respec-
tively). Feature-pair f¥f} is the more frequent pair of the two
(55 cases vs. 19), therefore the hidden node centered on it will
develop a strong positive connection to the common category
node (and a negative connection to the rare category node).
When the neighboring feature-pair fff occurs, the hidden
node over f¥f¥ is partially activated, in turn activating the
common category node. As a result, relatively little error is
produced, and the connection from the f,f¥ node becomes
only weakly weighted to the common category node. On the
other hand, the node centered on the top left cell, fif;, must
develop a moderately strong positive weight to the rare cate-

f1,£2 | f1*f2 | f2
10/1 | 5/14 |15/15
(1) (19) | (30)
£1,62% | f1%,f2%| f2%
5/14 | 5/50 | 10/64
(19) (55) | (74
f1 f1*
15/15 10/64
30) (74

Figure 5. Each cell shows the frequency with which the correspond-
ing stimulus is in each category: rare frequency/common frequency
(total frequency). (The marginal frequencies of individual features
are also shown.)

gory node, forced to be even stronger by the presence of
conflicting neighbors f,£f and f*f,.

When the single feature f; is input to ALCOVE, the hidden
nodes centered over the left column, f.f, and f,f¥, are maxi-
mally activated, and the nodes centered over the right column
are only partially activated. Because the connection weights
from fif; strongly favor the rare category, and the connection
weights from fiff only weakly favor the common category,
the result is that the rare category node is more strongly
activated than the common category node, and ALCOVE
appears to exhibit base-rate neglect.

In summary, it is the dual effect of error-driven learning
and similarity-based hidden node activations that lets
ALCOVE exhibit base-rate neglect. If the learning rule were
not error driven, as in the context model, or if similar hidden
nodes were not co-activated, as could happen in ALCOVE
with extremely high sensitivity values (x in Equation 15), then
exemplars would have no influence on each other’s learning,
and base rates would not be neglected.’

Summary and Discussion

In Experiment 1 we repeated the probabilistic classification
learning paradigm used previously by Gluck and Bower
(1988a, Experiment 3), except, following Estes et al. (1989),
we used a fixed sequence of training items for all subjects and
collected choice data in addition to estimation data during
the transfer tests. We also extended these earlier studies by
testing subjects with the complete powerset of features during
transfer.

Various of the key phenomena that were observed in these
previous studies were replicated. Most notably, we obtained
evidence of a tendency toward base-rate neglect when subjects
made classification judgments for single features of multiple-
feature patterns. Because we used substitutive-feature stimuli,
we can rule out the idea that the phenomenon was the result
of subjects’ confusing the single-feature stimuli with complete
patterns that had one feature present and three features absent
{cf. Gluck & Bower, 1988a, Experiment 3; Shanks, 1990).

By augmenting the standard context model with assump-
tions about learning processes, we were able to achieve as
good a fit to the sequence of learning data as was achieved by
the adaptive network models. However, even this augmented
context model fared worse than the network models at quan-
titatively predicting the transfer data. Moreover, adding a
response-bias parameter to the context model in an attempt
to account for base-rate neglect did not allow it to characterize
the complete set of transfer data as well as did the network
models.

Nevertheless, an alternative exemplar-based model, namely
the exemplar-based version of ALCOVE, fitted both the learn-
ing and transfer data as well as did the component-cue net-

* ALCOVE predicts base-rate sensitivity for the null pattern as
follows: When the null pattern is presented, all exemplar nodes in the
network are maximally activated. Because of the higher base rate of
Category B, the association weights pointing to the B output node
tend to be larger than those pointing to the A output node, thus, the
tendency to choose Category B.
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wark model. The exemplar-based version of ALCOVE shares
with the component-cue model the assumption of an error-
driven, interactive learning rule, in which basic units stored
in memory “compete” with one another to become associated
with the alternative categories. Unlike the component-cue
model, however, in which the memory representation consists
of connections between individual feature values and the
categories, the memory representation in ALCOVE is exem-
plar-based. Patterns activate individual exemplar nodes stored
in memory according to the same similarity rule assumed in
the context model, and the model learns associations between
these exemplar nodes and the categories.

Unfortunately, the category structure that was tested in
Experiment 1 (the same one used by Gluck and Bower, 1988a,
and Estes et al., 1989) was not highly diagnostic for discrimi-
nating between the component-cue network and the exem-
plar-based network. The reason is that the categories were
defined over independent probability distributions of the val-
ues on the component dimensions. A variety of competing
models, including the context mode! and certain independent
feature-frequency models, make formally identical predic-
tions for such structures (Estes, 1986a; Nosofsky, 1990). More
diagnostic category structures can be designed by introducing
interdimensional correlations. In Experiment 2, we contrast
the competing models on their ability to predict performance
in a category learning paradigm involving a structure with
interdimensional correlations.

Experiment 2

Whereas the focus in Experiment 1 was on the nature of
the learning rule, the focus in Experiment 2 is on the nature
of the category representation. Nosofsky (in press-a) demon-
strated that the component-cue network model is in essence
a multiplicative-similarity prototype model (for related theo-
retical analyses, see Golden & Rumelhart, 1989, and Massaro
& Friedman, 1990). We define prototype here as some single
point in the multidimensional space in which the category
exemplars are embedded. Let p; = (P11, P12, - - - » Dim) be the
Category 1 prototype, where pi, denotes the psychological
value of prototype 1 on dimension m, and likewise for the
Category 2 prototype. Let S(x, p.) denote the overall similarity
between input pattern x and prototype 1. In the multiplica-
tive-similarity prototype model, the similarity of an input
pattern to the prototype is computed by using the same
multiplicative rule as is used in the context model:

S(x, p) = [T s(Xm, Pim), (17)

where $(xm, Dim) iS the similarity of x to prototype 1 on
dimension m, and likewise for S(x, p,). The component-cue
model is a special case of the following multiplicative-similar-
ity prototype model:

P(R,[x) = S(x, p)/[S(x, p1) + S(x, p2)]
= H S(xm5 plm)/[ H S(xm, plm) (18)

+ II 5(Xm, Dam)]-

(See Nosofsky, in press-a, for a proof.) Although not made
explicit in the notation, the values of the dimensional simi-

larity parameters in Equation 18 will vary from tnal to trial.
The values of these parameters are determined by the weights
in the network, which are learned trial by trial by the deita
rule.

In numerous studies, Medin and his associates (e.g., Medin,
Altom, & Murphy, 1984; Medin, Dewey, & Murphy, 1983;
Medin & Schaffer, 1978; Medin & Smith, 1981) and Nosofsky
(1987, 1988, 1991) have systematically compared the quan-
titative predictions of prototype models with those of exem-
plar models (the context model). The outcomes of these
comparisons have been overwhelmingly in favor of the con-
text model (see Nosofsky, in press-a, for a review). However,
the focus of these previous studies was on the ability of these
models to quantitatively predict performance in classification
transfer situations, following the completion of an initial
learning phase. In Experiment 2, we use one of the diagnostic
category structures tested previously by Medin but compare
the competing models on their ability to predict the details of
classification learning. We also test the models’ ability to
predict transfer performance at various stages of the learning
sequence.

The category structure that is tested is shown in Table 4.
The stimuli vary along four binary-valued dimensions. Mem-
bers of Category A tend to have (logical) value 1 on each of
their dimensions, whereas members of Category B tend to
have (logical) value 2. Note that the categories are linearly
separable, which is a necessary and sufficient condition for
accurate classification with a (weighted dimensions}) prototype
strategy. Thus, if subjects’ natural strategy is to learn category
prototypes, the strategy would succeed for this category struc-
ture.

As in Experiment I, all subjects were presented with the
same fixed sequence of training items, consisting of Stimuli 1
through 9 in Table 4. Following each of four training blocks,
a transfer phase was conducted in which all 16 stimuli shown
in Table 4 were presented. Corrective feedback was provided
during the training blocks but was withheld during each

Table 4
Category Structure Tested in Experiment 2
Dimension
Structure Pattern 1 2 3 4
Category A 1 1 1 1 2
2 1 2 1 2
3 1 2 1 1
4 1 1 2 i
S 2 [ 1 1
Category B 6 1 1 2 2
7 2 1 1 2
8 2 2 2 1
9r 2 2 2 2
Transfer test patterns 10 1 2 2 1
11 1 2 2 2
122 1 1 i i
13 2 2 1 2
14 2 1 2 1
15 2 2 1 1
16 2 1 2 2

Note. The category structure used in this experiment is from Medin
and Schaffer (1978). * Category A prototype. ® Category B prototype.
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transfer phase. The theoretical goal was to predict quantita-
tively the trial-by-trial sequence of classification learning and
the evolution of transfer performance.

Because the component-cue model is a multiplicative-sim-
ilarity prototype model, it makes the strong prediction that
the prototype of Category A [1111] (Pattern 12 in Table 4),
which is never presented during training, will be classified in
Category A with probability at least as high as any of the
other patterns, including the old exemplars. By contrast, both
the context model and the exemplar-based network model
can predict that various of the old exemplars will be classified
in Category A with higher probability than the prototype.
(Because Prototype B [2222] is an actual training exemplar,
all models tend to predict that it will be classified in Category
B with very high probability.)

A second fundamental contrast between the component-
cue model and the exemplar models regards their predictions
of performance on Training Patterns 1 and 2 of Category A.
Intuitively, Training Pattern 1 is at least as similar to the
Category A prototype as is Training Pattern 2. (The patterns
match on all dimensions except Dimension 2, and on this
dimension Pattern 1 matches the A prototype, whereas Pat-
tern 2 mismatches.) Thus, the component-cue model predicts
that during both learning and transfer, Pattern 1 will be
classified in Category A with higher probability than Pattern
2. (We verify this prediction formally in the Theoretical
Analyses section.) By contrast, both the context model and
the exemplar-based network model tend to predict an advan-
tage for Pattern 2 over Pattern 1. The reason is that Pattern
1 1s highly similar to only one other exemplar in its own
category and is highly similar to two exemplars from the
contrast category, whereas Pattern 2 is highly similar to two
other exemplars in its own category and is not highly similar
to any exemplars in the contrast category (see Medin &
Schaffer, 1978, for a more extended discussion).

Method

Subjects. The subjects were 40 undergraduates from Indiana
University who participated as part of an introductory psychology
course requirement.

Stimuli and apparatus. The stimuli were geometric forms with
lines that filled their interiors. The stimuli varied along four binary-
valued dimensions: size (large or small}, shape (triangles or squares),
type of interior lines (dotted or dashed), and density of interior lines
(high or low). Dimensions | through 4 in Table 4 corresponded to
line type, shape, size, and line density, respectively. The stimuli were
presented on the screen of an IBM PC, and subjects entered responses
by using the computer keyboard.

Procedure. The category structure shown in Table 4 was used.
The learning sequence was organized into 4 blocks of 63 trials each.
During each block, each of the nine training items was presented
seven times. Order of presentation of the items was randomized. The
same sequence was used for all subjects. On each trial, subjects judged
whether the item belonged to Category A or B, and corrective
feedback was then provided.

Following each learning block, a transfer phase was conducted.
During each of the four transfer blocks, all 16 stimuli shown in Table
4 were presented in a newly randomized order for each subject.
Subjects judged whether each item belonged to Category A or B. No
feedback was provided.

Results

The key qualitative result of interest in the learning phase
is the ordering of difficulty for Patterns 1 and 2 of Category
A. Figure 6 plots the probability of correct classifications for
these two patterns as a function of block of learning. Perform-
ance on both patterns improved as a function of learning,
with Pattern 2 being classified more accurately than Pattern
I throughout, #(39) = 5.04, p < .01. The superior learning
performance for Pattern 2 is consistent with the predictions
of the context model and the exemplar-based network model
but contradicts the predictions of the component-cue model.

The complete set of transfer data is shown in Table 5. The
table shows the probability with which each pattern was
classified in Category A during each of the four transfer blocks.
A key result of interest concerns performance on the Category
A prototype compared with the old exemplars of Category A.
The component-cue model predicts that the prototype will be
classified in Category A with probability at least as high as
any of the old exemplars, whereas the context model and the
exemplar-based network model can predict advantages for
various of the old exemplars. Figure 7 plots, for each of the
four transfer blocks, the probability with which the prototype
was classified in Category A, and the average probability with
which the old A exemplars were correctly classified in their
category. As shown in Figure 7, not only was the prototype
not the best classified pattern but it was classified in Category
A with probability less than the average of the old exemplars.
Indeed, the proportion of errors on Patterns 2 and 3 (which
are predicted by the exemplar-based models to be the best
classified, old A patterns) was significantly less than that of
the A prototype, £(39) = 2.06, p < .05. These results strongly
contradict the predictions of the component-cue model but
can be explained by the context model and the exemplar-
based network model.®

Theoretical analyses. Before reporting the results of the
theoretical analyses, we introduce an augmented version of
the context model that we tested in Experiment 2. Quantita-
tive analyses of identification confusion data conducted by
Nosofsky (1987) provided evidence that similarities among
perceptual objects may decrease as a function of learning.
This result agrees with the classic idea that perceptual differ-
entiation among objects increases with experience (e.g., Gib-
son & Gibson, 1955). We hypothesized that the context
model’s predictions of classification learning might improve
if the similarity parameters in the model were allowed to
decrease as a function of learning (see also Estes, 1986b). To
implement this idea, we assumed that the psychological dis-
tance (D) between mismatching values on each dimension

¢ We emphasize that, had a prototype enhancement effect been
observed, it would not have been inconsistent with the predictions of
the exemplar models. As discussed extenstvely in previous work (e.g.,
Hintzman, 1986; Medin & Schaffer, 1978), exemplar models can
predict advantages for either the prototype or the old exemplars,
depending on similarity relations that hold under particular experi-
mental conditions. The poor performance on the prototype in Exper-
iment 2, however, cannot be explained by the component-cue net-
work model.
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Figure 6. Probability of correct classifications for Pattern 1 (open
squares) and Pattern 2 (solid squares) as a function of block of
learning,.

grew linearly with trials of learning (¢), D = a + b - ¢, where
a and b are freely estimated parameters. Similarity was as-
sumed to be an exponential decay function of distance, s =
exp (—D). Thus, on each subsequent tnial of learning, the
similarity parameter that enters into the response rule de-
creases. We again used the background-noise constant (B) in
modeling the data, and assumed that its value decreased
exponentially with trials at the same rate that similarity de-
creased (b). The memory decay-rate parameter was held fixed
at 7= 0. Similar to the competing models, this version of the
context model has three free parameters (a, b, and B). Ver-
sions of ALCOVE can also be fitted in which similarity is
adjusted by error-driven learning (see Kruschke, 1990a), but
we did not test these models in this research.

Quantitative predictions of learning and transfer. We start
the quantitative comparisons by focusing on the transfer data
because these data provide the most diagnostic information

Table 5
Category A Response Probabilities for Each of the Patterns
During the Transfer Blocks of Experiment 2

Block

Pattern | 2 3 4  Average

53 93 97 93 .840
78 90 1.00 1.00  .920
75 95 1.00 1.00 .925
82 85 .95 1.00 .905
6 60 88 .93 a1

35 05 .18 .00 130
35 25 10 .15 213
20 07 03 00 075
25 .12 .00 .05 105

Untrained patterns 10 62 .65 .62 65 635
11 53 42 42 42 447
122 70 .82 .90 .90 .830
13 45 45 .55 45 475
14 75 .40 50 .60 .563
15 53 45 .65 .62 563
16 23 17 20 .12 180

Structure

Old A exemplars

Old B exemplars

Nelie RN e NV R

 Category A prototype.

for discriminating among the models. The models were fitted
to the data by searching for the parameters that minimized
SSD computed over all 16 patterns in each of the four transfer
blocks. The fits of the context model, the exemplar-based
network model (ALCOVE), and the component-cue model
to each transfer block are reported in Table 6. As can be seen,
the component-cue model fares extremely poorly, with a total
SSD approximately four times as great as both the context
model and the exemplar-based network model. The fits of the
context model and the exemplar-based network model are
quite good, particularly in the latter two transfer blocks.

To provide insight into the results of these quantitative
comparisons, Figure 8 plots the Category A response proba-
bilities for each of the 16 transfer patterns {averaged over the
four transfer blocks), together with the predictions of the
models. Both the context model and the exemplar-based
network model perform remarkably well. The component-
cue model, however, is far off on many of its predictions. As
discussed earlier, the model predicts that the prototype of
Category A (Pattern 12) will be classified in Category A with
higher probability than any of the old exemplars, but this
result was not observed. The component-cue model also
underpredicts correct classification for many of the old ex-
emplars (Patterns 2, 4, 6, 7, and 8). Finally, it misorders the
Category A response probabilities for Patterns | and 2 of
Category A, as we explained earlier. By contrast, the context
model and the exemplar-based network model account ac-
curately for these major phenomena.

Figure 9 provides perspective on the ability of the compet-
ing models to predict the evolution of transfer performance
over blocks. We again plot the average Category A response
probabilities for the old A exemplars and the A prototype for
each block of transfer, and also show the predictions of the
models. Both the context model and the exemplar-based
network account for these data fairly well, but the component-
cue model severely mispredicts the data. Not only are its
quantitative predictions poor but it misorders the relative
difficulty for the old exemplars and the prototype throughout
the entire course of learning.
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Figure 7. Average probability of correct classifications for the old
exemplars of Category A (solid circles) and the Category A prototype
(open circles) as a function of block of transfer.
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Table 6
Fits of the Models to the Transfer Data in Experiment 2
Block
Model 1 2 3 4 Total Parameters
Baseline
Component-cue network 325 327 428 496 1.575 8=.013,8,=.003,c= 1536
Context 115 .162 .050 .024 .350 a=1.039, b= .0105, B=5.104
Exemplar-based network 172 159 .037 .026 394 k= 6.895, 8 = .046, c = 2.255
(ALCOVE)
Configural-cue .180 177 130 .106 .593 B8 =.0039, B, = .016, ¢ = 1.627
Elaborated
Component-cue network 314 .325 424 491 1.554 8, = .014, 3, = .006, 8, = .012,
Bs = .016, B, = .006, ¢ = 1.459
Context 116 159 .051 .025 350 a, = 1.075, a; = 1.025, a, = 1.025,
as=1.012, b= 0105, B=5.119
Exemplar-based network 140 .168 .045 .026 379 a; = 1.645, a; = 1.598, a3 = 1.639,
as=2.099, 8= .046, c = 2.150
Configural-cue 147 136 .035 .024 342 B =0, 8, = .0035, 8; = .0009,
(Version 1) B4 = .0207, By, = .022, ¢ = 2.053
Configural-cue 152 140 075 .047 415 B8 =.0009, v, = 2.063, vy, = 2.612,
(Version 2) v3 = 1.919, v4 = 1.314, 8, = .0022,
c=1573
Note.  Fits of models are expressed as sums of squared deviations (SSDs). ALCOVE = attentional learning covering map.

The fits of the competing models to the trial-by-trial se-
quence of learning data are reported in Table 7. Again, the
SSD for the component-cue model far exceeds that for the
context model and the exemplar-based network. The main
failing of the component-cue model with respect to its predic-
tions of learning was its misordering of difficulty for Patterns
1 and 2. We show in Table 8 the fits of the competing models
when the parameters are constrained to be constant across
learning and transfer. The failings of the component-cue
model relative to the context model and the exemplar-based
network are even more dramatic than before.

Because the assignment of physical dimensions to the logi-
cal category structure was held fixed in Experiment 2, it is
important to test elaborated versions of the models that allow
for differential salience of the dimensions. Thus, we fitted a
version of the component-cue model in which the learning
rate on each dimension was allowed to be a free parameter.
As shown in Tables 6, 7, and 8, for both the learning and
transfer data, even this elaborated model with six free param-
eters performed far worse than the three-parameter context
model and the three-parameter exemplar-based network. We
also tested versions of the context model and the exemplar-
based network model that had additional free parameters. For
both models, differential similarity parameters (or attention
weights) were allowed for each dimension. It is surprising that
adding these free parameters led to virtually no improvement
in the fit of either model. We consider this result to be
fortuitous and expect that, in most experimental situations,
differential similarities across dimensions will be needed to
adequately model the data, as has been found in previous
work (e.g., Kruschke, 1992; Medin & Smith, 1981; Nosofsky,
1984, 1987, 1989).

Tests of Gluck and Bower’s (1988b) configural-cue
model. Although the main purpose of this research was to
compare and contrast the context model, the component-cue
model, and the exemplar-based network model, we also con-

ducted preliminary tests of Gluck and Bower’s (1988b) con-
figural-cue model. As discussed previously, this model is
similar to the component-cue model, except that instead of
having the input nodes code individual feature values, the
input nodes code all possible configurations of features. For
example, if the network were presented with a large black
square, individual feature nodes coding large, black, and
square would be activated, but so would nodes coding the
pairwise configurations large-black, large-square, and black-
square, as well as a node coding the three-way configuration
large-black square. In Experiment 2 the stimuli varied along
four binary-valued dimensions, which means there are 80
input nodes, 15 of which are activated on each stimulus
presentation.” (In addition, a bias node with a separate learn-
ing rate was included.) In all other respects, the configural-
cue network operates in the same manner as the component-
cue network.

The configural-cue network is similar to the exemplar-based
network in that both have exemplar nodes that are activated
when patterns are presented. (In the configural-cue model,
the exemplar nodes are the nodes that code the complete
configurations.) Unlike the exemplar-based network, how-
ever, the configural-cue model includes all the lower order
nodes (i.e., the single, double, and triple nodes). The confi-
gural-cue network also differs from the exemplar-based net-
work in that activation of each of the input nodes is all-or-
none, whereas in the exemplar-based network, activation of
each exemplar node is proportional to its similarity to the
input pattern. Finally, the exemplar-based network has mech-

’ There are 8 single nodes (4 single dimensions X 2 values on each
dimension), 24 double nodes (4-choose-2 pairwise dimensional com-
binations X 2? value combinations), 32 triple nodes (4-choose-3 three-
way dimensional combinations X 2* value combinations), and 16
quadruple nodes (4-choose-4 four-way dimensional combinations X
2% value combinations).
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Figure 8. Average Category A response probabilities for the sixteen transfer patterns (cross-hatched
bars), plotted with the predictions of the alternative models (open bars).
anisms for learning attention weights for individual dimen- The configural-cue model was fitted to our data in the same
sions, whereas such mechanisms are not present in the con- manner as described for the other models. The baseline ver-

figural-cue model (cf. Kruschke, 1990b, pp. 16-17, 24-26, sion of the model had the same three free parameters as the
44-47). component-cue model: the learning rate 3, the scale parameter



228 R. NOSOFSKY, J. KRUSCHKE, AND S. McKINLEY

COMPONENT—-CUE

1.0 -
— ( Q)G
@ o
S .
a 0.9+ O——0
o ® @
“x
= 084
o
O
()]
(183
2
o} 0.7 +
(6
p—
o
o
0.6 + } ¢ —
0 1 2 3

4
TRANSFER BLOCK #

EXEMPLAR~NET

T.OT
) o—§
0 /@
o B -7 —
% 0.9 + O @
o e
§( 0.8 +
e
o)
o
2
o 0.7+
3]
g
o
o
O.SL — t + 1

1 2 3
TRANSFER BLOCK

4L

CONTEXT
10-(
© o @
¢ /&
S 094 T O—
o 0—:8
o O
.. .
= o8+
~ ]
[e]
o
h]
g 0.7+
x
o
0.6 t + } : —
1 2 3 4
TRANSFER BLOCK #
CONFIGURAL—-CUE
1.0
T g ¢
3 o
c
S o9+ o8
/e
N
< o84
fe
O
[02]
Q
T 074
S
o
o
0.8 { } 1 } —

1 2 3 4
TRANSFER BLOCK #

Figure 9. Observed and predicted Category A response probabilities for the old A exemplars (solid
circles and the A prototype (open circles), plotted as a function of block of transfer. (Solid lines denote
observed probabilities, and dotted lines denote predicted probabilities.)

¢, and a learning rate B, for a bias node. The results of the
analyses are presented along with those of the other models
in Tables 6, 7, and 8, and graphical presentations of the
model’s predictions are shown along with those of the other
models in Figures 8 and 9. The baseline version of the
configural-cue model performed far better than the compo-
nent-cue model at predicting both the learning and transfer
data, and performed as well as the context model and exem-
plar-based network at predicting the learning data. However,
the baseline configural-cue model clearly performed worse
than the context model and the exemplar-based network
model at predicting the transfer data. The main problem with
the model was that, similar to the component-cue model, it
predicted performance on the Category A prototype that was
much too high. Indeed, in a similar manner to the component-

cue model, it predicted that the prototype would be classified
into Category A with higher probability than any of the old
exemplars (see Figures 8 and 9). The configural-cue model
makes this prediction because the single-feature nodes appar-
ently overtake the exemplar nodes in influencing the total
category outputs.

We also fitted a variety of alternative versions of the con-
figural-cue model to the learning and transfer data (see the
Appendix). Basically, by adding free parameters to the confi-
gural-cue model, we were able to find versions that performed
as well as, but no better than, the context model and
ALCOVE. These free parameters had the effect of placing
almost all of the learning on the higher order configuration
nodes (i.e., the triple nodes and the exemplar nodes). This
type of learning process is the one assumed in the context
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Table 7
Fits of the Models to the Learning Data in Experiment 2
Model SSD Parameters
Baseline
Component-cue network 4.417 B=.0358,=0,¢c=2.143
Context 2.961 a=1.203,b=.0081,B=.780
Exemplar-based network (ALCOVE) 3.030 k=15.193, 8=.160, c = 1.406
Configural-cue 3.065 8 =.0098, B, =0,c=1.443
Elaborated
Component-cue network 3.879 B, =.029, 8,=0, 8, = .030,

Context

Exemplar-based network (ALCOVE)

Configural-cue (Version 1)

Configural-cue (Version 2)

B =043, 8, =0, c = 2.220

2.927 a; = 995, a, = 839, a; = 1.266 a,

= 1.430, b = .0078, B = .629

2.849 ay = 1.033, a; = 32.681,

a3 = 2.582, ay = 1.398, 8 =.152,
c=1.503

2861 31=0,ﬁ2=A031,,83=0,ﬁ4=0,

By=0,c=1424

3.003 B8 =.086, v, = .308, v, = .285,

ys= 361, v =.730, B = 0,
c=1.325

Note. SSD = sum of squared deviations, ALCOVE = attentional learning covering map.

model and ALCOVE. Future research will be needed to
sharply contrast the predictions of the configural-cue model
with those of the context model and ALCOVE.

General Discussion

The main theme of this research was to compare and
contrast the component-cue model, a learning version of the
context model, and an exemplar-based network model (a
version of Kruschke’s [1992] ALCOVE model) on their ability
to predict category learning and transfer. The exemplar-based
network incorporates the same exemplar-based category rep-
resentation, similarity rules, and selective attention processes
that are assumed in the context model but combines them

with the error-driven learning rules that are assumed in adap-
tive networks such as the component-cue model.

In Experiment 1 we conducted a partial replication and
extension of the probabilistic classification learning paradigm
tested previously by Gluck and Bower (1988a) and Estes et
al. (1989). All models provided equally good accounts of the
learning data, but the component-cue model and the exem-
plar-based network outperformed the context model in pre-
dicting transfer performance. The network models were able
to characterize a form of base-rate neglect that was observed
during transfer, but the context model was not. The superi-
ority of the network models in this domain was attributed to
their use of an error-driven, interactive learning rule.

In Experiment 2 we conducted a partial replication and
extension of a category learning paradigm used extensively by

Table 8
Models Fitted Simultaneously to the Learning and Transfer Data in Experiment 2
Learning Transfer Total
Model SSD SSD SSD Parameters
Baseline

Component-cue network 4.629 2.344 6.955 B = 035, B, = .001, c = 1.828
Context 2.986 496 3481 a=1.258,b=.0078, B=1.130
Exemplar-based network 3.067 489 3.556 xk=6.018 8=.119,¢c=1.492

(ALCOVE)
Configural-cue 3.106 .804 3.902 B8 =.0092,8,=0,c=1.399

Elaborated
Component-cue network 4.093 2.366 6.442 B3, =.030, 8, = .001, 35 = 028,
,64 = 042, ﬁb = O, c=1.903
Context 2.943 466 3.409 a, = 1.051, a; = 1.105, a; = 1.069
as = 1.252, b= .0096, B= .518

Exemplar-based network 2.981 510 3.491 ar = 1.355, o = 1.873, a5 = 1.456,

(ALCOVE) as = 1.488, 8 = .127, ¢ = 1.499
Configural-cue 3.122 .580 3.691 B8: =0, B, =.0106, 85 = .0012,

(Version 1) B4 =.0248, 8, =0,c=1.614
Configural-cue 3.127 .591 3.708 B=.0017, v, = 1.645, v, = 3.362,

(Version 2)

3= 1671, ve = 1.219, By = 0,
c= 1518

Note. SSD = sum of squared deviations. ALCOVE = attentional learning covering map.
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Medin and his associates. This paradigm sharply contrasts the
predictions of exemplar models (using nonlinear similarity
rules) with those of prototype models. The paradigm was very
effective for demonstrating limitations of the component-cue
model, which is in essence a multiplicative-similarity proto-
type model. A variety of prototype-enhancement phenomena
that were predicted by the component-cue model were not
observed in Experiment 2, and the quantitative fits of the
model were extremely poor. By contrast, both the context
model and the exemplar-based network model performed
admirably by predicting accurately the average classification
probabilities for individual patterns, the trial-by-trial sequence
of learning data, and the evolution of transfer performance
over blocks.

Taken together, the results of our experiments suggest that
the most promising of the three models is the exemplar-based
network model. As demonstrated in Experiment 1, its error-
driven, interactive learning rule gives it an advantage over the
context model by allowing it to predict base-rate neglect
phenomena in probabilistic classification paradigms.® More-
over, as demonstrated in Experiment 2, its exemplar-based
category representation gives it an advantage over the com-
ponent-cue model by allowing it to predict exemplar-based
generalization processes.

There are several important directions for future research.
One such direction is to test systematically whether the precise
quantitative predictions achieved by the context model in
modeling categorization, identification, and recognition data
in previous research (see Nosofsky, in press-b, for a review)
can be matched by the exemplar-based network (ALCOVE).
Although the models are closely related, there is no guarantee
that modifying the context model by incorporating error-
driven learning will not adversely affect its previous successes.

Another important direction is to conduct careful compar-
isons between ALCOVE and Gluck and Bower’s (1988b)
configural-cue model. In our view there are three main dis-
tinctions between the models as they are currently articulated.
First, although both models incorporate exemplar nodes that
become associated to categories by an error-driven learning
rule, the configural-cue model assumes that all lower order
configurations of features also develop associations. Second,
activation of nodes in the configural-cue model is all-or-none,
whereas activation of nodes in ALCOVE is proportional to
the similarity between a node and an input pattern. Third,
ALCOVE has mechanisms for attentional learning, in which
certain dimensions are weighted more heavily than others in
calculating similarity. Selective attention to dimensions is not
part of Gluck and Bower’s (1988b) configural-cue model.
These investigators proposed that attentional phenomena
might emerge from their system but did not build in atten-
tional mechanisms.

We view the aspect of the configural-cue model in which
nodes are activated in an all-or-none, discrete fashion as a
major shortcoming of that model. Imagine that the network
has been trained on a set of l-inch and 3-inch objects and
that during transfer a 2.9-inch object is presented. In its
current form, the model has no way of incorporating infor-
mation that the 2.9-inch object is more similar to the 3-inch
objects than to the 1-inch objects, thus it would be unable to

predict appropriate generalization behavior. Such similarity-
based generalization is a fundamental assumption in
ALCOVE.,

We also believe that the lack of attentional learning is
another shortcoming of the configural-cue model. Although
attentional learning was not critical for explaining perform-
ance in our experiments, Nosofsky (1984, 1987, 1989) and
Kruschke (1990a, 1992) have demonstrated its importance in
other settings. Indeed, Gluck and Chow (1989) have discussed
the need to build some type of attention-learning mechanism
into the configural-cue model and have conducted prelimi-
nary work along these lines.

Once similarity-based activation of nodes and attentional
learning are added to the configural-cue model, it will differ
from ALCOVE mainly in its assumption that all lower order
configurations of features are part of the category representa-
tion. Whether these lower order nodes improve or detract
from the model’s predictions then becomes an interesting
question to pursue. At least in Experiment 2 of our study, we
obtained preliminary evidence that the lower order nodes
detracted from the model’s predictions, but we have no idea
how general this result might be.

8 Of course, there are other ways of modifying the context model
to incorporate error-driven learning (Medin & Edelson, 1988), but
rigorous quantitative formulations along these lines have not yet been
proposed.
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Appendix

Tests of Alternative Configural-Cue Models

In this Appendix we consider the standard configural-cue model
on its ability to predict the classification data in Experiment 1 and
also consider some alternative versions of the model than were
discussed in the text. These alternative models are tested on both the
Experiment | and Experiment 2 data.

As discussed in the text, the standard configural-cue model is the
same in all respects as the component-cue model, except that the
input nodes code all configurations of features instead of only the
single features. Similar to the component-cue model, the configural-
cue model has three free parameters, as follows: learning rates 8 and
Oy for the feature nodes and bias node, respectively; and the logistic
scale parameter ¢ for transforming the output-node activations to
response probabilities.

We also tested two elaborated versions of the standard configural-
cue model. In one version, separate learning rates were allowed for
nodes of differing dimensionality (i.c., the single, double, triple, and
exemplar nodes). A special case of this model that is of interest arises
when the learning rates on the triple nodes and the exemplar nodes
are set to zero, leaving just the single and double nodes. We refer to
this model as the doublet model. Gluck, Bower, and Hee (1989) have
reported some successes with such a model.

In a second elaborated version, separate salience parameters (ym)
were defined for each dimension m. The learning rate on node k (8\)
was then given by

B = BCTT vi™"¥),

where 8(m, k) = | if dimension m is part of node k’s configuration,
and &(m, k) = 0 otherwise. Note that this second elaborated version
allows for differential learning rates that are sensitive to both individ-

Table Al

ual dimension salience and the overall dimensionality of nodes. In
general, when the y,,s are greater than one, higher order nodes receive
higher learning rates than lower order nodes, whereas when the yms
are less than one, the reverse occurs.

Gluck (personal communication, April 1991) suggested that the
logistic transformation may be inappropriate when used with the
configural-cue model. The basic argument is that, because it codes
all configurations of features, the configural-cue model already em-
bodies a nonlinear relation between the number of feature matches
and similarity between patterns {see Gluck, 1991). Use of the logistic
response rule on top of this nonlinear similarity mapping may hurt
the model’s predictions. As an alternative, Gluck (personal commu-
nication, April 1991) suggested use of a raw-output response rule. In
this model, the teaching signals at the output nodes are set at 0 and
I (instead of —1 and 1). To predict the probability of a Category A
response, one takes the Category A output and divides by the sum of
the outputs to Category A and Category B, with occasional negative
outputs truncated to zero. We consider this assumption of truncating
negative outputs to be inelegant, but test it here in an attempt to be
as fair as possible to the configural-cue model. (Note that the standard
model with the logistic transformation does not run into this prob-
lem.) We refer to this alternative version of the configural-cue model
as the raw-output model. We also fitted elaborated versions of the
raw-output model that were analogous to our elaborated versions of
the standard model.

Experiment 1 Analyses

Table Al (Experiment 1) shows the fits of the different versions of
the configural-cue model to the learning and transfer data. The

Fits of Versions of the Configural-Cue Model to the Learning and Transfer Data

Condition of learning SSD

Transfer No. of free
Model SSD Categorization Estimation parameters
Experiment 1
Logistic output
Standard 947 1.900 2.116 3
Elaborated 1 482 1.831 2.067 6
Doublet 482 1.831 2.067 4
Elaborated 2 213 1.661 1.777 7
Raw output
Standard .604 3.506 3.623 2
Elaborated 1 .569 3478 3615 5
Doublet 569 3.502 3.661 3
Elaborated 2 391 3.054 2.998 6
Experiment 2
Logistic output
Standard 593 3.065 3
Elaborated 1 342 2.861 6
Doublet 688 2.861 4
Elaborated 2 415 3.003 7
Raw output
Standard 688 3.574 2
Elaborated | .346 3518 5
Doublet 891 3.564 3
Elaborated 2 355 3.376 6

Note. SSD = sum of squared deviations.
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number of free parameters allowed for each version of the model is
also shown. (The values of the best-fitting parameters are available
on request.)

The raw-output model performs far worse than the logistic-output
model at predicting the learning data in both the categorization and
estimation conditions and, in general, performs roughly the same as
the logistic-output model at predicting the transfer data. The raw-
output model’s difficulties with the learning data are probably due to
its truncating of negative outputs to zero. For example, early in the
learning sequence, suppose the output to Category A is very slightly
positive and the output to Category B is very slightly negative. Despite
the small magnitudes of the outputs, the raw-output model neverthe-
less would predict that the item would be classified in Category A
with a probability of one. Because of these difficulties in fitting the
learning data, and because the models perform roughly the same on
the transfer data, we focus the remainder of our discussion on the
logistic-output configural-cue model.

As shown in Table Al (Experiment 1) the standard configural-cue
network fits the transfer data far worse (sum of squared deviations
[SSD] = .947) than does the component-cue network, ALCOVE, and
even the context model (see Table 3). By allowing the learning rate
on nodes of differing dimensionality to be free parameters, the
elaborated configural-cue model is able to match the fit of the
component-cue network (SSD = .482; compare with Table 3). Indeed,
for this model, the best-fitting parameters on all higher order nodes
were essentially zero, thus the configural-cue model essentially be-
comes the component-cue network. (The same is true for the doublet
model.) Finally, the elaborated version in which each individual
dimension was allowed a separate salience parameter performs the
best (SSD = .213). The fit of this model is basically the same as for
the elaborated versions of the component-cue network and ALCOVE
(see Table 3).

In summary, the standard configural-cue model performs worse
than the component-cue network and ALCOVE at fitting the transfer

data but, by elaborating the model with free parameters, the multi-
plicative-salience version performs as well as the elaborated compo-
nent-cue network and ALCOVE. All models perform roughly the
same on the learning data, except for the raw-output configural-cue
models, which perform markedly worse than the other models.

Experiment 2 Analyses

Table Al (Experiment 2) shows the fits (total SSD) of the different
versions of the configural-cue model to the learning and transfer data.
As discussed in the text, the standard configural-cue model performs
worse (SSD = .593) than ALCOVE and the context model at pre-
dicting the transfer data (compare with Table 6). Furthermore, using
the raw-output function does not help the standard model (SSD =
.688). The doublet model, in which learning rate on the triple nodes
and exemplar nodes is set at zero, also performs quite poorly, regard-
less of whether a logistic-output or raw-output function is used (SSDs
= .688 and .891, respectively). As explained previously, the reason
for the poor performance of these versions of the model is that the
single nodes tend to predict strong prototypicality effects that were
not observed in our Experiment 2 data.

The only versions of the model that perform well on both the
learning and transfer data are the elaborated versions with a logistic-
output function, in which free parameters are allowed for describing
learning rates on different nodes. In both elaborated models, the free
parameters took on values that deleted the single nodes from the
learning process and concentrated most of the learning on the higher
order nodes, especially the exemplar nodes.
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