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The methods used in recent probabilistic learning models to generate 
mean curves of learning under random reinforcement are extended to tile 
general case in which probability of reinforcement may vary in any specified 
manner as a function of trials and to cases in which probability of reinforce- 
ment on a given trial is contingent upon responses or outcomes of preceding 
trials. 

Our purpose is to develop a general model  for mean  curves of learning 
under  r andom reinforcement  in "de t e rmina te"  situations. By  "de te rmina te"  
we signify the  following restrictions. I n  these s i tuat ions the  subject  is con- 
f ronted wi th  the  same s t imula t ing situation, e.g., a ready  signal, a t  the  
beginning of each trial. T h e  subject  responds with one of a specified set  of 
a l ternat ive  responses, (A1 , A2 , - - .  , A,),  and  following his response is 
presented with one of a specified set  of reinforcing events,  ( E l ,  E2 ,  • • • , Er), 
exactly one reinforcing event  Ei  corresponding to each possible response 
As • I n  a T-maze  experiment  (with correction procedure),  AI and  A~ correspond 
to  left and  r ight  turns;  E~ and  E2 correspond to "food obta ined on lef t"  
and  "food obta ined on r ight" ,  respectively. I n  a simple predict ion exper iment  
with h u m a n  subjects  [3, 8, 9, 10, 11, 13], the  responses (A1 , A2 , . . .  , At) 
correspond to  the  subject ' s  predictions as to  which of a set  of "reinforcing 
l ights"  (E~ , E~ , - . -  , Er) will appear  on each trial; instruct ions are  such 
t h a t  the  subject  interprets  the  appearance  of E ;  to  mean  t h a t  response A; 
was correct. I t  is fur ther  assumed tha t  one can specify in advance  of a n y  
trial the probabi l i ty  t h a t  a ny  given response will be followed by  any  given 
reinforcing event.  

F r o m  the set- theoret ical  model  of Estes  and Burke [4, 6] plus an assump-  
t ion of association of cont igui ty,  i t  is possible (see [1, 8]) to  derive the  following 
quan t i t a t ive  law describing the  change in the  probabi l i ty  of response As 
on a n y  trial: 

I f  Ei  occurs on trial  n 

(la) Pl.n+~ = (1 -- O)pi,~ -t- O. 

• This paper was prepared while the writer was in residence at the Center for Advanced 
Study in the Behavioral Sciences, Stanford, California. The research on which it is based 
was supported by a faculty research grant from the Social Science Research Council. 
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I f  E~ (k ~ j)  occurs on trial  n 

(~b) Pi,~+l = (1 -- O)pi,~. 

The  quan t i ty  p~., represents  the  probabi l i ty  of response As on trial n, and  
0 is a parameter  sat isfying the  restr ict ion 0 -<__ 0 < 1. The  pa ramete r  ~ m a y  
v a r y  in value f rom one organism to  another ,  and  for a given organism f rom 
one s i tuat ion to another ,  bu t  is assumed to remain  cons tan t  dur ing any  given 
experiment.  Funct ional  equat ions  of the  form ( la)  and  ( lb)  m a y  also be 
obta ined f rom the  s tochast ic  learning model  of Bush and Mostel ler  [2] by  
imposing suitable restrictions on the  parameters .  

N o w  if we can specify the  probabili t ies with which each of the events  
[E~] will occur on each trial of a learning experiment,  then, given the  initial 
probabi l i ty  of A~. , i t  becomes a pure ly  ma themat ica l  problem to  deduce 
the expected value of p~.n on a ny  trial and thus to  genera te  a predicted 
learning curve which can be compared  with experimental  curves. For  two 
special cases, the  ma themat ica l  problem has  a l ready been solved and  the  
desired theoret ical  curves have  been computed  and  fi t ted to  da ta  [1, 2, 8, 
13]. I n  the  first of these, which we shall call the  simple non-cont ingent  case, 
the  probabi l i ty  of Ei  , hereaf ter  designated r i  , has  the  same value on all 
trials of the  series regardless of the  subject ' s  response. I n  the  second of these, 
which we shall call the  simple cont ingent  case, the  probabi l i ty  of Ei  on a n y  
trial depends upon  which response is made  by  the  subject .  T h u s  if the  subject  
makes  response A1, the  probabi l i ty  of Ei  is ~rl; ; if the  subject  makes  response 
A2 , the probabi l i ty  of E~. is ~r2i ; and so on; bu t  the values of r~, remain  
fixed th roughou t  the  series of trials. N o w  we wish to  obta in  a more  general 
solution which will yield predic ted curves for experiments  in which the 
cons tancy  requirement  is r emoved  and the  r j  are pe rmi t t ed  to v a r y  over 
a series of trials. 

General Solution and Asymptotic  Matching Theorem 

L e t  ~ ,~  represent  the  probabi l i ty  t h a t  reinforcing event  E~ will occur 
on trial n, with ~'~i r;.~ = 1 for all n. T h e n  given t h a t  a subject ' s  probabi l i ty  
of making  response A;  on t r im n is p~,, , t he  expected,  or  mean,  vMue of 
the  probabil i ty* on trial  n + 1 m u s t  be 

*Throughout the paper, the quantity Pi should be interpreted as follows. (a) In 
equations dealing with learning on a particular trial, e.g., (la) and (lb), Pi,,+I represents 
the new probability on trial n + 1 for a subject who had the value Pi,,~ on trial n. (b) In 
equations dealing with the expected change on a trial, e.g, (2), (2a), Pi ,~+1 represents the 
expected value of Pi on trial n + 1, where the average is taken over all' possible values of 
Pl ,, and all possible outcomes of trial n; the term "all possible" is defined for any given 
sit'uation by the initial values of Pi and the possible sequences of responses and reinforcing 
events over the first n trials. (c) In solutions giving Pi as a function of n, e.g., (3), (3a), 
Pi ,  is the expected value p~. on trial n, where the average is taken over all initial values 
of'pi and all possible sequences of responses and reinforcing events over the first n - 1 
trials. 
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(2) Pi,=+l = (1 -- O)pi,~ + O',ri.,~. 

To obtain (2) average the right hand sides of ( la)  and (lb),  weighting them 
by the probabilities rq.,  and [1 - ~r;,,], respectively, tha t  Ei  will and will 
not occur. 

Some general asymptot ic  properties of the model can be clearly displayed 
if we consider, not simply p ; . . ,  the probabil i ty of a response on a particular 
trial, but  the expected proportion of response occurrences over a series of 
trials. The lat ter  quanti ty,  which we shall designate p~(n), must  of course 
satisfy the relation 

n 

1 ~ Pi , ,  • 
~ ( n )  n ool 

Substi tuting into the right side of this expression from (2), we obtain 

i~(n) 1 ~-~ i , 1  + ~ [(1 -- O)pi,, + O~i.,] 
v ~ l  

= 1 [pj,1 + (n - 1)(1 - O)pi(n - 1) + O(n - 1)#,(n - 1)] 
n 

wher~ #i (n - 1) represents the expected proportion of Ei  reinforcing events 
over the first n - 1 trials. For  large n, the right side of the last  expression 
approaches the l imit  

(1 -- O ) p ~ ( n  - -  1) + O # ~ ( n  - -  1). 

Further,  since p;(n - 1) always differs from p~(n) by a te rm of the order of 
1/n,  we can write, for sufficiently large n, the approximate  equality 

p;(n)  ~ (1 - e)pdn)  + e#~(n - 1), 

o r  

p~(n) ~--- #~(n -- 1). 

Thus we find tha t  no ma t t e r  how ~r~ varies over a series of trials, the cumulat ive 
proportions of A; and E; occurrences tend to equali ty as n becomes large. 
I t  can be expected tha t  this remarkably  general "matching law" will play a 
centrM role in empirical tests  of the theory. 

To s tudy the pre-asymptot ic  course of learning, we proceed as follows. 
Suppose tha t  a subject begins an experiment with the probabil i ty p~.~ of 
making an A~ ; then his expected probabil i ty on trial 2 will be, applying (2), 

Pj.2 = (1 -- O)pi,~ + Orei.1 ; 

on trial 3, 

Pi.a = (1 -- O)p~,2 + 01ri.~ ; 

= (1 -- O)=p,., -t- 0(1 -- O)rr,., "4- Orr,,= ; 
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and, in general, on trial n 

(3) P~,n = (1 -- O)"-'pi , ,  + 0[(1 -- 0)n-2vj,, + (1 -- 0)n-ari,2 + . . .  

= ( 1  - -  O)~-~pi ., + 0 ~ ,  ( 1  - -  0 )  . . . .  ' ~ r i , . .  
v = l  

A number of important  features tha t  will characterize the mean learning 
curve regardless of the nature of the function 7ri,. can be ascertained by 
inspection of (2) and (3). I f  the value of 0 is zero, no learning will occur; 
in the remainder of the paper this case will be excluded from all derivations. 
If the value of 0 is greater than zero then learning will occur. By rewriting 
(2) in the form 

Pi. .+l = P i . .  + e(Tri,. - Pi,~), 

we see tha t  on the average, response probabili ty on any trial changes in the 
direction of the current value of r~ As n becomes large, the term 
( 1  - O)n-'pi,1 in (3) tends to zero. After n is large enough so tha t  
( 1  - O)"-~p~,~ is negligible, p~,. is essentially a weighted mean of the ~r; 
values which obtained on preceding trials, with ~r~.~_~ having most w~ight, 
7r;,._: less weight, and so on. I f  ~ri.. is some orderly function of n, as for 
example a straight line or a growth function, then the curve for p; , .  tends 
to approach this function as n increases, but  always "follows it  with a lag." 
If rate of learning is maximal, i.e., 0 is equal to one, then Pi. .  is simply equal 
to ri.~_~ throughout  the series of trials; the more 0 deviates from one, the 
more the curve for P i , .  lags behind tha t  for ~r~,,~. 

We may gain further insight into this learning process and at  the same 
time develop functions that  will be useful in experimental applications by 
considering some special cases in which ~rj,~ can be represented by familiar 
functions with simple properties. 

Non-Con t ingen t  Case 

a. The  special  case of  7ri,~ constant  
If  r ;  is constant, then as one might expect, (2) and (3) reduce to the 

simple expressions 

( 2 a )  p , , . ÷ ,  = (1  - O)p~,~ + o,~, 

and 

(3a) Pi,,, = rri - -  Ori - -  p;,~)(1 -- 0) "-5, 

derived by  Estes and Straughan [8] from the set-theoretical model [4, 6] 
and, with slightly different notation, by  Bush and Mosteller [2] from their 
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"linear operator" model. In this case the predicted learning curve is given 
by a negatively accelerated function tending to w~. asymptotically. Experi- 
mental applications of (3a) are described in references [2, 3, 5, 6, 13]. 

b. The special case of ~:i., linear 

We shall t reat  this case in some detail since it has a number of properties 
tha t  will be especially convenient for experimental tests of the theory. The 
linear function 

~U., = ai + bin, 

a~ and b~ being constants, is not  in general bounded between zero and one 
for all n; for experimental purposes, however, one need only choose values 
of a~ and bi which, for the number of trials to be given, keep the value of 
~ within the required range. Subject to this restriction, we may substitute 
into (2) and (3) to obtain the expected response probability on any trial, 

p;.,~÷, = (1 -- O)pi,. + O(a~ + bin), 

(3b) p~,., = a, + b~n b~ ( bj ) 0)._~. 0 a; + bi 0 Pi,1 (1 - 

In  the interest of brevity we have omitted the detailed steps involved in 
summing the series in (3); the method of performing the summation in this 
case, and in others to be considered in following sections, is given in standard 
sources [12, 14]. The reader can verify that  (3b) is the correct solution to 
(2b) by substituting the former into the latter. The main properties of (3b) 
are illustrated in Fig. 1. Regardless of the initial value Pi. 1, after a sufficiently 
large number of trials the curve for p;,~ approaches a straight line, 

Pi.~ = at - ~ + bin, 

which has the same slope as the straight line representing ~rj.,. If  the initial 
value of Pi.. is greater than ~ri.1 and the slope of 7ri., is positive, Pi. ,  will 
decrease until its curve crosses the line v ; . , ,  following which it  will increase; 
if b; is small, the point of crossing will be approximately at  the minimum 
value of p~., . To prove the last statement,  we replace n by  a continuous 
variable t, then set the derivative of Pi. ~ with respect to t equal to zero and 
find that  pj., has as its minimum value 

bi bi 
P i , * . ,  = a~ -- ~ + bit.~ log (t -- O) ' 

where 
= log b , - l o g  log,, (1 - o)K 

log (I -- O) 

(2b) 

and 
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Curves describing changes in response probability when probability of reinforcement 
varies linearly with trials. The parameter 0 has been taken equal to .05. 

and  

(1 - O)b~ 
a~. - 0 - - Pi,~ 

K = ( 1 - -  0) 

Subt rac t ing  ~n-,~ ~ f rom the  m i n i m u m  value of p,. , we find t h a t  the difference 

0 l o g  (1 - -  O) - b~. 1 1 ...- 

i ° 
5 + g + ¥ + '  

0 0 2 

which is negat ive and does no t  exceed bi in absolute  value for any  value of 0. 
To  obtain  an  expression for Ri(n) ,  the  cumula t ive  n u m b e r  of A,- responses 

expected in n trials, we need only sum (3b): 

(4) R~(n) = ~_~ p~,. 

= a i - - ~ -  n +  2 

-- I a~ + b~ b~O P~,I] [1-- (1-- 

is equal to 
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Similarly, by summing (3b) over the mth block of/c trials and dividing by 
k, we obtain the expected proportion of A; responses in the block: 

bi b; 
~,~(k, m) = a, -- ~ + -~ (2m/c - k + 1) 

(5) Ia~ + bi b~0 Pi'~] 

- -  k O  [1  - -  ( 1  - -  0 ) ~ ] ( 1  - 0 )  k ' = - ' > .  

Equation (5), despite its cumbersome appearance, has essentially the same 
properties as (3b) and can readily be fitted to experimental data. For a 
block of/~ trials beginning with a value of n large enough so tha t  (1 -- 0) ~c~-~> 
is near zero, we have the approximation 

bi bl 

By substituting the observed value of pi(k,  m) from a set of experimental 
data  and solving for 0, we obtain an estimate of this parameter which, although 
not unbiased, will be adequate for many experimental purposes. 

c. The special case ~ri,~ = ai + c~b~. 

Among the possible monotone relations between rr i and n, the second 
main type of interest is that  in which rr;., approaches an asymptotc. This 
type will be represented by the function rq., = a~ + c~b~., the values of the 
constants a; , b; , and c~ being so restricted that  r~.~ is properly bounded 
between zero and one for all n. 

Equations (2) and (3) now take the forms 

(2c) p~,~+~ = (1 - -  O)p~,. -]- O(a~ + c~b~); 

and, i fbi  ~ 1 - O, 

Oc~b,~ ( Oc,.b~ 
Pi.~ = ai + b i - -  1 + 0 ai + bi - 1 + 0 

or, ifbi  = 1 -  0, 

pi.1)(1 - 0)~-1", 

Some properties of (3c) are illustrated in Fig. 2. In the upper panel, ai has 
been taken equal to .50, c,. to 1.0, and b~. to .98 so that  ~r;.n describes a 
negatively accelerated decreasing curve approaching .50 asymptotically. 
Tile effect of changing the sign of b~ from positive to negative can be seen 
by comparing the lower panel of Fig. 2, which has b~ = - .98 ,  a~ = .50, and 
ci -- 1.0, with the upper panel. Now the values of 7r; oscillate from trial to 
trial between a pair of curves, the upper envelope being identical with the 
7r;.,, curve in the upper panel and the lower envelope curve the mirror image of 

(3e) Pi,,~ = ai + ciO(n -- 1)(1 -- 0) "-1 -- (ai -- pi.1)(1 -- 0) ~-1. 



120 PSYCHOMETRIKA 

TI '  n , . 5  + . ~ ( . 98 )  

.6 

0 I 0  2 0  3 0  4~0 I "  5'0 6'0 

, . . I  

~ . 

.5 

.4,- p ~  
o~- 

. 2 -  ~ ~  
. J -  n 

O 0  IC) .............. ' ....... ~ ............. 20 30 ,'o 5'0 ~'o 
T R I A L  
FIOURB 2 

Curves describing changes in response probability when probability of reinforcement 
varies exponentially with trials. The parameter 0 has been taken equal to .05. 

it. The values of Pi,n describe a damped oscillation around an exponential 
function; for any  given set of parameter  values, the values of pi , .  will be 
al ternately above and below those of the curve 

( Ocibi ) 0)"-' 
Pi,. = ai -- ai + bi --"I-'+ O Pi,, (1 - , 

with the deviation from the smooth curve decreasing progressively in magni-  
tude toward zero as n increases. 

A formula for the expected number  of A i responses in n trials can be 
obtained and utilized for estimation of 0 as in case (c). 

d. A periodic case 

From an analysis of the general solution in section (a) above, we can 
predict  tha t  if ~ varies in accordance with a periodic function, then asymp-  
totically the curve for p~.,. will be described by  a periodic function having 
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the  same  period. A s imple  case wi th  convenient  proper t ies  for exper imenta l  
purposes  is the  following: ~rs is cons tan t  wi thin  any  one block of k trials, b u t  
a l t e rna t e s  between two values,  say a~. + b~- and  ai - bs , on successive blocks 
:so t h a t  the  value of 7r; on each trial  of the ruth block is given by  

7ri = ai + b i ( - 1 )  ~. 

T h e  va lue  of Pi a t  the  end of the  ruth block can be t aken  direct ly  f rom sect ion 
(a) above :  

Pi,~k+, = at + b i ( - 1 )  ~ - [ai + b i ( - 1 )  ~ - pi.(~-~)~+x](1 - 0) k. 

T r e a t i n g  blocks of k tr ials  as units ,  this  expression m a y  be  v i e w e d  as a 
difference equat ion  of the  same  form as (2). Subs t i tu t ing  as + h i ( - 1 )  ~, 
(1 - 0) k, and  m k  for the  corresponding t e rms  7ri.~, (1 - 0), and n of (2) and  
(3), we obta in  the  solut ion 

(3d) pj,m~+~ = as + b j ( - 1 )  ~ [1 - (1 - 0) ~] 
T (t o) ~] 

{ [1 - (1 - °)'°1 ) 0)~ 
- a , + b , [ ~ ¥ ( 1  0) ~ ] - p ' ~  ( ~ -  " 

E q u a t i o n  (3d) gives us the  expected  value  of Pi a t  the  end of the  m t h  tr ial  
block. Using (3a) of sect ion (a) again,  we have  for  the  expected  va lue  of 
p;  on the  n ' t h  tr ial  of  the  (m + 1)st block 

(3e) Pi,=k+~, = ai + bi ( - -1)  ~÷' - [ai + bi ( - -1)  ~+~ --  pi,,~k+~](1 --  O) "'-1. 

Proper t i e s  of this  solut ion are  i l lus t ra ted in Fig. 3. I t  can be seen t h a t  regard-  
less of  i ts  initial  value,  pi set t les  down to  a periodic funct ion with per iod lc. 
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Curves describing changes in response probability when probability of reinforcement 
varies periodically with trials. The parameter 0 has been taken equal to .05. 
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e. Outcome contingencies 

Many cases in which the probability of a given reinforcing event on a n y  
trial depends on the outcome (reinforcing event) of some preceding trial 
can be reduced to cases already considered. Suppose, for examp]e, tha t  we 
set the probability of E1 on any trial equal to Vll if an El occurred on the vth 
preceding trial and to v~l if an E2 occurred on the vth preceding trial. Then 
we can write the following difference equation for rl.~ , the expected prob- 
ability of E1 on trial n, 

r ~ . , . = ~ l  . . . .  ~ ' . + ( 1 - ~  . . . .  ) , , '~  

which has the general solution 

~rl., = lrl -}- Clr; -1- C2r; -{- . ' .  q- C~r: . 

The C~ are constants to be evaluated from the initial conditions of the ex- 
periment; the r~ are roots of the characteristic equation 

r ° - 1rll  q -  7r21 = 0 ;  

and vl , the asymptotic value of vl ,n,  is given by 

7r21 

7rl = 1 - ~rH q -  71"21 

If v = 1, i.e., the probability of a given outcome depends on the outcome of 
the preceding trial, the formula for vl . ,  reduces to 

~ 1 , ~  = ~1  - ( ~ ,  - ~1 , ) ( ~ 1 1  - ~ 1 )  ~ - 1 .  

Once a formula for 7ri.~ has been deduced, i t  may  be substituted into (2), 
and the machinery already developed for non-contingent cases with varying 
probabilities of reinforcement can be applied to generate predictions about  
the course of learning. In the case v = 1, the difference equation for p~ . ,  

and its solution will be given by  (2c) and (3c), respectively, with a = 7r~ 
and b = v~ - 7r2~ ; this case has been discussed in some detail by Bush and  
Mosteller [2]. 

I t  should be emphasized that  functions derived front the present model 
for outcome contingencies with v = 1 wilt generally provide satisfactory 
descriptions of empirical relationships only if the experiments are conducted 
with well-spaced trials. According to this model, the asymptotic conditional 
probabilities of At on trials following E~ and E2 occurrences, respectively, 
are given by 

and 
p 2 I  = r l  - -  OWl • 
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When trials are adequately spaced, these relations may  prove to be empirically 
confirmable, but  if intertrial  intervals are small enough so tha t  the subject 
can form a discrimination based on the differential stimulus after-effects 
of E1 and E2 trials, then the asymptot ic  conditional probabilities will certainly 
approach 7r~ and 7r~ . A model for the massed-trial  case can be derived from 
a set-theoretical model for discrimination learning [1, 7]. Although a detailed 
presentat ion of the discrimination model would be beyond the scope of this 
paper, i t  is interesting to note that. the discrimination model yields the same 
asympto t ic  value for the over all mean value of p~ as the present model, 
bu t  yields asymptot ic  means for Pll and P~I which differ from ~rl~ and ~r~ , 
respectively, only by  terms which are smaller than  0. 

Contingent Case 

Let  7r~i., represent the probabil i ty tha t  reinforcing event  E~ will occur 
on trial n of a series given tha t  the subject makes response A~ on this trial, 
and assume tha t  ~'~; ~r,. ,  = 1 for all i and n. Then to obtain the expected 
value of p,. ,+~ as a function of the value on trial n, we again average the 
r ight-hand sides of ( la)  and (lb),  weighting each of the possible outcomes 
by  its probabil i ty of occurrence, viz., 

(6) p;.~+l = (1 - O)p~.~ + 0 ~ p,,~r,..~. 
i 

a. General solution for the case of two response classes 

I f  there are only two response classes, A~ and A2 , with corresponding 
reinforcing events, E~ and E2,  defined for a given situation, then we have  for 
the expected probabil i ty of A1 on the second trial of a series, 

p l , 2  = ( 1  - -  0 ) p l , 1  + 0 [ p i , 1 7 r i i , i  + (1 - -  p i , 1 ) T r 2 i , ,  ] 

= (1 -- 0 + 0~rH.1 -- 07r21.i)p~.1 + 0~r2~., , 

on the third trial 

p~.~ = (1 - O)pi.~ -~ 0[Pl.27]'11.2 "~-- (1 - -  p~.2)~r.~l.2] 

= a 2 a l p i , 1  -~- a2071"21,1 "~- 071"21,2 , 

when we have introduced the abbreviat ion 

I n  general on the n th  trial, 

(7) 
P l , n  = P l , l O / l a 2  - - -  a n - 1  -[-  ~O~IOL2 *** O~n-1 E "/~21,u 

u ~ l  0/1C~2 " ° " Otu 

n--I n--I n--i 

v= l  v= l  u= l  V ~  
O/v , ~AL 
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Since each of the a:  is a fraction between zero and one, we can see b y  
inspection of (7) tha t  p~,. becomes independent of its initial value, p~,~ , as 
n becomes large; on later trials i t  is essentially equal to a weighted mean of 
the 7r2~ values which obtained on preceding trials, with ~r:x.~_~ having most  
weight, ~r2~.~-: less weight, and so on. [If ~r~ = 1 and ~r~ = 0, then a = 1 
and (6) reduces to 

p~.~+~ = p l , , ,  

i.e., on the average no learning occurs. In  all derivations presented, we shall 
assume this case to be excluded.] The smaller the average difference between 
r ~ . :  and ~r:~,o , the more completely is the value of p~.. determined by the  
~r, values of a few immediate ly  preceding trials. As in the non-contingent 
case, the dependence of p~., on the sequence of r+, values, might  be described 
as " t racking with a lag," but  in this instance it  will be necessary to s tudy  
some special cases in order to see just  what  is being " t racked ."  For  
convenience in exposition we shall limit ourselves to situations involving 
two response classes while describing the special cases. In  a later section we 
shall indicate how all of the results can be extended to situations involving 
more than two response classes. 

b. The special case of ~r, constant 

I f  ~r~,~ and ~r2~.~ are both constant,  then (6) and (7) reduce to the  
expressions 

2 

pi,.__ = (1 -- O)pi.,~ + 0 ~_. p~,,~'. , 
i f f i l  

(6a) 

a n d  

Pl  ,n 

(7a) 

71=21 

1 - -  Irll -I- lr2~ 

( r2~ - -  p1 ,1) (1  - - 0  -t- 01rll - -  07r2~) "-l, - Y - ~ 1 1 + ~  

previously derived by  Estes [5] from the set-theoretical model and by  Bush 
and Mosteller [2] from their "linear opera tor"  model. Experimental  appli- 
cations of (7a) are described in references [2, 5, 13]. 

c. Special cases leading to linear difference equations with constant co~[ficients 

Examinat ion of (6) reveals tha t  it will take the form of a linear difference 
equation with constant  coefficients whenever 7r11.,~ and ~r2~,~ differ only by a 
constant.  Thus, if 

7rH,~ = al:  ~ gn 
and 

~r2~,~ = a21 :t- gn , 
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where g. is any function tha t  keeps 7r.,.  properly bounded for the range of n 
under consideration, then (7) has the form 

n--1 -~u 
,,-1 On'-- a21 g.  P l , .  = p l . t a  + ~ - -  - -  

(7b) .-1 a 
n--1 g. ~-1 a2, (1 --O~n--1)"~--00~ r~-I E ~ ' ~  , 

= p l , l a  ~ 1 - -  a l l  ~ a21 ~=l 

where a = (1 - 0 -t- Oa~ - 0a21). For experimental purposes, it will usually 
be most convenient to make g. a linear function of n, say gn = bn, in which 
ease we can perform the summation in (7b) and obtain a simple closed 
formula for p~.. , viz., 

a~l --]- bn b 

P l , .  = 1 - a l l  W a2~ 0(1  - a ,1  ~ a2~) 2 

(7c) ( _a2_~ -[-_ b b ) 

1 - -  a , l  -t- a~ l  0 ( 1  - -  a l l  -]- 2,) 

• (1  - -  0 + Oa,, - -  0a2 , ) ' - ' .  

The properties of (7c) are very similar to those of (3b), the corresponding 
solution for the non-contingent case. Regardless of the initial value p~,l , 
after a sufficiently large number of trials, the curve for p~,. approaches the 
straight line 

a2~ + bn b 
Pl '~ = 1 - -  all + a2~ -- 0(--i -- aH -[- a2,)~" 

Since 0 is the only free parameter  in the latter expression, its value can be 
estimated by fitting the straight line to data  obtained from a block of trials 
relatively late in the learning series. I t  becomes apparent  now, incidentally, 
what it is tha t  the Pl, .  curve "tracks with a lag." The first term on the right- 
hand side of (7c) is simply 7r~,~/(1 - ~rH,. -b 7r~,.). Thus at  any moment,  
the slope of the pt. .  curve is such that  it would approach ~r21/(1 - ~rH -b ~r2~), 
the asymptote of the constant ~r. solution, (7a), if ~H,. and ~r2~,~ were to 
remain constant from that  moment  on. Since the ~r:~,~ do not remain constant. 
the subject 's curve tracks the "moving asymptote"  with a lag which depends 
inversely on O. As in the corresponding non-contingent case, the slope of the 
terminal linear portion of the pl,n curve can be predicted in advance of an 
experiment since it  depends only on the values of a H ,  a2~ , and b, which are 
assigned by the experimenter. 

d. Cont ingent  case wi th  more than  two response classes 

The results of the preceding section can be extended without difficulty 
to situations involving more than two response classes. If ~r~,. = a .  ~- g. 
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for all i (i = 1, 2, . - -  , r), then  for a s i tuat ion involving r response classes, 
we obta in  b y  appl icat ion of (6) the  sys tem of r difference equat ions  

p1,.+1 = (1 -- 0- t -  OaH)pl,. A- Oa21p2,r~ "a t- " ' "  "Jr- Oa.lpr,,, A- Og,~ 

(8) P2,.÷1 = Oa~p~,. + (1 -- O + Oa2~)p2,~ + . . .  + Oar2pr,. + Og~ 

p.,.+l = Oa~pl,. + Oa2rp~,. -b " '" -~- (1 -- 0 + Oar.)p.,. "b Og. , 

which m u s t  be solved s imul taneous ly  in order  to  obta in  the  desired formulas  
for p ; , . .  To  facil i tate the solution, we define an opera tor  E as follows: 

Epj , .  = Pi,.+l • 

Then  the sys tem (8) can be rewri t ten  in the  form:  

(E -- 1 -[- O -- OaH)p~,. - -  O a 2 1 P 2 , , ~  - -  . . . .  Oa~p~,~ = Og. 

- -  Oal2p~..~ "t- (E -- 1 n u 0 -- 0a22)P2,. --  . . . .  Oa.~p~,,, = Og,, 

. . , ,  . . . . . . . . . . .  , . . . . .  , ,  . . . .  . . . . . .  , °  . . . . .  , . . . . . . . . . . . . . .  

- -  O a ~ p ~ , , ,  - -  O a z ~ p ~ , , ,  - -  . . .  -4- ( E  - -  1 A- O - -  O a . ) p . , .  = O g . .  

Now the symbol  E m a y  be t rea ted  as a number  while we proceed to solve the  
sys tem of equat ions  by  s t anda rd  methods.  T he  solution will express each of 
the  p i , .  as a polynomial  in powers of E. T h e n  to  obta in  a formula  expressing 
Pi,~ as an  explicit funct ion of n, we will have  only  to  solve a linear difference 
equat ion  with cons tant  coefficients. 

I f  the  fo rm of the  funct ion g. is such t h a t  a .  -t- g. approaches  an  
a sympto t i c  value, ~r~; , as n increases, then  the  a sympto t i c  values, call t h e m  
hj , of the p~,. can be obta ined  by  solving s imul taneously  the sys tem of r 
linear equat ions  in the  r unknowns  ).i , (J = 1, 2, - - .  , r) :  

- - ( 1  - -  ~ , , ) } ,~  + ~ , X 2  + " -  + ~ , l X ,  = 0 

~r12Xl -- (1 --  lr~2)}.~ -b " ' "  -b ~r~2).~ = 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ o .  

~1~),1 -b ~,X2 + " ' "  -~ (1 - ~ . )X,  = 0 

This  sys tem of equat ions  has two propert ies  of special interest ,  First ,  the  
a sympto t i c  response probabili t ies h; are complete ly  de te rmined  b y  the 
parameters  ~r~; . Second, the  mean  asympto t i c  probabil i t ies of the reinforcing 
events  are de termined  by  the  same sys tem of equations.  I f  we let ~r; represent  
the mean  a sympto t i c  probabi l i ty  of E i ,  then  clearly 
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But  inspecting the j th  row in the equation system above, we see tha t  

~,; = Xl~li + ~,~2i + " '"  + ~r~r~i • 

Therefore, vi = ),; , i.e., asymptotically the mean probability of a response 
is equal to the mean probability of the corresponding reinforcing event. 
We have another example of the "probabili ty matching" which has frequently 
been noted in studies of probability learning with simple, non-contingent 
reinforcement [3, 5, 8, 9, 13]. In the contingent case, there are no fixed en- 
vironmental probabilities to be matched by the subject, but  the matching 
property again obtains when the stimulus-response system arrives at  a state 
of statistical equilibrium. 

In the special case when g~ = 0 for all n and a ,  = v i i  , the value of 
p~.~ will be given by  an expression of the form 

(9) pj.~ -- hi + C~x~ + C~x~ + . . .  + C~_,x~_~ , 

where the absolute value of each of the x~ is in the range 0 < x,  =< 1, and the 
C, are constants whose values depend on the initial p~ values and on the 7r,;. 
I t  may be noted that  all of the C~ need not have the same sign, and conse- 
quently the curve of p;.~ will not always be a monotone function of n. Some 
of the curve forms which arise are illustrated in Fig. 4; the curves in the upper 
and lower panels represent the same value of 0 but  different combinations 
of l r ,  , viz., 

Upper panel Lower panel 

E1 E2 Ea E1 E2 Ea 
A1 .33 .33 .33 .33 .33 .33 
A2 .50 .50 .00 .50 .50 .00 
As .17 .00 .83 .83 .00 .17 

I t  will be apparent  from inspection of Fig. 4 tha t  in this case, unlike the 
non-contingent case, not only the asymptotes of the learning curves but  also 
the relative rates at  which the curves approach their asymptotes depend 
upon the probabilities of reinforcement. 

e. Contingency with a lag 

The contingent eases discussed above cover the common types of ex- 
periments in which the probabilities of such reinforcing events as rewards 
or knowledge of results on any trial depend on the subject 's response on 
tha t  trial. Now we wish to extend the theory to include the more remote 
contingencies which arise in games or similar two-person situations. In  this 
type of situation i t  is a common strategy to make one's choice of moves, or 
plays, on a given trial depend upon the choices made by one's adversary on 
preceding trials. Regarding the first player as the experimenter and the 
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FIGURE 4 

Curves describing changes in response probability under simple, contingent reinforcement. 
Probabilities of reinforcement following responses At ane A: are the same under Schedules 
I and II, but probabilities following A3 differ. The parameter 0 has been taken equ,%l to .015. 

second as the  subject ,  we can represent  this kind of s t ra tegy  in the  present  
model  by  le t t ing the  probabi l i ty  of re inforcement  of a given response on 
trial  n depend upon  the  subject ' s  response on some preceding trial, say  
n - v. By  the  same reasoning used in the  case of (2) and  (6), we can wri te  a 
difference equat ion for mean  probabi l i ty  of response A; on any  given trial: 

(10) pi,~+l (1 O)pi,,--F O ~ (~) 
i 
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where (') ~ . , ~  represents the  probabi l i ty  of re inforcement  of A~ on trial n + 1 
given t h a t  A~ occurred on trial n - v. (10) is difficult to  handle  unless the  

(,) differ only by  cons tant  te rms [i.e., 7r.  = a .  + g . (v ) ,  funct ions  7r;j,. 
~r2~ = a21 + g . (v ) ,  etc.]; for this case, (10) reduces to a linear difference 
equat ion with cons tant  coefficients 

(10a) p;,.+~ (1 - 0)pi,,, + 0 ~ p,- . . . .  a,-~ + y. , 
i 

which can be solved explicitly. I n  order  to exhibit  some of the  mos t  readily 
tes table  implications of this model  for experiments  involving remote  con- 
tingencies, let us consider the  special case of two response classes and  (~ 7 t ' i i  , n  

independent  of n. Then  for  a given cont ingency lag v, the  (') ~r,;,. can be t rea ted  
as constants ,  and (10) reduces to  

(10b) P~,~÷I = (1 - t~)p,,. + 0[p~ . . . .  ~ + (1 - p, ..... )v~,] 

= (1 - O)p,,,~ + 0(~'~, - v2 , )p ,  . . . .  + 0v2~.  

Now [excluding, as before, the  case (~1~ = 1 and ~r21 = 0) for which 
p~.~ = p~,~] we can obta in  the a sympto t i c  probabi l iW ~ of response A~ by  
set t ing p~.~÷~ = p~,~ = p~ . . . .  = p~,~ in (10b) and solving, viz., 

p l , ~  = 
1 - ~ .  + ~:1 

We obtain  the interest ing predict ion t h a t  a sympto t i c  probabi l i ty  is independ-  
ent  of the  cont ingency lag v. The  complete  solution of (10b) is (cf. [12] for 
the  detailed method  of der ivat ion and for the t r e a tmen t  of cases in which the  
characterist ic  roots are no t  all distinct,) 

n n n ~ ' 2 l  
(lOc) p~,,~ = C~x, + C2x~ + " "  "4" Co+ix.+, 4- 1 - -  ~rH + ~r21 ' 

where the  C~ are constants  which can be eva lua ted  f rom the  initial condit ions 
of the  exper iment  and  the  x~ are the  roots  of  the  characterist ic  equat ion 

v + ]  
x - ( 1  - e ) x '  - 0 ( ~ H  - ~ )  = o .  

Excep t  for the degenerate  case (rH = 1 and r2~ = 0), the  characterist ic 
roots  will have  absolute values in the  range 0 < x < 1, and therefore x ~ 
will t end  to zero as n increases. I f  the  lag v is zero, then  the characterist ic 
equat ion is s imply 

x - ( 1  - 0 )  - 0 ( ~ ,  - ~ 1 )  -= o 

which has the single roo t  

x = 1 - -  0 + 0 ~ 1 1  - -  ~7t'21 , 

and (10c) reduces to (Ta) as it should. 
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I f  the lag v is 1, i.e., probabil i ty of reinforcement on a given trial depends 
on the response of the immediately preceding trial, the characteristic equa- 
tion is 

x 2 - -  ( 1  - -  # ) x  - O(rx ,  - -  v=~) = O, 

which has the two roots 

1 - O -}- ~ / ( f - -  O) 2 - b  4e(Tr,  t - -  ~r~) 
Xl = 2 

and 

1 - -  0 - -  % / i l  - -  0) 2 q -  40 (7r l l  - -  ~r2,) 
x2 = 2 

The  properties of the solution will depend on the relative magnitudes of  
~rll and ~r2~ as follows: 

1. I f  ~rn = ~r~ , then xa and x~ are equal to 1 - 0 and 0, 
respectively, and (10c) reduces to the (3a) of the simple non- 
contingent case. 

2. I f  ~rn > ~r2~, then x~ and x~ are real numbers,  positive 
and negative, respectively, with absolute values between 0 and 
1. Comparing the larger root, x~ , with the characteristic root 
for the case of lag 0, we find tha t  the difference between the 
former and the lat ter  is always non-negative when ~rn > ~r21 ; 
i.e., 

1 - 0 + v ~ ( 1 -  0) ~ + 4 0 ( ~  - ~ )  
2 

- ( 1 -  0 + 0 ~ H -  0 ~ 0 - > _ o ,  

and the equality holds only in the degenerate cases (0 = 0; 
~rn = 1 and 7r~ = 0) for which (10c) is inapplicable. Thus it  
can be predicted tha t  when vn  > ~-2~ , the mean learning curve 
will approach its a sympto te  more slowly for the case of lag 1 
than  for the case of lag 0. 

3. I f  7r~, < ~r~, , then neither x, nor x2 is negative. Both 
xx and x2 are real numbers  in the interval  0 < x < (1 - 0) if the 
quant i ty  

[(1 - -  0) ~ + 4 0 ( ~ .  - -  ~ , ) ]  

is positive; otherwise they  are complex numbers  with moduli 
in the interval 0 < I x ! < 1. 

In  general the est imation of parameters  from data  will be difficult when 
there is a contingency lag. Tests of this aspect  of the theory can be achieved 
most  conveniently by  obtaining estimates of 0 from data  obtained under 
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~onditions of simple non-contingent or contingent reinforcement and then 
computing predicted relationships for experiments run under similar con- 
ditions except for the introduction of contingency lags. Predictions about 
asymptotic probabilities are, of course, independent of 0 and thus can be 
made in advance of any experiment. 

Interpretation of the Model 

The theory of reinforcement developed here might be characterized as 
descriptive, rather than explanatory. The concept of reinforcing event 
represents an abstraction from a considerable body of experimental data on 
conditioning and simple motor  and verbal learning. In a number of s tandard 
experimental situations used to study these elementary forms of learning, 
it is possible to identify experimentally defined events or operations whose 
effects upon response probability appear to satisfy the quanti tat ive laws 
expressed by  (la) and (lb).  The first task of our quanti tat ive theory is 
simply to describe how learning should proceed under various experimental 
arrangements when these particular experimental operations are assigned 
the rote of reinforcing events. A second task, which becomes important  once 
the theory has survived preliminary tests, is to facilitate the identification 
of reinforcing operations in new empirical situations. We can test hypotheses 
concerning a class of events termed reinforcers only if we can state detailed 
testable consequences of class membership. To the extent tha t  the model 
elaborated here acquires standing as a descriptive theory, it  will serve also 
to specify the quanti tat ive properties which define membership in the class 
of reinforcers. Although a quantitat ive theory of this kind does not  con- 
tr ibute immediately to an intensive definition, or interpretive account, of 
reinforcement, i t  does provide an additional research tool which may con- 
tr ibute to the construction and testing of explanatory theories. 
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