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I. INTRODUCTION

1954, Estes and Straughan published a paper on binary prediction that
oved to be the forerunner of a stream of theoretical and experimental
ticles dealing with such behavior. The task they employed was not new;; it
d been developed 15 years earlier by Humphreys (1939) as an analog to
assical conditioning. However, not until publication of the Estes and
raughan (1954) paper was the binary prediction task the focus of major
Its by investigators of learning. The impact of this article undoubtedly
Ited from the fact that it was one of the first published tests of Estes’
stical learning theory (SLT) which had appeared a few years earlier
es, 1950). ‘“Toward a statistical theory of learning’’ (Estes, 1950) had
forth the promise of a learning theory capable of precise, quantitative
tion, something beyond the curve fitting which had typified previous
hematical theories. The Estes and Straughan paper began to realize that
mise, not only providing support for the theory, but also presenting a
le paradigm in which it could be tested. Thus, it signaled an era in
h both proponents and opponents of SLT would derive and test its
€quences in a variety of prediction tasks.
this early research on ‘‘probability learning,”’ random event se-
ICes were typically employed, and marginal event probability was a
or independent variable. In more recent experiments, structured se-
Ces have been employed and learning as a function of structure has
1 of major interest. This later work was originally motivated in large
Yy a desire to test alternatives to simple conditioning models of choice

vior; it has been maintained, however, by an interest in sequential
171
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information processing. In contrast to earlier researls:(lil'tm ?rot;aet;l;z
: | 5
i i i ly concerned with the validity o !
learning, which was primari ' L
i i hoice behavior was a conven g
theory of learning for which ¢ . N i
dies are focused on such issues as _ nd
ground, current stu : On S e it
i tial information in memory a
representation of sequen ; ' b i
i ion i hoice behavior. In this chapter, e tw
such information influences ¢ ( _ _ pe e T
ntial choice behavior are reviewed. .
phases of work on seque 5 4y 17
i e a sense of the mayj
exhaustive but attempts to provi . ‘ ic
gg:/elopments the basic issues, and the relevant findings in probability

learning and sequence learning.

Il. PROBABILITY LEARNING

The basic paradigm employed in studying probabili‘ty‘ l'earning is 1qm}:e
simple. Upon presentation of the ready signal that 1n1t1'ates aztrla, t (;
subject is required to predict which of several events (E; ;i =1, d t.‘ . ,E
will occur next; prediction of E; is de§ignated as A; . The predic 102tss
usually followed by feedback, presentation of one of the alterna'tlve eve t
In the simplest case, that of noncontingent evgnts, E; occurs w1thdcor\tztnatrsl
ili i is independent of previous responses and € :
probability, m; , and is in vio R
i f predicting the fall of a .
hus, the task is analogous to that o : ‘
r(l;utcome of a spin of a roulette wheel. TyplcEally, an experlmelntgl ;essesLon
consists of several hundred trials, spaced at intervals of tic.)utgh yre—é i ;:m
i d that event prediction
Estes and his co-workers have assumed t ; ;
underlying representation of event probability Whlch de:l/ello%s b}ef IS:::Sd (;_
i itioni Several alternative models hav
a simple conditioning process. . nd
rived within this conditioning framewqu. T}vo of these,. the hneo:eclil;3 laas_
pattern models, have been extensively 1nvestlgated. Tl}e linear lm e
sumes that some proportion of a large populelltlon tS)f s'umului1 e srrln%rial .
i bability of response A;
randomly sampled on each trial, that pro 0! i
[P(A-n)]yis equal to the proportion of the sample cqndltloned tohth;ilt1 tgre
sponge and that, after presentation of the remforcn.lg‘event, the e
sample, becomes conditioned to the response of p;,edllctmg tthatre:/;te;ns
11 set of N elements, O )
contrast, the pattern model assumes a sma emen e
ich i h trial. The conditioning state :
only one of which is sampled on eac ‘ . .
saanled N pattern completely determines the response fgr that trl;}é ?gn-
some probability, ¢, the sampled pattern becqrpes conditioned to s
forced response for that trial and with p(rlogtg(;l))ltlllty, 1 ;Vcia ;gz (;I(lJ(r)lre i
i i Estes ave pr
state is unchanged. Atkinson and : S
i i dels. Despite apparent difiere )
treatment of stimulus sampling mo : . S
i ictions that are either identica
two models yield numerous predic it| SR
imi i h of the probability learning
milar. In view of the fact that much ¢ : .
:as implications for these models, it will be helpful to note certain comm

predictions.
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A. Some Predictions from Statistical Learning Theory

One fundamental consequence of both the linear and pattern models is that
P(A ) should approach m; as n increases. This prediction of asymptotic
probability matching is of interest not only because it is a strong,
parameter-free prediction, but also because it is somewhat surprising from
the viewpoint of decision theory; maximization of the expected number of
correct predictions requires that the subject always predict the most fre-
quent event. A second strong prediction of both models, which follows
directly from their conditioning axioms, is positive recency; if the occur-
rence of an event increases the probability of predicting that event, then
P(A ) should monotonically approach 1.0 as the length of a run of consecu-
~ tive E;’s increases.

In the following Section 11.B, the status of these predictions—asymptotic
. probability matching and positive recency—is considered for experiments
in which noncontingent event schedules have been employed. Concern here
is with delineating the conditions under which these predictions are, and are
not, verified, and with attempting to gain some understanding of the impli-

 cations of this pattern of results for probability learning in general, and
statistical learning theory (SLT) in particular.

B. Some Basic Results

1. Asymptotic Response Probability, P.(A))

a. Extended practice. It is generally believed that probability match-
_Ing, the asymptotic approach of P(A; to =, is a robust phenomenon,
- readily demonstrated in probability learning studies. The facts, in contrast
0 the impression, are somewhat more complicated. It is true that in some
tudies extremely stable probability matching has been demonstrated for
everal terminal trial blocks; Neimark and Shuford (1959) provide an ex-
ellent example. However, it is also true that P(A1) consistently over-
hoots 7 with extended practice. An experiment by Friedman, Burke,
ole, Keller, Millward, and Estes (1964), often cited as strong evidence
Or probability matching, is a case in point. In each of the last 7 12-trial
locks of a series of 288 trials with 7 = .8, P(A1) exceeded .8; the average
eviation was only .03, small but nonetheless troublesome. Similar depar-
res from matching have been observed by other investigators, in fact, by
most anyone who has run subjects for more than 300 trials. For example,
ith 7 at .6, .7, and .8, Myers, Fort, Katz, and Suydam (1963) obtained
alues of P(A1) of .616, .753, and .871 for Trials 301-400.
Probability matching should hold in the noncontingent case for more than
Wo choices. Early experiments employing three choices for 200 and 100
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trials (Detambel, 1955; Neimark, 1956) did, in fact, support the probability
matching theorem. However, as in binary prediction experiments, ex-
tended practice resulted in overshooting. Furthermore, experiments by
Gardner (1957) and Cotton and Rechtschaffen (1958) have demonstrated
that overshooting on the most frequent alternative is more pronounced in
the three- than in the two-choice case. With three choices P.(A1) on Trials
286-450 was about .67 and .80 for 7 of .6 and .7, respectively. A subsequent
study by Gardner (1958), employing from 2 to 8 choices for 420 trials,
reaffirmed the overshooting result and indicated that the amount of over-
shooting increased with number of choices. It also appears that several
curves were still rising at the end of the session.

Although the basic finding that overshooting occurs with extended prac-
tice is well established, its implications for the validity of the linear and
pattern models are not clear. Estes (1964, 1972), although conceding that
overshooting occurs, has argued that SLT provides an essentially correct
account of the course of probability learning. He ascribes the apparent
failure of the probability-matching theorem under extended practice to
extraneous factors that influence predictive behavior so that it is no longer
an adequate reflection of the underlying state of learning. One possibility is
that the theory describes predictive behavior quite accurately as long as the
probability of a correct response continues to increase. When the basic
learning process asymptotes at 7 and, consequently, there is no further
increase in probability of a correct response, the subject may test various
strategies designed to further improve his performance. According to this
analysis, overshooting should be more likely to occur and should be of
greater magnitude in conditions under which it represents a large improve-
ment in probability correct, relative to probability matching. This seems to
be the case. The difference in probability correct between matching and
optimization (100% prediction of the most frequent event) is a quadratic
function of s, and also increases with number of choices when there is a
uniform distribution over the less frequent events; the degree of overshoot-
ing follows the same pattern.

Measures other than prediction probabilities may be helpful in assessing
Estes’ interpretation of overshooting. In particular, reasons advanced for
overshooting—boredom, fatigue, experiments in which subjects make at-
tempts to increase the percentage correct—do not obviously apply to direct
estimates of 7. If SLT provides a valid account of probability learning, as
opposed to predictive behavior, such estimates of 7 might well prove more
stable over prolonged series of trials than choice proportions. Whether this
will, in fact, occur remains to be seen. Neimark and Shuford (1959) and
Beach, Rose, Sayeki, Wise, and Carter (1970) have found that estimates of
7 match 7 in the last few blocks of a 300-trial sequence. Unfortunately,
more trials are required to resolve the issue of asymptotic stability.

As one might expect, degree of practice is not the only variable that

constrains the applicability of the probability matching theorem. Inves®
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tigators who are determined to do so can produce overshooting in a variety
of ways; undershooting is somewhat more difficult to achieve, but possible.
Most of these departures from probability matching have been obtained
" under experimental conditions outside of the intended scope of SLT and are
‘f thus.not relevant to evaluating the validity of the theory. Nevertheless,
? there are implications for alternative models, for an understanding of deci-
J sion making capabilities, and for methodology in probability learning exper-
iments. Therefore, two other factors are now considered that produce
| departures from matching.

b. Instructions. The premise underlying this research appears to be
~ that subjects are capable of more intelligent decisions than SLT, and early
" findings of probability matching, imply. In particular, probability matching
has been assumed to be a result of the subject’s failure to detect the
andomness inherent in the event sequence and his consequent attempts to
nd a perfectly predictable pattern (Flood, 1954). This assumption gains
upport from the finding of 5-10% overshooting when events are displayed
n such a way as to appear randomly sequenced (Nies, 1962; Peterson &
Ulehla, 1965). Under these conditions of apparent randomness, explana-
jons which emphasize that the odds are constant over trials and that event
runs are irrelevant cues have no additional effect. Nies found no difference
between two groups differing only with respect to the presentation of such
an explanation, and Beach and Swensson (1967), who employed such an
explanation in addition to random shuffling of an event deck, obtained the
same 8% overshooting observed by Peterson and Ulehla (1965) without
such instructions. In the absence of a clear appearance of randomness,
" explanations must be very strongly worded to have an effect. Studies by
McCracken, Osterhout, and Voss (1962), and Braveman and Fischer (1968)
have demonstrated that merely telling subjects that the sequence is random
or that there is no fixed pattern has little effect, nor are subjects unduly
influenced by being instructed to avoid a trial-by-trial approach or by being
told that it is impossible to be correct on every trial. Subjects appear to
inderstand what is expected of them only when both knowledge of ran-
domness and the desirability of maximizing correct responses over blocks
trials is communicated; then, terminal values of P(A1) are obtained that
ceed, by 10-20%, those for subjects merely instructed to attempt to
edict correctly on each trial.

Although carefully worded instructions, or displays of randomness, can
¢elicit overshooting, the results cited above hardly stand as a testimonial to
an’s decision making capabilities. Under conditions in which the subject
all but instructed to predict the more frequent event, overshooting by only
% is obtained. Individual subject protocols are not more impressive. For
tample, only 29 and 27% optimalize (always predict the more frequent
ent) in the last trial block of the Peterson and Ulehla (1965) and Beach and
vensson (1967) studies, respectively; this result occurs despite the fact
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that the former experiment involved monetary incentiyes, which by t.hem-
selves elicit overshooting, and in the latter study, subject§ were reminded
throughout the session ‘‘to ignore the runs and to avoid the gambler’s
fallacy.”’ To be fair, subjects are not quite as dense as theise dat‘a would
suggest. Nies (1962) reported that, although only 3% of _hls subjects op-
timized, 60% were able to verbalize the optimal strategy in a post session
interview. '

There are several reasons why many subjects fail to learn the optimal
strategy and why most of those who do learn it fai! Fo use it. Fi_rst, as Siegel
(1959) has suggested, there may be a certain utility in varying one’s re-
sponse, in attempting to outguess the experimenter. Second, subjects _be'
lieve that patterns are present in the event sequence (for examp.le, Nies,
1962) and exaggerate the likelihood of short runs (Tune, 19_64). 'I:hll"d, these
beliefs are essentially correct in many of the experiments in WhI.Ch instruc-
tions have been manipulated. Nies, who randomized in 50-trial blocks,
reported that more short runs were presentin his event sequence ‘than would
be expected for unconstrained random event sequences. This is undoubt-
edly even truer in studies by Goodnow (1955), McCra_cken et al. (1962)
and Braveman and Fischer (1968), in which event proportions were fixed for
blocks of 10, 20, and 30 trials, respectively. As Jones and Myers (1966)
have demonstrated, when the sequence is randomized in.such short blocks,
subjects can outguess the experimenter, achieving con31derz}bly more cor-
rect responses than would be expected on a chance basis. Wlth such
constrained sequences, the ‘‘gambler’s fallacy’’ (the other' event is du@). is
not a fallacy, and the strategy of uniformly predicting the higher probability
event is not necessarily optimal. Jones (1971) has pointed out that sequence
structure is a form of instruction; if so, subjects in experiments such as
those just cited receive conflicting messages.

c. Monetary payoffs. In the studies just considered_ there was no _tanile'
ble incentive for subjects to optimize. Those wl}o still have fal‘th mdt .
decision-making capabilities of human subjects might expect th‘e' intro ue-
tion of monetary gains and costs to markedly increase probability of pfn
dicting the more frequent event. This expecta"[iop is confirmed. Comp‘(trlfo%
subjects who won one cent for correct predictions and ?ost or'1e cen 4
incorrect predictions with subjects who had no monetary incentive, N:(&)’ﬁp'
et al. (1963) found P(A1) to be significantly higher for the o‘n‘e.-cent g i
The differences in terminal (Trials 301-400) response plrobablhtles were .09,

06 at 7 values of .6, .7, and .8, respectively. Wi y
.121’\£alr:(11ditional expectation—that P(A 1) would be a monotonic {ncreasilﬁi
function of incentive magnitude—at best receives weak confirmation. Inwas
Myers et al. (1963) experiment cited above, the average value of P(A 'le):w y
.03 higher in ten-cent than in one-cent groups. More generally, a revl
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eight experiments in which two nonzero payoff levels were compared
reveals differences in terminal values of P(A 1) ranging from essentially zero
(Jones & Myers, 1966) to about .05 (Suppes & Atkinson, 1960; Castellan,
1960). One point is evident: while instructional and motivational manipula-
tions can yield increased probability of predicting the more frequent
event, subjects consistently fall short of the optimal strategy of always
©  predicting that event. What is less clear is the extent to which this reflects a
* failure to learn the optimal strategy as opposed to a failure to use that
| strategy.
. Rather substantial effects of payoff magnitude can be produced by
employing a within-subject paradigm in which each subject makes predic-
tions under two payoff levels. This has been done by randomly sequencing
*equal number of trials at each payoff level (Schnorr, Lipkin, & Myers, 1966;
" Schnorr & Myers, 1967) or by changing the payoff level partway through
the sequence of trials (Castellan, 1969; Halpern, Schwartz, & Chapman,
1968; Swensson, 1965). Under either approach, choice data reflect a ‘‘nega-
tive contrast’’ effect. On high-payoff trials, P(A 1) is at about the same level
" as in payoff groups in the studies cited above; however, on low-payoff
trials, P(A1) is considerably depressed, typically below the probability
matching level. Schnorr and Myers (1967) demonstrated that, on high-pay-
- off trials P (A1) is independent of payoff magnitude whereas, on low-payoff
rials, P (A1) decreases as the difference between high and low payoff de-
reases. Schnorr et al. (1966) and Swensson (1965) have also found that
stimates of event probability, obtained at the end of the experimental ses-
. sion, are considerably under the true value of m for low-payoff trials.
. This may indicate that subjects based their estimates on their response
| sequences. Alternatively, incentive may influence the underlying proba-
ility learning process and negative contrast may reflect basic differ-
nces in learning, rather than in strategies, on high- and low-payoff
rials.
Whatever the explanation, the negative contrast effect is a phenomenon
f some generality, not a peculiar consequence of the probability learning
ask or the subject population used. The effects observed in experiments
Wwith humans rather neatly parallel those obtained with rats in runways and
T mazes (Black, 1968), both response times and choice proportions being
epressed on low-incentive trials as a function of the difference in mag-
nitude of the two amounts of reward.
- Several models have been proposed to account for the effects of payoffs
pon human probability learning (Luce & Suppes, 1965). Three of these
aill be considered, chosen for discussion because they are capable of
enerating predictions for both the learning curve and the sequence of

€sponses, have provided good fits to several data sets, and represent
omewhat different assumptions about the choice process.
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Both Siegel (1959, 1961) and Estes (1962) hav.e' propose;d moc(lie(lis Whlch

incorporate two independent processes, probability leamltngt an : e221((1)rils.
i i mptotes at 7
ume that the underlying learning process asy es
g:st:r?lf:d by some variant of SLT. With respect to the def:lspn proc?ss,/
Siegel has assumed that subjects choose a strategy thgt nmaximizes the su{n
of the expected utility of payoffs and the expected utility of varying one’s
response. This quantity is maximized when

PA1) = (k1 +k)m + (5 — k2), (1)

where the k; are functions of utilities of payoffs and‘ response V?I‘la?on.
Siegel’s key contribution, the notion that response Val.'lathl’l has va ue orh a
subject, is consistent with both intuition and the finding that subjects w cl)
have n(’)t optimized have frequently indicated knowledge tot’[;1 the ﬁgittl;ngf
f direct attempts to test the va
trateey. Nevertheless, the results of d . j !
ihe coiscl:ept of utility of response variation have been [1}11x}:31d (1\14966s§;ckﬁi1£6i;
: Ipern, Dengler, & Ulehla, - Fi
Halpern & Dengler, 1969; Halpern, 1 il
i i i ort the model; for example, setting
asymptotic choice proportions supp Gl
i i the Myers et al. (1963) data have
equal to k, in Equation (1), S
iati f observed from predicted valu ;
average absolute deviation o ‘ . Sl
i i basic assumptions would b€ :
tained. Further direct tests of the . ) : e
i i d with nonsymmetric pay
would fits to choice proportions obtaine ‘ et
i i i be a test of a stochastic version; .
trices. Of particular interest Woulq of ; )
describes Iihe learning of subjective probabligy b(Slfﬁ;(gﬁ:l, 1961), sequentia
isti i hou e fit.
tics and learning curves can, and s f .
Stalt{:mdom walk models (Bower, 1959; Estes, 1960, 1962? prowde a ;:ﬁ::
molecular analysis of choice behavior. In one su;:h moctllel, 1tt ;zv z;srsduglel i
i j bility ¢, , of orienting ¢ 3 Ol
n any trial, n, the subject has proba : ng 15
fL)he sgbject is oriented toward a response, the probability of making 1
) i .Let
4 ’nconsideration of the following diagram may mgke the mo@el cice):vi‘::;d g
S denote the starting position on a trial, O; 1ndlca}te onen;mg e
sponse i, and A; represents execution of response i. Then the pro

single trial may be represented by

1.0
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If ¢i,» and p;,, are independent functions of n described by SLT, then both
have asymptotes at 7; and P.(A,) = 7%(1 — 2m(1 —)). For 7r of .6, .7, and
.8, predicted P.(A,) are .692, .845, and .941, respectively; these values
closely approximate those obtained by several investigators who used
monetary payoffs. In the case in which no payoffs are at stake,p; =p, =1
will yield P.(A,) = .

The model has a certain appeal; it is conceptually simple and permits
derivations of learning curves and sequential statistics (Cole, 1965, has fit
such statistics), as well as response times (the expected number of orienting
responses prior to reaching an A state is easily derived), and is thus subject
to test in a variety of ways. However, the predicted lack of influence of
payoff magnitude upon P.(A ) is too strong a result; choice proportions are
known to be a function of payoff magnitudes (markedly so when gains, or
losses, depend upon the particular response), and the model should be
. modified to be responsive to this fact.

In contrast to the two models just considered, both of which postulate
independent probability learning and decision processes, Myers and Atkin-
son’s (1964) weak—strong model assumes that the response depends directly
on the conditioning state of a sampled stimulus element; the element is
either strongly or weakly conditioned to some A ,. Following an incorrect
response, the sampled element changes conditioning state with probability
9; following a correct response, the transition to a new state occurs with
probability u. The model has yielded good fits to asymptotic choice propor-
. tions and sequential statistics in experiments employing a wide range of
payoff matrices (Myers & Atkinson, 1964; Myers, Suydam, & Heuckeroth,
1966). Like the models considered previously, it is applicable to more than
two-choices and, like the random walk models, it is also capable of describ-
ing choice latencies (Myers, Gambino, & Jones, 1967).

d. Discussion. Our review of asymptotic choice proportions raises two
questions. First, is there a fundamental probability learning process that
develops with practice, asymptotes at 7, and is directly manifested in
. Prediction behavior in early trials, given proper instructions and no tangible
payoffs? If so, overshooting is merely the result of conditions in which the
Subject is led to incorporate such probabilities into complex response
trategies and decision rules. The Estes and Siegel models for choice under
yoff are two representations of this view. On the other hand, the
viyers—Atkinson model assumes a single learning process the rate and
ymptote of which is determined by payoff parameters. The duoprocess
Position would be enhanced if estimates of event probability were dem-
Ohstrated to develop in accord with SLT under conditions in which
ymptotic choice proportions deviated from 7; for example, under ex-
ded practice, instructions to optimize, or monetary payoffs.
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A second unresolved issue is the extent of the decision making
capabilities of subjects. Is the optimal strategy as _diﬁicult to learn as the
widespread failure to optimize would suggest? Or is it that sub!ejcts perform
more intelligently than it appears, maximizing an expected utl.llty based on
something more than monetary payoffs, and responding to rehab‘le sequen-
tial cues that we have unthinkingly built into our sequences? .V\_h.th respect
to this last point, a clearer picture of decision making capabilities should
evolve with the use of unconstrained random sequences rather than se-
quences randomized in very small blocks. :

One final point is in order. Evaluation of models of choice has too ‘o.ft.en
rested solely, or at least primarily, on fits to marginal response probabilities
from terminal trial blocks. It was noted earlier that this approach has a
problem; the predicted asymptote may be exceeded not because the model
is wrong, but because extended practice represents some second phase of
performance not reflected in the model. On the other hand, goo_d fits to such
terminal choice proportions are hardly grounds for euphoria. The true
learning process may not yet have asymptoted, and the ﬁts may be fortu-
itous. The same model that fits ‘‘asymptotic’’ probabilities at 300—409
trials may also fit, with a change in parameter values, a higher **asymptote
obtained with still more practice. There is no clear way to define Fhe true
asymptote; consequently, good fits to terminal trial block proportlon.s are
by themselves, at best, weak support for a model. Sequential statistics
would appear to provide more information about the status of stochastic
models. Such data are considered next.

2. Sequential Dependencies

" Fine-grain analyses of the data that focus on the dependengy of responses
upon preceding patterns of responses and events are cqnmderably more
informative than marginal probabilities. Such sequential dependencies
provide a measure of trial-to-trial changes in perfo.rmanc.e and are, ther‘e-1
fore, more direct tests of basic assumptions about remforcmg effects of Fr_la
outcomes. Furthermore, where earlier there was one marginal proba.b‘ll}ty
to predict for a single trial block, there now is a large array of probablhtlles
conditional on the preceding pattern of responses, or events, or both.

a. Runs of events. The run curve, response probgbility conditlo?s;
upon the length of the preceding run of events, most directly reflects

istri i i ore

1 Not all of these quantities will be independently distributed, and we w111 oft.en r'ec_qulre rr?ant'

parameters to fit them than to fit marginal statistics. Nevertheless, the main pgm't is impoO! ’
the use of conditional statistics typically increases the number of free predictions.

~
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validity of the assumption that event occurrence is the effective reinforce-
ment. According to SLT, with each successive repetition of the preceding
event, probability of predicting that event should increase by some fraction
of the distance to the upper bound of unity. Thus, the run curve should be a
monotonically increasing, negatively accelerated, function of run length
with asymptote of 1.0. It has long been apparent that this prediction of
positive recency is not usually supported by data; negative recency, de-
scent of the run curve after several event repetitions, has been observed in
numerous studies (for example, Anderson & Whalen, 1960; Jarvik, 1951).
Indeed, positive recency is ordinarily obtained only when the average run
length is long—a condition met by intentionally constructing sequences
with this property (Derks, 1963; Jones & Myers, 1966), or by using 7 of .7 or
higher—and subjects have had at least 100 trials in the task (Derks, 1962;
Edwards, 1961) or have had several hundred trials of event observation
prior to prediction trials (Reber & Millward, 1968). Even in these cases, the
asymptote of the run curve is consistently 10-15% below unity.

Findings of negative recency are not quite as disastrous for SLT as they
might at first appear. Recognizing that the ‘‘gambler’s fallacy’’ is strongly
entrenched in the belief systems of most college students, one might argue
that it plays a role in the probability learning task; subjects enter the
experiment with a firm conviction that events come in short runs, a convic-
tion that is largely reinforced at low 7 levels and generally takes several
hundred trials to negate. This line of reasoning led Friedman and five
coinvestigators (1964) to run subjects for three sessions of 384 trials each.
The first two sessions presumably provided an opportunity to wash out the
gambler’s fallacy; 48-trial blocks with & of .5 were alternated with ran-
domly sequenced blocks with 7 values ranging from .1to .9in increments of
-1. In the critical third session, subjects experienced 288 trials with 7 of .8,
preceded and followed by a single block with 7 of .5. Fits to a wide array of
Statistics were generally good and, most importantly, positive recency was
Obtained for both the .8 and terminal .5 series in the third session.

These results, together with other data in which negative recency is
replaced by positive recency during the course of the session (Derks, 1963;
dwards, 1961), are consistent with the proposition that extended practice
eliminates preexperimental biases, permitting the basic conditioning pro-
$s envisaged within SLT to be revealed. Anderson (1964) has put forth an
ternative interpretation of the results of Friedman and his co-workers. He
oted that the probability of an event repetition was greater than .5 over the
St two sessions. The schedule, rather than extinguishing preexperimental
ases, may have built in a bias to expect runs to continue. According to this
terpretation, the good fits of the third session are not the product of an
going conditioning process, but rather reflect the subject’s memory of the
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event sequence of previous days. That subjects can learr} event repetition
probabilities, and that such learning is readily transferred in the.presence of
new schedules, has been amply demonstrated in several experiments (An_,
1960; Witte, 1964). ;
derTsl(i?s’ argument led Friedman, Carterette, and Anderson (1968) to run
subjects for 25 350-trial sessions under a 50 : 50 schedule. An'alyses carried
out for individual subjects, week by week, revealed a high degree of
variability among subjects and over time, as well as a tendency tq alternate
responses that was at odds with the limited-memqry assurppflon of the
linear and pattern models presented earlier. Few subjects exhibited consis-
tent positive recency and run curves typically asymp?oted be'lo.w the pre-
dicted value of unity. These failures of SLT were evident within the first
of the experiment. o
Weftkis not clearr) that these data provide broad grounds for rejectln_g S'LT.
Rather, they might be viewed as further restricting its range of application.
Both the experimenters and Estes (1972) have noted that the use of 50 : 50
schedule may yield unrepresentative results. Prolonged practl.ce with a IQW
degree of success may motivate the subject to seek alternative stra_lte‘gl_es
that will be more productive; this would account for the marked yarlablllty
in the Friedman et al. (1968) study. Furthermore, long runs are 1nfrequent
with such a schedule, and thus, the event sequence may have reinforced
those biases with which subjects entered the experiment.

b. Runs of successes. In the studies reviewed thus far noncontingent
event schedules have been employed. In such schedules, the event, E dl or
E: , is independent of trial number or of any aspect of the prece (1in§
sequence of responses or events. In contrast, Y§llott (1969) employe 3
noncontingent success schedule in which the trial (?utcome, successT i
failure of the prediction, was independent of previous outcomes. .
probability of a successful outcome—that is, that the event on a rrle_
matched the response—was referred to as 8 and was ci)nstant (l)v_erthalt
sponses. The advantage of sucha “noncontmgept success’’ schedu de llsinear
it provides a unique opportunity to differentiate the p‘attern am.f i
models. In the pattern model, learning occurs only following errors,do -
ing a correct response, the sampled element cannot change state anrdisngly,
proportion of elements conditioned to each response (and, ac}fo o
response probability) does not change..As a consequence, t ec eis o
model predicts that alternation responses in the? noncontingent suc e
will be independent of the length of the preceding run of successes.‘:1 o
other hand, in the linear model, only the event and not thg outcomeﬁ 1 o
changes in response probability. The linear mgdel predicts that tke “I/)ﬂl g
bility of alternation responses in the noncontingent success tas

1 y 5 nd 1,
crease as the run of preceding successes InCreases. Using & of .8 & i
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Yellott clearly demonstrated the correctness of the pattern model predic-
tion. Furthermore, both variances and a variety of sequential statistics were
well fit by the pattern model for the .8 block, and the estimate of the learning
rate was .173, a value very close to that obtained in experiments using
noncontingent event sequences.

These results clearly differentiate between alternative models and also
provide strong support for the general proposition that a simple conditioning
process underlies probability learning. There is, however, one departure
from this pattern of support for SLT. Under the & = 1 schedule, some
subjects exhibited very structured patterns of responding, consistent with
the view that they had actively processed the event sequence, encoded it
‘into structured chunks, and then had engaged in hypothesis testing. That

sequential information is generally encoded in memory is also suggested by
results of the few studies in which direct probes of memory have been
- employed (Millward & Reber, 1968; Vitz & Hazan, 1969). Perhaps one can
.~ best reconcile such evidence of memory processes with the generally excel-
lent account of Yellott’s data provided by the pattern model by concluding
that his subjects utilized the information stored about the sequence only
nder the rather artificial 8 = 1 condition.
The overall implications of sequential dependency data for SLT are
- mixed. The form of event-run curves in the Friedman et al. (1964) study
nd of success-run curves in Yellott’s study, and quantitative fits to these
tatistics support SLT. On the other hand, repeated findings of negative
ecency, the influence of event alternations in the Friedman et al. (1968)
tudy, results of memory probes, and Yellott’s 8 = 1 data also make it clear
hat information about the pattern of prior events is stored in memory

nd, except under carefully restricted conditions, influences predictive
ehavior.

Discussion

'he broad impact of two decades of theoretical work on predictive behavior
evident. The conceptual and mathematical apparatus developed during
Course of this work comprises a major general contribution to
Yychological theorizing. Regardless of evaluation of the success of SLT in
plaining probability learning, the theoretical enterprise demonstrated
viability of an approach in which predictions of the fine details of the
urse of learning can be derived from a relatively small and basic set of
umptions.
It is more difficult to assess the outcome of the specific issue that gener-
d the bulk of the prediction research. Is binary prediction the result of



184 JEROME L. MYERS

“‘the pervasive operation of a rather simple form of ¢onditioning’’ (Estes,
1964, p. 121)? Certainly, the conditioning framework accounts for much of
the data under a wide range of reinforcement schedules, and in several
extensions of the simple noncontingent-event task. Nevertheless, funda-
mental predictions do frequently fail. Most critical for a simple stimulus—
response theory is evidence that subjects remember (Millward & Reber,
1968) and respond to (Friedman et al. 1968) local event patterns, learn
something about the probabilities of such patterns and transfer this knowl-
edge to new sequences (Anderson, 1960; Witte, 1964), and formulate and
test hypotheses based on event patterns (Yellott, 1969). In view of the
successes of the theory, particularly in its application to the Friedman ez al.
(1964) data and to the early phases of the Yellott (1969) study, it may be that
the failures cited serve not to invalidate the theory, but rather to cir-
cumscribe its range of application. In short, there is evidence of an underly-
ing probability learning process which may best be characterized as as-
sociative learning, but whose operation s easily obscured by the propensity
of subjects to seek sequential cues and to incorporate such information into
their decision making process.

In retrospect, the need to distangle processing of event probabilities and
sequential information is evident. Probability learning may be more directly
investigated by collecting subject’s estimates of event probabilities. There
is already some evidence (Shanteau, 1970) that such estimates are de-
scribed by Anderson’s (1968) linear imegration model, which simply as-
sumes that the response is a weighted average of the preceding set of events.
Since both Estes’ linear model and a Bayesian revision model (Beachetal.,
1970) are special cases of the linear integration model (Anderson, 1?§8;
Messick, 1970), they are also tenable. Further investigation of probability
estimates may provide a better understanding of the process by which we
develop subjective probabi'ities. Furthermore, such research may_well
converge with recent work in verbal learning addressed to the general issue
of how information about stimulus frequency and recency are represented
in memory (for example, Hintzmats, 1969; Howell, 1973). _

Sequential information processing may be studied profitably in thg binary
prediction situation with the use of considerably more constrained se-
quences than have been employed in the research described thus far. BY
systematically manipulating salient characteristics of the event sequence:
such as length of runs or alternations, one is more likely to discover how
subjects learn to respond to such sequential stimuli than if one emplqys
random sequences and post hoc analyses of responses to patterns which
chanced to occur. Such experimentation has been carried out concurreI}ﬂY
with the development of models in which constructs such as encoding

memory, and hypothesis testing play a central role. The remainder of this ‘

chapter will deal with such developments.

5. PROBABILITY LEARNING 185

Ill. SEQUENCE LEARNING: CONDITIONAL
EVENT SCHEDULES

In contrast to earlier research with noncontingent event schedules, no
single theoretical position has dominated the research considered next.
Consequently, several alternative models of prediction will be described
first. These differ in orientation and detail but have the common goal of
“accounting for such sequential effects as negative recency and the common
view that subjects remember event patterns and base their predictions upon
that memory. The account of these models will be followed by a sum-
mary of relevant experimental findings. Then, armed with the facts, or
‘some approximation thereof, I will attempt to evaluate the models under

1. Fixed Memory-Span Models

In the simplest such model (Burke & Estes, 1957), the trace of the
mmediately preceding event is represented as a unique set of stimulus
lements. Thus, on each trial, the subject samples from one of two distinct
ets of elements. Application of the conditioning axioms of SLT reveals that
he asymptotic probability of a repetition response, P(Ai,nlEi,n_]), should
lightly exceed the true probapility that an event will be repeated on the
next trial.

. Restle (1961, pp. 109—-111) has suggested an extension of the event-trace
. model capable of accounting for the ability of subjects to learn to respond to
| patterns spanning several trials. He assumes that the last k events are in
' memory; the response is based on a sample of elements drawn from a set
. Corresponding to that pattern of k events. One strong prediction of the
model is that subjects learn to respond without error to any pattern of length
r less that perfectly forecasts the next event. For example, if runs longer
an length three never occur, the subject should learn not to make a
[epetition response following three events of the same type.

2. Determining the Structure of Sequences

Feldman and Hanna (1966) have assumed that subjects keep track of the
anging conditional probabilities of E: following all possible event pat-
s of length k£ (five in their paper) or less. The subject first learns to
Criminate the longest pair of subsequences S and S’ such that the two
ifer only in the first, or earliest, position (for example, E1E2E1E1E> and
2E2F 1 ELE2) and P(E1 IS) differs significantly from P(E1 IS’). Discrimina-
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tion is equivalent to probability matching at the level of subs .
thus, P(A:1S) and P(41]S") would match P(E: |S) and P(E: 1s§q‘i§§§ZE
tlvc?ly. Shorter subsequences would be discriminated later in learnin 1
This structural-analysis model appears to credit subjects with mOrgé
memory and computational power than they possess, but it may prove g
useful baseline against which to evaluate performance.

3. Encoding Event Runs

The models just described place a considerable strain on subject’s
memories and one’s credulity. The strain on memory at least is reduced if
one takes a very different tack and assumes that subjects encode only
certain types of patterns. In view of the considerable evidence attesting to
the salience of event runs (Myers, 1970), a reasonable assumption is that the
spbject remembers only the type of event he has just seen and the number of
times in a row that it has just been presented. The two models presented
pext assume just such a short-term memory as well as some long-term
information about the distribution of run lengths.

a. Restle’s (1961) schema model. Restle assumed that the subject at-
tempts to match the run in progress against some schema stored in memory.
For example, if the events for the last four trials were E2E.EiE; , the
probability of an A: response is the probability that the schema
E°E1E:E:E: ,rather than E2E1EE E> ,is found in long-term memory. The
probability of finding a particular schema was assumed to be a function of
both its relative frequency of occurrence in the past and its length; Restle
assumed that long runs are more salient than short runs in memory. De-
pending upon the distribution of runs in the event sequence, the schema
model can predict either positive or negative recency. The overshooting
observed in noncontingent event experiments is also predicted, particularly
the pronounced overshooting observed with more than two choices. The
schema model makes two qualitative predictions that were also noted for
the k-span model; first, the probability of a repetition response will exceed
the actual probability of an event repetition because of the weight given long
runs, and second, subjects will learn always to predict the continuation of a

run that has always continued, and the breaking off of a run that has always
broken off in the past.

b. Gambino and Myers’ (1967) generalization model. These inves-
tigators assumed that the subject has a set of expectancies, one for each
possible run length that he might encounter in the experiment. If the subject
has just seen m consecutive events of a particular type, his expectancy that
runs of length m will continue is increased or decreased by a fraction,
depending upon whether the current run does continue. Furthermore, the

Rt (s e ie il i e
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continuation (breaking off) of a run of length m results in a generalized
ncrease (decrease) in expectancies that runs of other lengths will continue;
as one might expect, generalization is assumed to be greatest for run lengths
" close to m in value. The generalization assumption is the critical difference
petween this and other models capable of predicting negative recency. It
provides a mechanism for generating errors at points in the sequence at
which the next event is perfectly predictable. For example, suppose the
event sequence contains no runs longer than five; the generalization model,
; in contrast to the models previously described, predicts a greater-than-zero
error probability because of generalized expectancies resulting from the
continuation of runs of lengths one through four.

~ B. Results

1. Responding to Event Contingencies

A direct test of the Burke—Estes trace model is provided by manipulating
11 , the probability that an event occurrence is repeated on the next trial.
As the model predicts, the asymptotic probability of a repetition response is
close to, but slightly above 711 for values of .3 and greater (Anderson, 1960;
Engler, 1958; Witte, 1964); this result can also be predicted by the Restle
and Gambino—Myers models. A result contrary to the prediction of over-
shooting was obtained by Anderson who found that the probability of
predicting an event repetition was below the event repetition probability for
7111 of .1 and .2. Further evidence against the Burke-Estes and Restle
models is provided by the run curves in Witte’s experiments; the Burke-
Estes model generally predicted too much positive recency, and the Restle
model predicted too much negative recency. These data also are inconsis-
tent with the Feldman—Hanna model; since the occurrence of an event
depends only upon the preceding event, the structural analysis model would
incorrectly predict flat run curves.
~ The runs model stimulated several studies in which the event sequences
‘were constructed of a limited number of run lengths. In a typical sequence,
~ equal numbers of runs of lengths 2 and 5 might be randomly ordered;
following any run length except two, the next event is perfectly predictable.
t the uncertainty point, that is, after a run of length 2 in the example, the
robability of a repetition response exceeds the probability of an event
Tepetition (Gambino & Myers, 1966; Restle, 1966), a result predicted by
oth run models. In addition, the probability of a repetition response
creases with the number of long runs (for example, length 5) and de-
reases with the number of short runs (for example, length 2) immediately
receding the run in progress (Butler, Myers, & Myers, 1969), a result
emanded by the reinforcement axioms of the Gambino—Myers model.
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However, when contingencies among run lengths are qot random, .t'he
results are more difficult for any runs model. For e.xgmple, if the probab%h'ty
is high that long and short runs will alternate, repetition response probatlzlpty
will be higher when the run preceding the current run was short than when it
ler et al., 1969).

wa";‘ligrégve(:}r?tu ::gntingencies considered thus far only scratch the surface of
the sequential processing capacity of human subjects. In an attempt to
evaluate their structural analysis model, Feldman and Hanna generateq a
sequence with some contingencies complex epough t_o defy br.lef descrip-
tion here. The subjects learned to respond differentially to. different pat-
terns; in fact, the probability of predicting an event following E??:}Ch of 62
different patterns of length 5 or less is related tp th; true p'robablhty of the
event following that pattern by a linear regression line having slgpe of .998
and intercept of .013. While Feldman and Hanna hav.e taken tf}lS result as
evidence of contingency matching, a prediction of thelr model., it shoulq be
noted that there is considerable scatter about this best-fitting funct}on.
Nevertheless, the main point is well taken; while runs are extremely s.ahent
sequential cues, other patterns can also serve as a basis for prediction.

2. Errors of Prediction

All of the models described in the preceding sectipn, e?(cept the
Gambino—Myers generalization model, predict that the §ubject will learq to
eliminate errors at those points at which the sequence 1s perfectly predlct%
able. Thus, in a sequence resulting from the randqm ordering qf runs 0t
lengths 2 and 5, subjects should learn to always pre(_hct the preceding evir;f
if the ongoing run is of length 1, 3, or 4, and to p'redlct the alternate eve'ltl' i
the current run is of length 5. Inappropriate failures to rpakg a repetlllote
response will be referred to as anticipatory errors while 1nap1;11j(l)pr§Ch
repetition responses will be referred to as perseverative errors. W ile s o8
errors are clearly less frequent than would be ‘e'xpected if SUbJCCtSt“gon
guessing or merely matching the overall probab}llty o.f an ev.ent. repe ri thai
they continue to occur after as many as 700 t.rlals with no indicatio 1118
further practice would result in improvemejnt; indeed, error r?t;s ag)é) ol
asymptote within the first 100 trials (ngbmo & Mye'rs, 1966; Res ea,m i
Rose & Vitz, 1966). Typically, anticipatory errors increase as m n
length decreases and perseverative errors are an 1r}creas1ng functlorll .
number of run lengths present and of the dlﬁerep?e in lengths when on };cer-
are present. These error data, as well as repetmon responses at t;e 1\le b
tainty point, are well fit by the generalization model (Gambino
196(;7());1trary to the predictions of the generalization model, or of 1a1I11yug;:
model, rules about patterns other than runs can also be learned altho

. n :
again, not to an errorless criterion. Rose and Vitz (1966) found better tha i
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chance acquisition of such rules as “‘if the current pattern is 1121, predict a
2.”" Wolin, Weichel, Terebinski, and Hansford (1965) have also reported
some learning of responses to patterns other than runs.

3. The Acquisition of Sequential Information

Of the models considered, only the Feldman—Hanna structural analysis
' model predicts differential rates of learning different contingencies; the
' schema and generalization models envisage the encoding only of runs and
o0 one has hypothesized any relationship between learning rates and event
atterns for the k-span model. Hanna and Feldman’s assumption that long
ubsequences are discriminated first appears to be incorrect; their own data
nalyses revealed that subjects first responded differentially to patterns
hich span fewer events. For patterns of the same length, the order in which
ubjects learned to respond with different probabilities appeared to depend
pon how much the patterns differed with respect to probability of the next
vent.

In contrast to the precise pattern analysis assumed by Feldman and
anna, Wolin et al. (1965) characterize their subjects as first learning
eneral, inexact, aspects of the sequence and later more specific rules. For
xample, a subject might learn first that the sequence was composed of runs
nd single alternations and later learn that runs of E:’s had to be an

dd-numbered length or even some specific length. Still another view of the
sarning process is provided by Butler et al. (1969). In their data, it ap-

red that learning of recurrent sequential units (runs of different lengths)

nd learning of contingencies between such units proceeded concurrently;

Owever, learning the units, as indicated by anticipatory and persevera-

Ve errors, appeared to stabilize well before contingency learning was
omplete.

Transfer

Once probabilistic contingencies are learned, their effects persist for
1any trials after the sequence has been changed. At the end of 200 trials of
of .5, Anderson (1960) observed that the probability of a repetition
Ponse was approximately .7 for subjects originally trained with 711’s
g8ing from .6 to .9 and approximately .5 for subjects originally trained

m11’s of from .1 to .4; there was no indication that the two groups of
Ves were converging. Still more impressive evidence of transfer was
ained by Witte (1964), who found that run curves still differed as a
tion of original training after four once-a-week sessions at 11 of 5.

Uch persistent effects of original training are difficult for any of the models
I€r consideration.
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Using a four-choice prediction task, Jones and Ericksop (1972) have
demonstrated transfer of still other types of contingencies. Groups trained
to attend to the length and event class of two precedlpg runs performe@
better in a transfer task incorporating multirun contmgenaes thap 'dld
groups trained only to attend to current run length or given no training.
None of the four models presented thus far can account for these results
because what was transferred was not knowledge of the consequences of
specific patterns—be they runs or various other conﬁggratlons over several
event positions—but rather an abstract rule, perhaps pay atten’t,lon to the
last two run lengths and the positions in which they appeared.

Following Yellott’s (1969) lead, Colker and Myers_ 197 1).employed a
transfer phase in which all predictions were correct. Prior to this all-cor(rjec;
phase, subjects experienced one of four types of sequences composed o
two run lengths; these varied with respect to length of the two event runs
and probability that a run of a particular length would be fol!oyved py arun
of the same length. Protocols for the all-co?rect pha‘se were divided 1pto two
categories—simple periodic solutions which requlred. that tl.1e subject rg—
member only the run in progress and the len'gt.h of the immediately ;;lrece d
ing run (for example, 2/5/2/5/2 . . . ,the digits represent run lengths) .and
complex solutions which encompassed a}l response patterns that reclqmrcih
the subject to remember more than the 1mmed1at.ely. preceding run engt ;
(for example, 2/2/5/5121/5/5121215/1212] . . - ). Wltl‘lll.l each experml;(?n zti
group, there were significantly more errors in the training phase for subjects

who subsequently exhibited complex solutions. Furthermore, th(?se grougs
with higher mean error rates in training had more cpmplex solutions in t ﬁ
transfer phase. None of the models we have cfon51d.erejd encomp.ass.s?c !
results. They seem to require us to conceptualize a 11m1ted-capa01ty in (zr1
mation processing organism; when, eithe_r because of preex‘perlr?ecneal"1
biases or experimental influences, strategies are pyrsued which pla i
heavy load on short-term memory, more predictive errors are mra;en;(
Butler’s (1969) finding that a display of prior events beyond the cu e
run results in more errors than a display of 'only the cur.rent'run 1s .
consistent with the limited capacity hypothe§1s; givea subject mfo'rma '
and he will try to use it and, if the informahqn is 1r'releva.mt, as %I‘IOI' r
were in Butler’s study, the subject’s processing will be impaired.

5. Memory for Binary Patterns

It is clear that subjects do not learn perfectly ip the face of patte(r;;i
that are perfect predictors of the next event, gt least in .the sequepceg urllJ 3
consideration, all of which contain some points gt which there 1s spm -
uncertainty. The Gambino—Myers model provides one mechamsr.n 1
errors; an alternative explanation is simply that short-term memory 1 I
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perfect under the processing load placed upon the subject with such
sequences. This possibility suggests that one look at memory for event
patterns.

Glanzer and Clark (1963) provided subjects with brief exposures to sets
of eight binary figures. Accuracy of subsequent reproduction was best for
runs of eight like figures, deteriorated as the number of runs increased, but
was considerably improved again for single alternations. Millward and
Reber (1968) obtained similar results in the context of a binary prediction
task, probing on each trial for a specific event k trials back. As would be
expected, recall accuracy decreased as a function of depth of probe. Of
somewhat greater interest is the finding that, with depth held constant,
- recall accuracy decreased as a function of the number of runs intervening
~ between the target item and the probe, with one exception: when a single
alternation intervened, there was a decided upturn in the recall function.
- The results of these two experiments suggest that the amount remembered
- depended upon the patterning of events, a result at odds with both the
fixed-span and Feldman-Hanna models. Furthermore, as Restle and
Gambino and Myers have assumed, runs were basic units of information
storage. On the other hand, other patterns were recalled above a chance
level.

Vitz and Hazan (1969) also probed memory in the context of the typical
binary prediction task. They, however, probed only three times during the
session, asking subjects to recall as much as they could of the preceding
event series. Consistent with the implications of several transfer studies
cited earlier (Anderson, 1960; Witte, 1964), rather accurate long-term
memory was exhibited.

The relationship between prediction and memory is clearer in another
study (Myers, 1970). Probes of memory for recent events yielded more
~ errors for those experimental conditions in which errors of prediction were
greatest. Thus, contrary to all of the models considered, short-term mem-
' ry is fallible and, in fact, correlated with predictive errors. Of additional
interest is the distribution of remembered run lengths. In more than 97% of
440 probes of memory, the preceding run length was either remembered
rrectly or was remembered as shorter than it actually was. As might be
pected, the distribution function was monotonic; the correct run was
ported most often and the probability of a particular run length being
ported decreased as a function of distance from the correct value.

Discussion
IS clear that, as Restle, and Gambino and Myers, have hypothesized,

ent runs are units of encoding and information about the events following
h run length is available in long-term memory. It is equally clear that,
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contrary to the runs models, other patterns of events are enched. It
appears that an appropriate model will incorporate the assumption-that
what is remembered and responded to is not a fixed-span of event.s but
rather a variable event span whose length depends upon the partlcu‘lar
pattern of events. Furthermore, such a model will be all too human; unlike
the current model, it will have a fallible short-term memory.

Two possible mechanisms for memory failure are suggested by the Myers
(1970) data, in particular, by the finding that run lengths were almost always
remembered as shorter than they actually were if they were rememb_ered
incorrectly. First, errors may occur at event input; with some probability, a
counter may fail to register the incoming event. Second, errors may occur at
retrieval. For example, suppose the subject has correctly registered a run of
length five. Then, he has recently registered arun of length f01'1r, before thgt,
a run of length three, and so on. Assuming that traces of inputs vary in
strength as a function of proximity to the probe, and that the proba.blhty of
retrieving a trace when probed is proportional to strength, something very
much like the observed distribution of reported run lengths would be
obtained. Distinguishing between these two positions will be of inte?rest. In
addition, memory probe experiments employing other sequgntlal con-
straints are required to determine whether the apparent information lossis a
general phenomenon, or is peculiar to the run-structured sequences
employed in the experiment described. ' P

Transfer studies demonstrate long-term perseverative effects of training
with event contingencies, effects that seem to be beyond the scope of the
models considered. It appears that, having once formed hypotheses about
the sequences, subjects give greater weight to those event patterns that
support their hypotheses, only slowly changing their response pattern as
evidence accumulates that the sequential structure has changed. In' line
with this view, probes of memory during transfer might reveal that subjects
trained differently would differ in what they recall of the common tr.ansfer
sequence; subjects trained with high event repetition prob.abllmes‘ might Pe
more accurate in recalling prior run lengths, whereas subjects tralped with
low event repetition probabilities might be more accurate in recalling event
alternations. _ 0% g

The Colker and Myers (1971) results suggest a limited-capacity mform?t1
tion processing system. If this is so, failures in short-term memory, an

perhaps the amount of experience required for appropriate revision ol

hypotheses during transfer, will be a function of the amount of materlse
stored in short-term memory and the complexity of rules‘for .re_spo{l
selection. This suggests that part of the subject’s pr.oblem in ellmlnatlzgs
anticipatory and perseverative errors may lie in striving for perfection.

numerous investigators have noted, even in the face of more clearly randO_ 4

sequences subjects believe that there is a solution, a strategy that wi
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completely eliminate errors. Presumably, the subject develops and tests
- progressively more complex hypotheses, and, therefore, stores more infor-
mation, in an attempt to find the solution. The result is a loss of information
from an overburdened processing system with the consequence that errors
which could be eliminated are not. One further implication of this view of

he subject as a limited-capacity information processing system is that a
. sufficient model cannot merely incorporate a mechanism for memory fail-
' ures (whether at input or retrieval) but must also specify how such failures
" depend upon the information processing load. This implies, in turn, a need
or a more precise definition of such terms as ‘‘processing load’’ and
‘sequence complexity.”’

A clearer picture of sequential processing has emerged from studies in
which the number and complexity of hypotheses has been reduced through
he use of repeated event patterns. In particular, such studies have pro-
vided further data relevant to two related questions: What determines the
subject’s response at any position within the pattern? What determines the
" relative level of difficulty of responses at different positions within a pat-
ern? The next section provides a discussion of models and data within the
* context of such deterministic sequences.

IV. SEQUENCE LEARNING: DETERMINISTIC SCHEDULES

this section, how subjects learn to predict sequences that consist of
petitions of a single pattern is considered. The pattern could be a simple
ary one, for example, aaabb. At the other extreme, it may involve more
an two events and be generated by a relatively complex set of rules.
egardless of the complexity of the sequence, interest here will focus on the
rial position function. Of primary concern will be the ability of different
odels to predict variation in error rate over positions in the pattern as a
nction of pattern structure.

Models

An Association Model

1tz and Todd (1967) have proposed a model to account for prediction of
ated simple binary patterns of the form m a’s followed by n b’s, for
mple, aaabb. They assume that the pattern can be viewed as a set of
uli where each stimulus is the run preceding a position. Thus, if the
ern gaabb is repeatedly presented, the stimuli and responses are:

a,aa — a,aaa — b, b — b, bb — a.The stimulus-response connec-
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tions are assumed to be learned all-or-none with probability ¢, as in Boyver'_s
(1961) one-element model of paired-associate learning. If.the assocw}t.lon is
not learned, the subject guesses the correct response with probability g.
Such a model predicts stationarity, constant probabili‘ty of a correct re-
sponse over trial blocks prior to the last error to a stlmL}lus, as well as
independence of responses. Furthermore, assuming thaF cis cop.stanF over
positions, error rates should not vary significantly with position in the
sequence or with length of runs of a’s and b’s. Nl

The scope of the model is quite limited; for example, it fails to account for
patterns such as aabab because the stimulus a 1s ,foll(')wed by an a at
Position 2, and by a b at Position 5. Thus, the preceding run does not
contain sufficient information to allow the subject to learn tl?e entire paFtern.
Nevertheless, if the model successfully accounts for learning of the §1mp1e
patterns for which it was designed, it might be elaborated to deal with the
more complex patterns much in the way that Bower’s one-elﬁzr.nent model
for paired-associate learning was extended to a‘ccount for additional stages
such as stimulus differentiation and response integration.

2. A Two-Stage Model

Restle (1967) has provided one possible elaboration of the mod?}
sketched above. He distinguishes between ‘“mandatory"‘ and.“optlonal
positions; in the pattern aabab, Positions 2 and 5 are? optional in the sepse
that the subject’s response is not completely determined by the pr.e.cedm_g
run length. Restle’s account of the learning of mandatory positions 1sf
essentially the same as Vitz and Todd’s although h_e prefers to speak 0t
learning mandatory rules rather than forming associations. Responses ];1
optional positions are assumed to require a secon(‘i all-or-none stage to be
learned; thus, error rates should be higher at optional than at mandatory
positions.

3. Hierarchical Rule Learning Model

The two models described above deal with prediction of binary se-
quences. Aricher conceptualization incorporat.ing more, r?md more comp}l{f;,_
hypotheses, becomes possible when one considers multichoice t_asks.f o
tle (1970), and Restle and Brown (1970), have analyzed the learning (})1 W
tasks. They have assumed that subunits are learned first and then hig e
order rules, which integrate such subunits. The model hgs gr_eat Sﬁopov
predicting the relative difficulty of sequences, thc? relatl_ve‘ difficu yosi—
positions within sequences, the effects of manipulations within a few It)herS
tions in sequences, and transfer effects. Three operators are defined (0

are possible); T(X) is a transposition operator and implies incrementing 1
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each element in X by one; if X is the single element 4, T(X) implies 45, and if
X is the subunit 123, T(X) is 123234. The second operator, R(X) is a
repetition operator; thus R(5) implies 55 and R(23) implies 2323. The third
operator is a mirror-image operator which implies subtracting each element
in X from 7 (or in general, from one more than the total number of events);
thus, M(2) implies 25 and M(14) implies 1463. Now consider the sequence
12126565. This may be generated by letting X = 1, applying 7, then R, then
M ; one may represent this sequence of operations as M(R(T(1))). Restle and
Brown assume that error rates will be a function of the level of the rule
applied to generate a response for a position in the sequence; level corre-
sponds to distance to the left of X in this notation. Thus, Position 5, which is
generated by the leftmost, or M, operation, should prove most difficult.
Positions 3 and 7, which require the R operation to generate a correct
response, should be next in error rate. Events at Positions 2, 4, 6, and 8 are
enerated by the transposition operation which is the lowest level (right-
‘most) operation, and should, therefore, be easiest to learn. Two additional
redictions are immediately evident. First, if one divides the pattern into
ubunits and rearranges these so that the new sequence is no longer gener-
ted by a single rule hierarchy, the sequence should be considerably more
difficult to learn. Second, transfer to a new sequence employing the same
rule hierarchy but a different element X should be positive.

Results

1. Binary Event Sequences

a. Mandatory positions. Both Vitz and Todd (1967) using patterns with
nly mandatory positions, and Restle (1967) using more complex patterns,
ave found that an all-or-none learning model provides a reasonable fit to
ata at such positions. Furthermore, Vitz and Todd tested two critical
redictions of the all-or-none model, stationarity of error probabilities and
dependence of responses, and obtained no significant difference.
evertheless, there is at least one problem with the model. Both Vitz and
0dd, and Derks and House (1965), have noted higher error rates at the first
nd last positions in a run than at other positions. One not very plausible
Tpretation of such a result is that c, the conditioning probability, varies
function of position in the run. It is more likely that subjects lose track
he preceding run length; several of Vitz and Todd’s subjects reported
counting, and data considered in Section III clearly demonstrate that
happens in nondeterministic sequences.

nother possible source of difficulty, even in simple patterns, is
gested by a result obtained by Garner and Gottwald (1967). Using a
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simple aaabb pattern, they found that prediction errors were most frequent
following a run of two a’s. The pattern provided greater difficulty when the
second a was presented on trial 1, thatis,aabbaaa . . . On the other hand,
aaabbaaa . . . was relatively easy for subjects. Apparently, subjects
develop expectancies which conform to some simple hypothesis about the
structure of the pattern; in this case, subjects appear to expect a double
alternation. Errors pile up at positions that deviate from the expected
structure. Furthermore, the extent to which early trials confirm the sub-
ject’s expectancy influences difficulty of learning the pattern.

documented ip Section I11. Restle has proposed an alternative account of
Stage? 2 learning. He assumes that following the learning of mandator

p9s1t10ns the subject develops some general rule that integrates the indiSi
vidual runs. Errors should develop at positions which depart from the
general rule since such positions have to be learned as exceptions. In the
exampl.e under consideration, the sequence can be described as a re1'>etition
of the simple pattern bba except for Position 1, which has a notably higher
error rate than other positions. This analysis is consistent with Garnergand

Gottwald’s account of simple i
pattern learning and confirms thei i
on the role of expectancies. ik

b. Optional positions. As Restle (1967) hypothesized, optional posi-
tions, those at which the response is not completely determined by the
immediately preceding run length, do have higher error rates than manda-
tory positions. This is evident in both his own data and those obtained by
Derks and House (1965). Furthermore, the frequency distribution for errors
is well fit by Restle’s two-stage model. However, in both studies there is
variation in error rates among optional positions and, in some of the Derks rules used to con . ;
and House sequences, some mandatory positions have high error rates. one notes not onls}t/r:vc};teiiq:rigcr:: Soigif eiacatu Sf erml:'s S
These are generally at the end of runs longer than length three, suggesting i occurred. RN
miscounting. In short, there is support for the hypothesis of all-or-none : Learning of such isodi ;
learning of stages but Restle’s model, like Vitz and Todd’s, fails to provide . sequence, iuch as scasleeleZfeoncm)S(alriq;illecta2t3‘ildS)ba)111(§l lt)rsiilractF b gt oy
a complete account of variations in error rate over positions in the pattern. ther than by specific events or numer’ical intervals bst( i i

A closer look at how the second, optional position, stage is learned is d Brown first demonstrated this by comparin 6l:e:vrene'n evefn . Re.s’fle
instructive. Consider one sequence employed by Restle: equence with learning of three other sequences dirived tl"ll*logmoit abn H'ltlltllal

ansposing the initial sequence by one event (for example, 123 chi)lmeeZ
34), inverting it (123 becomes 654, or by transposing and ir;verting it (123
C:C;I;I‘est 54:3.). Sequence had little effect on error rates. More important to
Int at issue, sequenc i i ;
o oo t(ilons_ es did not differ with respect to the profiles of
VS?:;Z ltn'flhls Et“qy were typically most frequent at the beginning of the
i Tl;:ussq units and were the r.esult of overextension of the previous
i ah.i i err, in a sequence beginning 234654, the fourth position would
nstead 0% 6. F 01; rate and the error would frequently be the prediction of a 5
ik err(')rsril Ztt;’ln an(li) Johnson (1969) have shown that at least one cause
B il : e subject’s failure to recognize the end of the subunit;
b re lower when all subunits in a sequence were of the same
g) or when subunits could not physically be continued (for example,
?c(l:liltt:i)rrll:cll e};/lder}ce for the importance of subunits such as runs and trills
y be chunkez b 1l§1g an ambiguous sequence. For example, 6543432345
i either as 6543/432/345 (scales) or as 65/434/323/45 (trills).
terent error profiles can be produced by pretraining on sequences clearl
posed of scales or of trills, or by pretraining on an ambiguous sequencz

2. N-ary Sequences (N > 2)

hRestle .and Brown (1970) have reported a series of ten experiments in
which a 51x-chqlce task was employed. Such experiments are an advance
over binary choice experiments because they permit greater variation in the

b b a b

Event: a a
1 LU s )

a b b
Position: ARG
Italicized letters denote optional positions. Note that Positions 1 and 7
demand different responses, but the preceding five events, or three runs, are
identical. No other pairs of positions require this much information in order
to be discriminated. Nevertheless, only Position 1 was clearly more difficult
than other optional points; there were actually slightly more errors at
Positions 2 and 9 than at 7. These results argue against an associative theory
in which combinations of preceding events or runs are a discriminative cu€
for prediction. If such a theory were correct, one would expect both
Positions 1 and 7 to be considerably more difficult than other positions O
two grounds. First, it is reasonable to assume that it takes more trials tO
integrate a longer discriminative cue; if this were not true, there is no reason
for the consistent differences in error rate between mandatory and optiond
positions. Second, longer discriminative cues place a greater burden 01
memory and should result in more miscounting and thus more errors. That
this relationship between memory load and processing exists was amply |
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with pauses introduced which chunk the sequence into scales or into trills.
It is quite evident that the errors produced in transfer are a result of the
induced expectancy. For example, in the ambiguous sequence presented
above, subjects trained to expect scales should make more errors at Posi-
tion 5 than subjects trained to expect trills, and the error for the scales group
should usually be a 2; this is what was observed.

Given that subjects learn rules which guide them through subunits of the
overall pattern, how are the subunits integrated? Restle’s (1970) hierarchi-
cal rule learning model provides an answer which receives considerable
support from the data of the last five Restle and Brown experiments.
Several results are of particular relevance. First, the error rate ata position
in a sequence appears to depend not upon the particular rule required
to generate the response at that position, but rather upon where that
rule lies in the rule hierarchy. For example, given the sequence
12122323121223236565545465655454, which is so much more elegantly rep-
resented by M(R(T(R(T(1))))), we find most difficulty at the seventeenth
position, where the M operation must be applied, somewhat less at Posi-
tions 9 and 25, where the higher-order (leftmost) R operation must be
applied, and so on. The sequence generated by T(M (R(T(R(1))))) has much
the same error profile indicating that position in the rule hierarchy, rather
than the specific rule applied, is critical.

Second, there is some evidence that when a sequence can not be de-
scribed by a hierarchy of rules, performance at transition points between
subunits is poor. Restle and Brown found that a sequence obtained by
randomly ordering subunits of a sequence generated by arule hierarchy had
more errors at the first position within subunits; typically, these were due to
overextension of the previous subunit. This result not only confirms the
importance of the rule hierarchy in integrating subunit learning but also
indicates that lower-order regularities can be learned in the absence of
higher-order rules.

Third, there is evidence that rule hierarchies are learned from the bottom
up, or from right to left in terms of the operator notation we have used. In
essence, subjects appear to first determine the lowest element X, then to
learn the operation on it, for example T(X), gradually building up t.he
hierarchy. At each level, the repetition operator R is tried out first, resultlr}g
in errors. This is natural since the subject knows that the whole pattern 18
repeated and does not know the pattern length. This interpretation sugg€§t5
that subjects should learn a complex pattern most readily if small subunits
are first learned and then the pattern is extended by introducing rules
gradually in a lower- to higher-order direction. The conjecture was borne
out: subjects had less difficulty in learning the sequence T(M (TRT M)
when preceded by a series of training blocks in the order T(1), R(T(1)):

TR(T(1)), M(TR(T(1)) than when preceded by training blocks in th¢ =

order T(1), T(M(1)), TMM(T(1))), TM(T(R(1))))-
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It is possible that the results considered are specific to the prediction task
that they depend upon verbal rehearsal and a conscious and deliberate’
er_lcodmg and storing of information. Two experiments, employing rather
different methodologies, have addressed this issue. Garner and Gottwald
(1968) required subjects to observe repeating patterns of eight binary
events, presented either visually or auditorily, and at one of five rates of
presc?ntation. Subjects stopped the presentation when they felt able to
proyu}e a description of the pattern. Stopping point and accuracy of de-
scription were differently affected by the independent variables at high and
low speeds, aresult which led the authors to conclude that processing atlow
speeds (‘‘learning’’) is an active intellectualized process, while at high
speeds (‘‘perception’’) it is a passive experience of an integrated sequence
Restle and Burnside (1972), who required subjects to track six-event se-.
quences by pushing the appropriate button when a light came on, reached a
very dlffer‘ent conclusion. Redoing several of the Restle and Brown predic-
tion experiments with the tracking task, they found similar effects on error
- profiles. In contrast to Garner and Gottwald, they concluded that learning
and perception of serial patterns are closely related, that both involve a

rather rapid organization of serial information, an organization controlled
by rule hierarchies.

C. Discussion

he data present difficulties for associative models. The generally intricate
rofil.es of errors argue against simple conditioning of responses to serial
ositions. Simple conditioning on the basis of last event, the models with
hlch_ we began this chapter, also clearly does not stand up to the results
Qndltloning of responses to the immediately preceding run, essentially thé
Yltz—Todd model, does not completely describe even data from simple
lnary patterns, although the addition of some forgetting mechanism might
| ﬂic.e. to resolye the problem. Nevertheless, it is evident that a complex
‘2§%tlon?d s.tlmulus must be assqmed if one is to cope with optional
Mwedilcotrils nulal;ll?:ry sequences, or with the results obtained in multichoice
“_ Conceivably, the conditioned stimulus may be some preceding set of
nts or runs. However, as was noted in considering the Restle (1967)
a, 'and as Restle and Brown (1970) have also found in their six-choice
Periments, there is no clear relationship between errors at a position and
memory load required for accurate response discrimination. Further-
re, Restle and Brown have also noted that changes in the sequence may
ve effects at some position quite distant from the locus of change. De-

Oping an ac!equate account of the data from an associative framework
prove quite challenging.
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Restle and Brown’s (1970) rule hierarchy ‘model ‘pro'vic%es an alterng:Ye
frame of reference. It is assumc;d that subjects dlsc:rlmmatet:o;ne:3 ratzics
element, learn to operate on this, and proceed to cogcatene; P aton
until the sequence is learned. Operators that are appl}ed t(; arger gk d
quences are learned later. Errors occur at the begmnmg 0 suEum S aln
these are erroneous extensions of the currently applied operator. lr)rori sg
apply at points where there is ambigpity about the patut}‘e qf ;h: Xsue ;gti ;1;18
the subject makes the wrong decision on the basis o pr101 thpre etitior;
Finally, errors occur because of premature atterppts to a%p y tteemplen o
operator, presumably owing to a lack (?f definition of the pa 1 tg t

Several issues merit consideration. First, why do errors acc;ngu avzra1
initial positions in subunits? Fritzen and J ohnson (1969) have 1;10 et Sferm?_
possible sources of such errors. The Sl_lbj(?Ct may not 'kl"IOW w g{l Ofor o
nate the preceding subunit. Their data indicate that thlS‘ is a problem vl
subject. It is not clear whether this is because the subject .haf ml:}(i(:l-llould
the length of the preceding subunit or has not learned. whatits entgh o
be. Furthermore, some errors may occur whep subjects knovsl/( ata o~
operator is to be applied but are not sure which opgrato.r or ﬁow qvtive
operator but are not sure of Whicflldrglmber to (})egm with. The rela

ibutions of these factors should be assessed. ‘
Cogterg())‘rllg(,)what is the nature of the learning process? How is each new;;l;z
acquired? Is the process all-or-none, as Restle:, 896(17) atth(énzas é ;-
hypothesized? Are all rules equally easy to learn? Or tl(l)es bk,
acquiring a rule depend upon the rule and p.erl‘laps.upon en e
rules that have already been learned? There is httl‘e mforrpatlf)ﬁr; onlt a;1d 2
it would be surprising if all rules were really equivalent in di fc‘l:u r};l 2
difficulty of a particular rule did not depend upon the overall configu
ml%;ird, the Garner and Gottwald (1968) and Restle :emd Burrllslde1 6:(;372
results on perception versus learnir}g of patt.erned 1nforma;ffir:1 e
discrepant conclusions. These studies differ in rpa]:ly ngtermining e
quences, independent variables, and dependent' varial e.:s.1 R
conditions under which the same sequences yield equivalent r el
fast and slow event input rates seems fum‘iamentaI to'delmczia:m(gleﬁning o
ality of any theory of sequentiall_infgrmag\(])irtlhp;g:;:z{[r{i agr; ne(r)ality e
boundary conditions for its application. : S
ori | 4) discussion of serial patterns .pr.ov1des a use C

tslilgggis(;nk())rt}e: v&fild9e7 erge of theoriesuan;i theire [:,jehsdlty for tasks ranging

diction to perception to recall ot sequ : ‘ y
frolr-;lilll;rl(ley, given sofne representast'ion of (r;l;?]i’) hy?::, ;ic;e;t;ge ti:lal?iﬁi g:;lme
ate his response? Greeno and Simon . " il

ipti a base for very different procedures for der

Et?;tzg;f:;rciz?eu?:s;z?ls? These procedures differ in short-term memory
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requirements—how many and which elements must be immediately
available—and in the number of operations which must be applied in order
to arrive at the appropriate response. Experimental investigation of the

process of response generation appears to be a logical next step for inves-
tigators in this field.

V. CONCLUSIONS

The course of prediction research and theorizing has been a steady progres-
sion through three overlapping stages. The first was marked by the use of
random sequences in experimentation and very simple associative models
in theorizing. It served to set boundary conditions on the applicability of the
models under consideration. That early work has generated two paths—
more direct studies of how event probabilities are represented and of how
'patterns of events are processed.
~ The second stage was marked by the introduction of constrained se-
quences in which stimulus uncertainty was reduced but not eliminated. As-
sociative models became more complex than previously, with the run,
rather than the event, being a candidate for the discriminative stimulus. In
addition, models were introduced that were more oriented toward the
information processing approach developing in other fields of learning and
in perception. The importance of a run of events as a salient stimulus
became clear but at the same time it was also evident that subjects could
encode, remember, and respond to considerably more complex patterns. In
addition, the need to consider the capacity of the information processing
System became apparent.
. Inthe current, third, stage of investigation, subjects have been faced with
recurrent patterns of events. The resulting data place the difficulties en-
countered by an associative theory in full perspective. Progress toward an
information-processing model has been made. Prediction of future stages of
theoretical development is a risky affair, but it would seem that such work
Il center about delineation of rules not yet considered, the relative diffi-
Ity of learning different rules, the nature of the rule-learning process, the
nerality across paradigms of various models, and a clearer definition of
‘the information processing stages, with particular emphasis on the relation-
Ip between pattern representation and response generation.
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