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How much information from experience does a normal adult remember? The 

“functional informotion content” of humon memory wos estimated in several 

ways. The methods depend on measured rotes of input and loss from very long- 

term memory and on onolyses of the informotionol demands of human memoty- 

bosed performance. Estimates ranged around 10’ bits. It is speculated that the 

flexible ond creative retrieval of facts by humans is a function of a large ratio of 

“hardware” capacity to functional storage requirements. 

HOW MUCH INFORMATION DOES AN 
ADULT HUMAN REMEMBER? 

The question is interesting in its own right, and its answer may bear on im- 
portant questions about the requirements and mechanisms of information 
storage in the brain and in artificial devices that are designed to perform 
similar tasks. 

Some previous speculations regarding the size of human memory have 
been based on anatomical or neurophysiological facts. For example, the 
most commonly quoted figure, 10” bits, is simply an old estimate of the 
number of synapses in the cortex. Another widely quoted number, 10Zo, due 
to John Von Neumann (1958), represents the estimated sum of all neural im- 
pulses conducted in the brain in a lifetime. From the perspective of this 
paper, the chief deficiency of these approaches is not their obviously ques- 
tionable assumptions (e.g., that synapses or impulses represent only one 
flip-flop bit, rather than multiple thresholds or interpulse interval values). 
What is wrong with such estimates is their level. Even if we knew that the 
wetware of the brain was capable of representing 10zo bits, we would have 
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no idea how much information gleaned from experience is actually encoded 
and later retrievable, because we know very little about how neural infor- 
mation is recorded or about how neural phenomena might be related to the 
information-maintaining capacity of the whole brain. We do not, for exam- 
ple, know how much neural capacity is used up in “internal affairs,” “book- 
keeping,” “ data base management,” or in overcoming the effects of noise, 
unreliability, and damage. The first requirement for an estimate of the 
functional content is to measure,information maintenance in terms of the 
functioning system as a whole, rather than at the level of presumed com- 
ponents. 

In what follows, I describe some attempts to estimate how much func- 
tional information is actually held in human memory. Several different 
methods of estimation will be described, all relying on direct data about the 
performance of intact adult humans learning and remembering in normal 
ways. The first approach follows Von Neumann in that it assumes that all 
information that is entered into long-term memory (but not all that is merely 
perceived) is kept permanently. For this approach, we need estimates of the 
rate at which information is added to memory. Data from two very different 
learning and retrieval tasks, reading recall and picture recognition memory, 
are described. The second approach adds the effects of forgetting. Again 
two representative sources of data are used, picture recognition and life- 
event date recall. The third approach guesses at the amount of remembered 
information needed to support the kinds of performance of which an adult 
human is capable. 

Before describing the detailed estimates, a few general remarks and warn- 
ings are needed. First, this investigation required data on human memory 
formation, forgetting, and performance that could be converted into infor- 
mation-capacity terms. Psychologists have not usually measured perfor- 
mance in appropriate ways, the natural elements of knowledge for their 
purposes usually being facts or “chunks,” which, unfortunately, do not 
have the necessary properties of measurement units. As a consequence, the 
transformation of available data into bit rates has sometimes required the 
formulation of new models. These models specify an abstract scheme by 
which the input might be coded in memory. Behavioral data are then used 
to estimate the information that must be transmitted from input to output 
in order for humans to do what they do. The amount of information trans- 
mitted from input to output with some delay is taken as the quantity of 
“functional information” that must have been kept in memory. I have tried 
to keep the models simple and to make them correspond as well as possible 
to what is known about the mechanisms of the behavior in question. In 
general, they provide a description of the form, “if the information were 
stored this way, it would require so many bits of memory.” Second, the 
broad limits on the desired and attainable degree of accuracy in this kind of 
exercise need to be kept in mind. We currently have no firm knowledge of 
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even the plausible range for the size of human memory. It is this kind of 
estimate we seek. That is, we want to know whether human memory should 
be thought of as representing millions, billions, or millions of billions of 
bits. We need answers at this level of accuracy to think about such questions 
as: What sort of storage and retrieval capacities will computers need to 
mimic human performance? What sort of physical unit should we expect to 
constitute the elements of information storage in the brain: molecular parts, 
synaptic junctions, whole cells, or cell-circuits? What kinds of coding and 
storage methods are reasonable to postulate for the neural support of hu- 
man capabilities? In modeling or mimicking human intelligence, what size 
of memory and what efficiencies of use should we imagine we are copying? 
How much would a robot need to know to match a person? 

INPUT RATES AND ESTIMATES BASED ON 
A NO-LOSS ASSUMPTION 

If we assume that all information that enters long-term memory is perma- 
nently stored and we can get an estimate of the average rate at which in- 
formation is gained, we can cumulate over a normal lifetime to obtain an 
estimate of how much information the adult memory might contain. Of 
course, the physical memory could have capacity to hold many times the in- 
formation gained in a single lifetime, but, to repeat, we are interested here 
in realized functional “holdings” rather than potential maximum capacity 
(by analogy, how many books the library has, not how much shelf space.) 
We want the rate at which information is added to memory, in the sense that 
it can be retrieved after some delay. That is, we seek estimates for what is 
sometimes called long-term memory rather than short-term memory. Most 
information that is perceived is only retrievable for a short time, on the 
order of a minute, if it is not properly rehearsed or repeated. Moreover, 
these short-lived memories contain only relatively small amounts of infor- 
mation. We are interested here in lasting memories, those that cumulate to 
form the bulk of what an adult knows. 

In order to estimate the rate at which information is added to long-last- 
ing memory, I have made the simplifying assumption that the input rate is 
roughly constant. This implies a kind of conservation-of-learning principle: 
If one isn’t learning one thing, one is learning an equal amount about some- 
thing else. For example, a person obtains information both from the sur- 
roundings and from intentional study, but I will assume that the devotion 
of attention to one source will reduce, approximately equally, the gain from 
others, Thus, the average rate of accumulation of new information is as- 
sumed approximately equal to the measured rate for a single absorbing 
task. I have examined several sources of data that yield information mea- 
sures for concentrated input. Two that seem reasonably typical of normal 
experience and for which relatively reliable data are available will be de- 
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scribed in detail. These are for concentrated reading and for recognition of 
pictured scenes. 

Long-Term Memory Input From 
Concentrated Reading 
Good readers typically read moderately difficult material at about 200 words 
per min. At this rate, a reader who is stopped and asked questions about 
contents will recall gist and recognize changes in wording of text read a few 
minutes earlier with high accuracy. However, not all of this information is 
newly learned. Given a text like this, if words are deleted at random, a reader 
can guess approximately half from context and previous knowledge. Thus, 
the new information available in the text is roughly an average of one bit per 
word. But not all of what is read is remembered. I recently estimated the 
amount transmitted through long-term memory in the following way. Two 
hundred and four Bellcore employees, local homemakers, and Princeton 
undergraduates read paragraphs of moderate difficulty. After another 1.5 
min of reading, they were asked to fill in randomly deleted words either 
from the text they had just read or from equivalent (counterbalanced) para- 
graphs that they had never seen. The average proportions correct were .63 
and .48, respectively. Thus, the new information transferred through long- 
term memory was equivalent to log2 (.63/.48), or about 0.4 bits per word 
read. The participants read an average of 180 words per min, for an input 
rate to long-term memory of about 1.2 bits per second (b/s). 

Note that the measurement method in this case makes no assumptions 
about what kinds of knowledge or what mental representations “contain” 
the maintained information. We need only assume that whatever the new 
representation-perceptual pattern traces, spellings, semantic features, 
facts, propositions, improved comprehension of gist, and the like-the in- 
formation it represents is reflected in increased likelihood of correctly re- 
storing the original word. The method is likewise indifferent to the physical 
form in which the information is stored. 

This estimated input rate of just over 1 b/s may strike the reader as re- 
markably low. I will shortly describe other, similar estimates from very dif- 
ferent sources. But to increase the intuitiveness of the order of magnitude, 
consider the following. Suppose one remembered every word as a verbatim 
record, as if it were stored on a digital disk. How many bits would be re- 
quired for each word? This depends on how many different words a person 
can discriminate and code, because the pattern standing for a word must 
distinguish it from all other words the person could have read and remem- 
bered. 

Robert S. Moyer and I once estimated this number by sampling 1,000 en- 
tries randomly from a large unabridged dictionary and testing Stanford 
undergraduates about their meaning. By reinflating to the size of the full 
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dictionary and taking rough account of the number of words that can be 
understood by reconstruction from common roots, we estimated that the 
average student knew around 100,000 words. To distinguish any of 100,000 
words from any other requires a code of about 17 bits. (A compression trick 
like Huffman coding, in which frequent symbols are given shorter codes, 
might reduce the average code length by about one-half for normal English 
text.) If a text were stored in a phonetic,or alphabetic code instead of as 
word identities, 30 to 50 bits would be needed for each word. Thus, literal 
storage would correspond to input rates of about 50 to 150 b/s. But this 
ignores semantic and syntactic redundancy, the fact that little of the knowl- 
edge in what is read is new to the reader, and the certainty that only a frac- 
tion of what is new is remembered. Thus, that the actual ratio of newly 
stored and retrievable information to nominal information in text is as little 
as l/40 or even l/100 does not seem at all implausible. 

The first line of Table 1 shows that a rate of 1.2 b/s for 16 hr per day 
(there is little evidence of learning during sleep) for a lifetime of 70 years 
yields (1.2 x 1.5 x lo9 set) = 1.8 x lo9 bits, for a first estimate of the total 
amount of information a person might remember. 

TABLE 1 

Estimates of Amount of Information Held in Human Memory 

Input Rate Loss Rate Total 
Source of Parameters Method of Estimate (b/s) (b/b/s) (bits) 

1. Concentrated reading 70-year linear cumulation 1.2 1.8X109 

2. Picture recognition 70.year linear cumulation 2.3 3.4x109 

3. Central values asymptotic 2.0 10-9 2.0x 109 

net gain over 70 years 1.4x109 

4. Word knowledge semantic nets X 15 domains 0.5x109 

Input Rates for Recognition Memory of 
Pictures and Other Material 
A second input rate estimate was obtained from data from several published 
experiments on recognition memory for pictures. In a method introduced 
by Nickerson (1965) and refined by Shepard (1967), people are shown pic- 
tures, one at a time, sampled at random from a large pool. Later they are 
shown pairs of pictures, one from the previously examined set and another 
from the same pool but not previously seen. They make their best guess as 
to which of the two they have seen before. Accuracy is quite high; for exam- 
ple Shephard’s subject were correct on 97% of their choices when they had 
seen 612 pictures. 

To turn this kind of performance measure into an estimate of required 
information capacity, we need a model. The following one describes the 
data quite well. Assume that each picture as seen is transformed into a b bit 
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code, perhaps representing a description of some of the features of the pic- 
ture that can be perceptually analyzed. There are, consequently, a total of 2b 
codes available. At time of test each picture in the pair is coded, and its code 
compared with all the codes previously stored to represent pictures seen dur- 
ing the inspection series. Because recognition is virtually perfect immedi- 
ately after a single picture is presented, and because we are assuming no 
loss, the model supposes that the perception of every old picture leads to a 
code that matches one stored in memory. Therefore, an error occurs only if 
the new picture in a test pair happens to be coded the same as one of the pre- 
viously seen pictures. When this occurs, both pictures appear to be old, and 
the subject must guess. Accuracy, therefore, is determined by the likelihood 
that a new picture is coded in the same way as some old picture. Now, sup- 
pose that pictures are optimally coded, in that each code is as likely as any 
other. Recall that in the experimental method, pictures are chosen randomly 
from a large pool, so any picture is as likely to be chosen as any other. There- 
fore, the likelihood that a newly chosen picture will have a code not assigned 
to any previously seen picture is given by the expression 

p(new code) = 1 -$ , [ 1 n (1) 
where n is the number of pictures initially shown. 

If the model is correct, the relation between the number of pictures shown 
in an inspection series and the proportion correctly identified will yield a 
constant number of bits for the code. Some data obtained by Lionel Stand- 
ing (1973) using some 11,000 slides of scenes, faces, and other mundane 
subjects, provide an interesting set of data for this purpose. 

As shown in Table 2, the bits required for coding, according to the model 
expressed in Equation 1, are remarkably constant for inspection series of 10 
to 1,000 pictures. A central value for these data is roughly 10 bits per pic- 

TABLE 2 

Information required for recognition memory of sets of pictures. 

Data ore from Standing (1973). 

The informotion requirements were estimoted according to a model described in the text. 

Number of Pictures 

Originally Shown 

Proportion of New-old Pairs 

Correctly Judged 
Code Bits 

Required 

20 

40 

100 

200 

400 

l,ooO 

4.ooo 
lO.ooo 

.99 10.0 

.96 8.7 

.95 9.9 

.92 10.1 

.B6 10.2 

.BB 11.9 

.Bl 13.0 

.B3 14.6 
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ture. But another factor must be taken into account. Standing tested these 
subjects two days after seeing the pictures and, despite our working assump- 
tion of no loss, their performance was demonstrably (Nickerson, 1968; 
Shepard, 1967; Standing, 1973) degraded by the delay. At this point we want 
an estimate of the amount retained after about a minute or two, that is when 
the influence of short-term memory has been lost, and long-term memory 
first “consolidated.” Data collected at different delay times by Shepard 
(1967) and others (see Table 3) suggest adjusting the estimate upwards to ap- 
proximately 14 bits per picture initially stored in long-term memory. 

Similar experiments have been done with words, both visually and audi- 
torily presented, short passages of music, sentences, and nonsense syllables. 
Comparable estimates of coding requirements for these items and for other 
data on picture memory are shown in Table 3. The similarity of the values is 
striking. 

TABLE 3 

Estimates of information required for recognition memory for various kinds of materials 

(in bits). 

Pictures 

Unselected pictures 

10.0-14.6 (Standing, 1973; 20 to 10,000 tested after 2 days) 

12.9 (Standing, 1973; 200 tested after 1 hr) 

12.0 (Nickerson, 1968: 200 tested after 1 day) 

13.1 (Shepord, 1967; 612 tested after 0.5 hr) 

Vivid pictures 

11.9-13.0 (Standing, 1973: 20 to 1000 tested after 2 days) 

Words, visual 

11 .O (Shepard, 1968; 540 tested after 0.5 hr) 

6.5-l 1.0 (Standing, 1973; 20 to 1000 tested after 2 days) 

11.5 (Standing, 1973; 200 tested after 1 hr) 

Words, auditory 

11.7 (Standing, 1973; 200 tested after 1 hr) 

Sentences 

11.3 (Shepard. 1968; 612 tested after 0.5 hr) 

Nonsense syllables 

10.2 (Standing, 1973; 200 tested after 1 hr) 

Music segments 

11.4 (Standing, 1973; 200 tested after 1 hr) 
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For an input rate for pictures we also need to know how long it takes to 
encode each one. Standing performed most of his experiments with a 5.6- 
seconds-per-picture presentation rate, which is close to the 5.9-second aver- 
age chosen by Shepard’s self-paced subjects. If 6 seconds per picture is taken 
to be a normal absorbing learning rate, then an estimated memory input 
rate of about 2.3 b/s is obtained. This corresponds to a lifetime no-loss ac- 
cumulation of about 3.4 x IO9 bits, as shown in line 2 of Table 1.’ 

Note that the estimated number of bits initially stored for words and 
nonsense syllables is only a little lower than that for pictures, despite the 
fact that they have very different learning rates by ordinary measures. Re- 
sults from recognition experiments with a variety of other materials are 
shown in Table 3. The implied input rates to long-term memory are quite 
consistent. Isolated words, at 6 set and 12 bits per word, would give about 2 
b/s, as would nonsense syllables and music. Whole-sentence recognition 
yields a similar b/s rate, and assuming sentences to average about seven 
words, matches the per-word rate based on recall of missing words from 
continuous text. This invariance over measurement methods and materials 
lends some credibility to the working hypothesis of conservation of memory 
input.’ The similarity of estimates derived from methods based on cued re- 
call and those based on forced-choice recognition is especially encouraging 
to the information-theoretic approach to input measurement, because these 
two indicants are usually considered to mark the extremes of sensitivity for 
assessments of retention in human memory. 

’ Potter and Levy (1969), using artificial means of rapid presentation of short strings of pic- 

cures, have achieved higher input rates. For example, at three pictures per set, their subjects 

had false positive and hit rates of around .03 and .48 respectively, that is, .48/.03 =4 bits per 

picture, or 12 b/s. Three per second is about the maximum rate of natural eye fixations. How- 

ever, these experiments used quite short retention intervals, sometimes well under 1 minute. It 

is-worth noting that the total time rule (Bugelski. 1962). which holds to a first approximation 

across a wide range of conditions (see, e.g., Baddeley. 1976). states that long-term memory for- 

mation rate is independent of presentation rate. 

’ The estimates given here are, in general, the simplest and most central of several tried. In 

some cases, additional considerations lead to either higher or lower rates, but not by large fac- 

tors. For example, the picture-coding estimate is questionable on two grounds, one leading to 

overestimate, the other to underestimate. The assumption of equally frequent independent 

codes is likely to be unrealistic, even for a “functional” capacity measurement, because it is 

unlikely that features can be found that equalize the likelihood of every code for the scenes ac- 

tually encountered in life. In a somewhat more complicated model, I assumed that picture 

codes were distributed across pictures in the way words are distributed in English usage, in- 

stead of the uniform distribution assumed here, and found that a code length approximately 

one-third again as long would be required to support the kind of performance observed. On the 

other hand, a more efficient coding scheme, for example, a Huffman code, would reduce the 

average requirement by representing relatively frequent patterns (or features) as relatively 

shorter bit patterns, as is done to some extent, for example, in the alphabetic representation of 

words. 
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ESTIMATES BASED ON BOTH INPUT AND LOSS RATES 

At the functional level it is clearly not true that all information that is en- 
tered is retained. People do forget. By measuring forgetting rates appropri- 
ately, estimates of functional memory size that take into account both input 
and loss can be made. Suppose we have both a constant input rate I, and a 
constant loss rate L, where I is the number of bits added to memory per unit 
time, and L is the likelihood that any previously added bit is altered during 
any unit time period. Then the resultant growth in total number of stored 
bits, T, remaining unaltered at a time f, is given by 

(2) 

Note that as I grows, the value of T monotonically approaches I/L, which 
must be the maximum quantity. There are two ways to combine input and 
loss rates. One is to follow the first approach and calculate the information 
cumulated over a particular time period, e.g., 70 years. The other is to use 
just the asymptotic value, I/L. 

The latter method corresponds to an interesting special interpretation 
that requires that loss be measured in a particular manner, and the discus- 
sion will be simplified by considering it first. This interpretation allows I/L 
to be seen not just as an infinitely distant equilibrium point at which gain 
equals loss, but as an estimate of total potential capacity at any fixed time 
of measurement. It is based on a particular model of the nature of very long- 
term loss from human memory that is somewhat unusual (its relation to 
some current theories will be touched on later). The model assumes that the 
cause of most of the forgetting going on at any point in time, that is, the 
forgetting that occurs over years, is the result of overwriting or masking of 
old information by new. It also assumes there is a certain fixed amount of 
storage capacity, that is, writable bits, available. Each newly learned bit oc- 
cupies one of these loci, either filling a previously unused one or “overwrit- 
ing” one previously occupied. “Loci” at which new information is written 
are distributed in the same way as those of old information, that is, there is 
no systematic allocation of new information to previously unused portions 
of memory. (For a rough computer analogy, think of hash coding or Hop- 
field net storage.) Then the likelihood of a particular bit being overwritten 
in any time period is given by the ratio of the number of bits entered in that 
period to the total capacity. Note that even if certain regions of memory 
were specialized for certain kinds of information, so that only similar kinds 
of information overwrote each other, the same relation would hold on the 
average. Moreover, it would be reasonable for the system to allocate capacity 
proportionally to demand so that different kinds of information would suf- 
fer similar degradation rates. 
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To estimate capacity in this model, or directly by Equation 2, a measure 
is needed of the rate at which an average bit of previously stored informa- 
tion is lost. So far, I have been able to obtain useful loss rates for only two 
sorts of material, the best one for picture-recognition memory over 1 year, 
the other for recollection of dates over a 3-month period. 

Loss-Rate Estimates for Picture Memory 
A loss-rate estimate was obtained from an experiment by Nickerson (1968), 
who had subjects return and make recognition judgments about pictures 
seen between 1 day and 1 year previously. Nickerson did not use exactly the 
same procedure as the studies quoted above. Instead, he presented the pic- 
tures one at a time and asked for judgments of “old” or “new.” Most of 
the change in performance over the year was due to an increase in miss er- 
rors, that is, occasions on which an old picture was erroneously judged to be 
new. These data can be generated by the same process as modeled above, as 
follows. The number of codes used for the 200 pictures in the learning phase 
is a small fraction of the total code space available in 14 bits. Thus, change 
of any one bit of the corresponding stored pattern would almost always 
cause a failure of the code for an “old” picture to match any previously 
coded test picture, thus a “miss” error. Using our earlier estimates of the 
number of bits needed to represent each picture we can solve for the proba- 
bility that any one bit was changed in any 1 second, the loss rate we need. 

However, the rate of forgetting shown in Figure 1 is not uniform; forget- 
ting is much more rapid during the first month than thereafter. This is a 
typical result in human memory research. 

DAYS BEFORE TESTING 

Figure 1. Loss of picture recognition memory over a year (doto from Nickerson, 1968) 
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It is the loss rate represented by the very long-term portion that we want, 
because we are interested in the rate at which the average bit in memory is 
changed, and, of course, the vast majority of information known at any one 
point in time has been known for a long time. The estimated long-term 
picture-memory loss rate is approximately 6.5 x lo-“’ bits per bit per set 
(b/b/s). 

Loss-Rate Estimates for Date Memory 
So far, I have been unable to find quantitative data on memory loss for any 
other material for periods greater than 4 months. However, in order to 
judge the generality of the value obtained for picture-recognition memory, 
it is desirable to compare forgetting rates for this kind of information to 
those for some very different material. Luckily for this purpose, Thompson 
(1982) collected data on people’s memory for dates on which unique per- 
sonal events occurred during a period of 3 months, and Shepard (1967) tested 
small numbers of subjects on his picture memory task at 3, 7, and 120 days. 
To make the comparison, we need first to derive a loss estimate for the date- 
memory situation. 

Thompson (1982) had college roommates record events that happened to 
each other on Mondays to Thursdays over a semester. At the end of the 
term they were shown the descriptions and asked to guess the date on which 
the event occurred. Perfect recall would have required a little less than 6 bits 
of information to be transmitted through long-term memory for each date. 

Note that, again, no assumption need be made about the form in which 
the information is stored. For example, there is no reason to suppose that a 
literal “time stamp” is involved; information about the relative times 01 
various events, anchor dates, and so forth might serve as well to incorporate 
the needed information. 

Once again, it is the rate of very long-term information loss that is de- 
sired. Unfortunately, the best we can do with these data is to consider the 
portion of forgetting between 24 and 84 days. In this period the proportion 
of correct dates declined from .24 to .12, a loss of 1 bit per date, or about 
5 x 1OmB b/b/s of an initial 6-bit code. 

Shepard (1967) gives data for picture recognition tests at 7 and 120 days 
on four subjects each. The estimated loss rate during this interval is about 
4 x lo+ b/b/s. The difference in the estimates from picture recognition and 
date memory is uncomfortably large, but still small enough to justify select- 
ing a value for the sort of broad approximation desired. Two considerations 
favor using a value close to the slow extreme of the estimates: First, the 
average surviving memory of an adult is certainly much older than the oldest 
memories on which the estimates were made, and the loss rate appears to 
decline with time; second, slower decaying memories will tend to dominate 
faster in the distribution of survivors. Thus, a modest adjustment of the 
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7 x lo-lo value for very long-term picture memory to, say, lo+ seems reason- 
able as a first approximation to the rate at which the average bit held in 
memory decays. 

Before we actually obtain new size estimates, a few more words on the in- 
terpretation of forgetting rates are in order. First, let us continue to pursue 
the assumption that memory has a fixed maximum capacity, and that long- 
term loss is caused by new information replacing old. Received wisdom in 
the psychology of memory is that all or most long-term forgetting is due to 
interference, to confusion or conflict between one fact and previously or 
subsequently learned similar facts. The replacement idea used here need not 
be interpreted as literal overwriting. For what we have done, the addition, 
after the learning of an item, of other items that make it unavailable by 
some process like competition would serve the same function in reducing 
the likelihood of remembering. All we need for present purposes is the as- 
sumption that the rate at which information is made unusable is proportional 
to the rate at which other information is added. To a reasonable approxima- 
tion, this is what work on interference in human memory suggests. 

However, using the ratio of input to loss to estimate total capacity by the 
overwrite model requires that it be current input that causes forgetting, not 
previous input. Therefore, for this purpose the very long-term portion of 
the forgetting curve must be assumed to reflect only retroactive, not proac- 
tive interference. This is a plausible hypothesis, on current evidence, if not 
an established fact. (In the next approach, integrating net gain, this assump- 
tion will not be needed.) 

If we take 2 b/s as the typical input rate, and lO’+b/b/s as the typical loss 
rate, the total capacity, according to the overwrite model, is then about 
2x 10” bits. Next let us now turn to the theory-free estimation method im- 
plied by Equation 2. Here we are simply interested in how rapidly informa- 
tion is being gained and lost by memory. No explicit model of how memory 
is stored, retrieved, or forgotten is required, nor is an assumption of fixed 
capacity. The shape of the curve and its asymptotic limit, I/L results only 
from the assumption that loss occurs on a per-bit stored basis, that is, the 
more that has been stored, the more is being lost. 

The reader may wish to note how the discussion to this point can ration- 
alize what may have been arrapparent contradiction between the first two 
approaches, the assumption of no loss and constant accumulation versus the 
assumption of destruction of old by new. Although obviously these both can- 
not be exactly true, they nevertheless provide somewhat independent esti- 
mates. In the overwrite model the difference is merely a feature of the storage 
process, a question of whether new information selectively utilizes previously 
unoccupied space or unselectively overwrites old information. If, instead of 
overwriting, one were to assume that all once-known information is pre- 
served and that forgetting is only a matter of unavailability, then the first 
approach estimates the total stored and the second the amount retrievable. 
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Figure 2 shows both quantities as a function of age, based on the assumed 
input and loss rates of 2 b/s and lo+ b/b/s. By midlife a person has about 
lo9 bits of information accessible, according to this approximation, and by 
age 70, about 1.4x 10’ bits. If there were no loss, the analogous quantities 
would be around 1.5 x lo9 and 3.0 x 109, respectively. Thus, the difference 
between loss and no-loss assumptions, and between asymptotic or total 
capacity versus 70-year accumulation estimates, turns out to be relatively 
minor. 

METHOD 3, PERFORMANCE REQUIREMENTS 

A final approach to size estimation is to look at the information-using activ- 
ities of an adult human and try to make a guess at the amount of stored infor- 
mation needed for their support. I’ve made such an estimate, and, although 
it is not very compelling by itself, it strengthens the intuition that the other 
estimates are in a reasonable range. 

The performance estimate considers memory to be a library of informa- 
tion sources. One such information source is a “dictionary,” a collection of 
the knowledge one has about words. We noted above that a well-educated 
adult can identify about 10’ word meanings. What does it mean to know 
enough about a word to categorize it correctly or to read it usefully? At pre- 
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sent, there is no rigorous answer to this question, so I have made the follow- 
ing approximation. I sampled entries randomly from a dictionary and chose 
those that I knew according to the same criteria Moyer and 1 had used to get 
the 10J word-vocabulary estimate. I then looked to see how many words in 
the definition given in the dictionary I needed to know in order to reconstruct 
an intuitive match to my knowledge about that word. That is, I imagined 
constructing the portion of a semantic net that would connect the dictionary 
entry for a word to some number of words in the text of its definition, so as 
to represent just about as much as I know. I found I needed an average of 
about 12 content words per entry. To have a link to a word requires storing, 
in one way or another-for example, as some kind of a network structure or 
pointer-an address for the word. Because there are 10’ different words 
that might be addressed, the information required for such an address is 
about 17 bits. My imaginary networks used only a limited number of rela- 
tions, for example, “isa,” “part of,” “very similar to,” and the like as have 
some analyses and simulations of human word knowledge (e.g., Anderson 
&L Bower, 1973; Rumelhart, Lindsey, & Norman, 1972; Moore & Newell, 
1974.) Allotting 6 bits of label information to each of 12 arcs to represent 
my semantic knowledge of the average word that I can read with compre- 
hension, and adding 70 bits for spelling, pronunciation, grammatical 
marks, and the like gives 12 x (17 + 6) + 70 = 346 bits per word, for a total of 
3.5 x 10’ bits to store the knowledge in my mental dictionary. Now, the 
English lexicon is one of my largest domains of knowledge, but there are 
others. I probably know a similar amount about geography, history, and 
politics, about music, art, nature, and science, other equal amounts about 
my vocation, my avocations, my domestic life, my own life history, places 
I’ve been, people I’ve known, my motor skills, and so forth. If I give myself 
credit for 15 domains of knowledge as large on average as what I know 
about words in English, the total “library” would contain around 0.5 x lo9 
bits. 

Compared to the other approaches, this last is obviously a much wilder 
guess. But it does serve to indicate something of the expected amount of in- 
formation an adult human memory needs to hold. For example, it would 
seem implausible to either divide or multiply it by much more than 10. 

SUMMARY, CONCLUSIONS, AND REMARKS 

Several different methods for estimating the approximate functional content 
of adult human memory have been tried. Estimates were obtained of the 
rate at which information is entered into, and lost from, long-term memory. 
These estimates were then used in three ways to arrive at total capacity esti- 
mates. One way assumed that information is accumulated linearly throughout 
life, yielding an estimate of 1.5 x lo9 bits for a 35-year-old person. Second, 



HOW MUCH DO PEOPLE REMEMBER? 491 

the estimate was made more realistic by taking into account loss rates, 
reducing the amount of retrievable information held by mid-life to around 
lo9 bits. Third, the question of how much knowledge an adult needs to sup- 
port knowledge-based behavior was considered. A guess of about 0.5 x 109, 
based largely on estimates derived from word knowledge, was hazarded. 

Thus, the estimates all point toward a functional learned memory con- 
tent of around a billion bits for a mature person. The consistency of the 
numbers is reassuring. But, before drawing implications from this estimate, 
it will be useful to develop some idea of its overall degree of accuracy and of 
its proper interpretation. In my judgment, the input-rate estimates are prob- 
ably realistic within a factor of five in either direction. Several different 
data sources and memory-assessment procedures gave similar results. They 
all could be a little low because the measurement methods could fail to re- 
flect all the stored information, for example, a reader might acquire prag- 
matic knowledge that is unrelated to that used to restore missing words, or 
because some additional information from the environment leaks in even 
when one is concentrating on a difficult task. On the other hand, the input 
estimates may be somewhat high because the concentrated learning during a 
laboratory session is faster than usual. In a similar vein, I have tried many 
variations on the models and assumptions without producing order-of-mag- 
nitude changes in the input-rate estimates. The loss-rate estimate is more 
questionable. It is based on only a single experiment and some bolstering 
data from two others. Moreover, the decay rate seems to get smaller with 
time in a way that is not currently well understood or modeled. However, 
the overall estimate is not extremely sensitive to the value of the decay rate. 
For example, substituting loss rates of lo-’ and lo-‘“, which are 10 times 
faster and slower, respectively, than the the best-guess value, yields 35-year 
accumulation estimates of 0.2 x 10’ and 1.4 x 109. 

One way to interpret these estimates is to think about what capacity a 
computer system would need to maintain and retrieve the information that 
people do. The main estimation techniques used here correspond roughly to 
inputing data either in text or in digitized pictures, later trying to retrieve in- 
formation about the input, and describing the system’s functional memory 
holdings by the amount of information transmitted from input to output. 
For such a measurement to make sense, it is obviously important that the in- 
put and retrieval methods be those by which the system is normally used. In 
the memory experiments analyzed here, the input methods are normal for 
humans. The retrieval tests are somewhat contrived, but, as noted, span the 
sensitivity range for such tests while giving consistent estimates. One of the 
salient features of humans, as compared with computers, as information- 
conserving systems, is that humans can retrieve information based on ex- 
perience in a wide variety of different ways. More will be said on this point, 
shortly. 
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Let us now consider briefly how a functional memory-size estimate such 
as those obtained here might be related to the hardware-memory capacity of 
a computer system. Generally, a database system for textual material will 
require two or three times as much memory as is represented in the input 
text, depending on what kind of queries it will serve with what speed. The 
extra memory is used for the store and search routines and for additional 
representations of the input, such as hash tables or inverted files, that make 
retrieval faster and more flexible. If one were to build a system to recognize 
previously seen pictures, it might also have an elaborate preprocessor that 
extracted geometric features for coding. Like store and search routines, the 
preprocessor would probably be a common facility used for all input received 
through a particular channel. Such components entail a constant overhead 
in memory capacity, as compared to hash tables, inverted files, and the like, 
which grow at varying rates with the amount of information that is stored. 
The intention here is not to develop a serious computer model of human 
memory, but only to draw the analogy sufficiently to point out some of the 
differences between functional- and component-level descriptions of memory 
size. In particular, it should be clear that there is not a one-to-one corre- 
spondence between the amount of functional memory and the component 
capacity needed in its support. The more complex the analysis and transfor- 
mation of the input, the more degradation protected the storage, the more 
flexible the retrieval, the less efficient the storage and processing methods, 
the larger the underlying capacity may be. We know that humans perform 
more powerful perceptual analyses in both visual and auditory mode than 
we know how to accomplish with machines, and that they are capable of 
many feats of associative memory based on content and context that are 
equally mysterious. 

With these considerations in mind, some broad implications of the func- 
tional memory estimates for humans can be suggested. The numbers of bits 
are much lower than the number of synapses in the brain, and close to cur- 
rent physical memory capacities of electronic computers. What should be 
concluded from these last two comparisons? If we assume synaptic storage 
and suppose that each synapse corresponds to from 2 to 10 bits of storage 
and the brain of from 10” to 10” relevant synapses, then it would seem that 
the underlying physical storage devices are capable of a thousand to a 
million times the capacity manifest in learned behavior. Computer systems 
are now being built with many billion bit hardware memories, but are not 
yet nearly able to mimic the associative memory powers of our “billion” bit 
functional capacity. An attractive speculation from these juxtaposed obser- 
vations is that the brain uses an enormous amount of extra capacity to do 
things that we have not yet learned how to do with computers. A number of 
theories of human memory have postulated the use of massive redundancy as 
a means for obtaining such properties as content and context addressability, 
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sensitivity to frequency of experience, resistance to physical damage, and 
the like (e.g., Landauer, 1975; Hopfield, 1982; Ackley, Hinton, & Sejnow- 
ski, 1985). Possibly we should not be looking for models and mechanisms 
that produce storage economies (e.g., Collins & Quillian, 1972), but rather 
ones in which marvels are produced by profligate use of capacity. 

REFERENCES 

Ackley, D.H., Hinton, G.F., Jr Sejnowski, T.J. (1985). A learning algorithm for Boltzmann 
machines. Cognitive Science, 9, 147-169. 

Anderson, J.R., & Bower, G.H. (1973). Human associative memory. Washington, DC: 
Winston. 

Baddeley, A.D. (1976). The psychology of memory. New York: Basic Books. 
Bugelski, B.R. (1962). Presentation time, total time and mediation in paired-associate learn- 

ing. Journal of Experimental Psychology, 63, 409-412. 
Collins, A.M., & Quillian, M.R. (1972). How to make a language user. In E. Tulving and W. 

Donaldson (Eds.). Organization o/memory. New York: Academic. 
Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective compu- 

tational abilities. Proceedings of the National Academy of Sciences of the United 
States, 2554-2558. 

Landauer, T.K. (1975). Memory without organization: Properties of a model with random 
storage and undirected retrieval. Cognitive Psychology, I, 495-53 1. 

Moore, J., & Newell, A. (1974). How can Merlin understand? In L. Gregg (Ed.), Know/edge 
and cognition. Hillsdale, NJ: Erlbaum. 

Nickerson, R.S. (1965). Short-term memory for complex meaningful visual configurations: A 
demonstration of capacity. Canadian Journal of Psychology, 19. 155-160. 

Nickerson, R.S. (1968). A note on long-term recognition memory for pictorial material. Psy- 
chonomic Science, II, 58. 

Potter, M.C., Jr Levy, E. (1969). Recognition memory for a rapid sequence of pictures. Jour- 
nal of Experimental Psychology, 81, 10-15. 

Rumelhart, D.E., Lindsay, P.H., & Normans, D.A. (1972). A process model for long-term 
memory. In E. Tulving & W. Donaldson, (Eds.), Organization of memory. New York: 
Academic. 

Shepard, R.N. (1967). Recognition memory for words, sentences, and pictures. Journal of 
Verbal Learning and Verbal Behavior, 6, 156- 163. 

Standing, L. (1973). Learning 10,000 pictures. Quarter/y Journal of Experimental Psychology, 

25. 207-222. 
Thompson, C.P. (1982). Memory for unique personal events: The roommate study. Memory 

and Cognition, IO, 324-332. 

Von Neumann, J. (1958). The computer & the brain. New Haven, CT: Yale University Press. 


