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Learning Myopia: An Adaptive Recency Effect in Category Learning
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Recency effects (REs) have been well established in memory and probability learning paradigms but
have received little attention in category learning research. Extant categorization models predict REs to
be unaffected by learning, whereas a functional interpretation of REs, suggested by results in other
domains, predicts that people are able to learn sequential dependencies and incorporate this information
into their responses. These contrasting predictions were tested in 2 experiments involving a classification
task in which outcome sequences were autocorrelated. Experiment 1 showed that reliance on recent
outcomes adapts to the structure of the task, in contrast to models’ predictions. Experiment 2 provided
constraints on how sequential information is learned and suggested possible extensions to current models
to account for this learning.

Recency effects (REs) are a robust phenomenon in cognitive
psychology. REs are said to occur whenever more recent experi-
ences are better remembered or are more influential in judgments
about present situations. For example, in research on verbal work-
ing memory, REs are arguably among the most fundamental es-
tablished phenomena, most commonly seen as increased perfor-
mance on the final positions in free- or serial-recall tasks (e.g.,
Crowder, 1972; Murdock, 1962). Similar results have since been
observed in visuo-spatial working memory (Broadbent & Broad-
bent, 1981), as well as in animals (Thompson & Herman, 1977;
Wright, Santiago, Sands, Kendrick, & Cook, 1985). REs in work-
ing memory have often been attributed to spontaneous decay of
stored information (Baddeley, 1986; Burgess & Hitch, 1999);
however, this simple interpretation has been called into question by
recent results showing that the rate of information loss can change,
adaptively, in response to temporal statistics of the task (R. B.
Anderson, Tweney, Rivardo, & Duncan, 1997). This flexibility is
more consistent with a functional account of working memory
(J. R. Anderson & Schooler, 1991, 2000; Schacter, 1999) and
suggests that there is more underlying the phenomenon than sim-
ple architectural constraints.

Another area in which REs commonly arise is animal condi-
tioning experiments. Common learning phenomena that depend
on trial order, such as extinction, counterconditioning, and
discrimination-reversal learning, all fall into the category of REs
because they are characterized by behavior at the conclusion of
learning being based primarily on the most recent (second) phase
of training, rather than an average of both phases. However, the
existence and magnitude of such trial order effects depend cru-
cially on the relationship of physical and temporal contexts among
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the phases of training and testing, in a manner that is easily argued
to be rational and adaptive (see Bouton, 1993, for a review).
Similar REs are commonly observed in human experimentation
with probability learning, for instance as a tendency to respond
with whatever option was given as correct on the previous trial,
independent of the reinforcement pattern over the prior history of
the task (e.g., Jarvik, 1951; Nicks, 1959). This effect is easily
predicted both by associative-learning models and by models that
assume decay of memory for past events. However, such theories
have trouble with further results indicating that REs in these tasks
are subject to learning effects in response to sequential dependen-
cies in the target sequence. In particular, when outcomes of suc-
cessive trials are made to depend on each other, rather than being
independently sampled, observed REs adapt accordingly (N. H.
Anderson, 1960).

Some evidence for order effects has also been found in multiple-
cue category learning (MCCL). For instance, Busemeyer and
Myung (1988) found that humans’ subjective prototypes for
groups of random dot patterns showed a temporal bias involving
both primacy and REs. Still, a detailed investigation of sequential
effects in MCCL has yet to be performed. This situation is re-
flected in current models of the task, which either do not address
REs or treat them as static by-products of other processes. Such a
stance is at variance with the results from other domains, which
suggest instead that REs may be adaptive and sensitive to statis-
tical characteristics of the task. In particular, when viewed as an
extension of probability learning, MCCL might be expected to
produce effects similar to those mentioned above wherein REs
adapt to sequential dependencies among outcomes. On the other
hand, the presence of variable cues gives two reasons that the
pattern might be different. First, there is evidence that REs in
MCCL are more complex in that they depend on the similarity
between present and previous stimuli (Sieck, 2000). Second,
whereas uncued learners have little to attend to but the target
sequence, subjects in MCCL tasks have more tangible stimuli
about which they are explicitly instructed to learn. This attention
shift, combined with the memory demands associated with using
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multiple cues, could conceivably eliminate or greatly attenuate any
learning of sequential dependencies.

In the remainder of this article we describe a focused explora-
tion of REs in category learning intended to address these issues.
Our primary aims are to investigate (a) the presence and nature of
REs in cued category learning, (b) the role played by cues and by
stimulus similarity, and (c) potential learning effects in response to
sequential dependencies in the target sequence, along with the
mechanisms underlying such effects. We begin with a more de-
tailed account of results from the probability learning literature, in
which REs have been well documented and extensively investi-
gated. Next we discuss some of the more popular current models
of category learning and present a simulation study to evaluate
their predictions concerning REs in situations with and without
sequential dependency. We then present two experiments in a cued
categorization task involving sequential dependencies (one- and
two-step autocorrelations) among the correct category outcomes,
designed to contrast the predictions made by these models with the
predictions implied by a functional and adaptive interpretation of
REs (as extrapolated from results in short-term memory and prob-
ability learning). Our main result was that, when outcomes were
positively dependent on the outcomes of the previous trial (posi-
tive autocorrelation), observed REs increased, with an opposite
effect for negative autocorrelation. Thus REs in MCCL are more
flexible and adaptive than acknowledged by current theories.

REs in Probability Learning

In an (uncued) probability-learning paradigm, subjects are asked
over repeated trials to predict which of a fixed set of events will
occur. In the simplest version of the task the event probabilities are
constant across trials, and subjects’ ostensible task is merely to
discern the relative likelihood of each response being correct.
However, even in purely random situations subjects seem to try to
make use of recent sequential information (see Myers, 1976, for a
review). One commonly observed effect is a one-step positive RE,
whereby subjects are more likely to give the response that was
reinforced on the previous trial (Edwards, 1961; Jarvik, 1951;
Nicks, 1959; Suppes & Atkinson, 1960, p. 196). It has been noted
(Atkinson, Bower, & Crothers, 1965, p. 363; Estes, 1957) that
conditioning-based theories of learning (e.g., stimulus sampling
theory; Atkinson & Estes, 1963) naturally predict positive REs of
this sort because cumulative iteration of their learning rules leads
the most recent events to have the greatest effect on current
response probabilities (Atkinson et al. 1965, p. 363; Estes, 1957).

The iterative conditioning explanation of REs predicts them to
be constant, with magnitude dependent only on the learning rate.
This prediction has been falsified by experiments using sequential
dependencies, in which the target event for each trial depends
(probabilistically) on the outcomes of the previous trial (N. H.
Anderson, 1960; Engler, 1958; Hake & Hyman, 1953; Witte,
1964). For instance, N. H. Anderson (1960) varied the probability
that the outcome of each trial in a two-choice task would match the
outcome of the previous trial. In all cases, subjects’ proportion of
repetition responses (choosing the option that was previously
correct) came to approximate the true repetition probability, with
a small but consistent positive bias. Stated in terms of REs the
one-step positive RE described above showed adaptation to the
one-step autocorrelation actually present in the target sequence.

One approach to modeling of learning in situations like the one
just described is to treat the task as one of discrimination learning
with information from previous trials serving as cues. For instance,
Burke and Estes (1957) applied a generalization of stimulus sam-
pling theory to discrimination learning based on the immediately
preceding outcome. Their model predicts conditional response
probabilities to approximate conditional event probabilities, as has
been found empirically (N. H. Anderson, 1960). Extensions of this
idea to longer memory spans ("k-span models") can be found in
Restle (1961, pp. 109-111) and Feldman and Hanna (1966). The
major weakness of this approach is that it assumes information is
encoded in terms of individual past outcomes, whereas there is
good evidence that subjects attend more to patterns, such as runs
of identical or alternating outcomes (Glanzer & Clark, 1962;
Royer, 1967).

A contrasting theory, which we term the aggregation hypothe-
sis, assumes that subjects retain sequential information from more
than one trial back but merely encode some aggregate information
combining the outcomes of recent trials. This assumption is em-
bodied in run-based models, which encode outcome histories en-
tirely in terms of homogeneous runs, that is, which outcome was
seen most recently and how many consecutive times it just ap-
peared (Gambino & Myers, 1967; Restle, 1961). Gambino and
Myers’s (1967) generalization model also incorporates the as-
sumption of a confusion gradient in learning of run continuation
probabilities: Reinforcement after a run of length n also affects the
subject’s assessment of the probability of continuation of runs of
length m, to a degree that decays exponentially with |n – m|.
Although there is clear evidence of subjects’ ability to learn
sequential structure beyond that contained in run length distribu-
tions (e.g., Feldman & Hanna, 1966; Rose & Vitz, 1966), run-
based models have enjoyed the most success in accounting for the
majority of empirical data, at least for simpler sequential manip-
ulations (Myers, 1970; Rose & Vitz, 1966).

REs in Multiple-Cue Category Learning

As mentioned above, present models of repeated cued classifi-
cation have considerably less to say when it comes to sequential
effects, predicting either that such phenomena do not occur in this
task or else that they occur only as by-products of other processes
(e.g., iterated conditioning or decay of memory, as described
below). Such predictions are plausible even in the face of contrast-
ing results from probability learning because of the great differ-
ence in complexity between the two tasks. Whereas uncued learn-
ers have nothing to attend to but the past target sequence, subjects
in cued categorization tasks have more reliable and tangible stim-
uli and thus may ignore sequential information.

One class of category learning models that do make specific a
priori predictions regarding REs are those incorporating the δ-rule,
an error-driven learning mechanism (Gluck & Bower, 1988; Krus-
chke, 1992). Simple REs arise naturally in such models for the
same reason that they appear in conditioning-based theories of
probability learning, namely that the most recent updating always
has the strongest influence on the present strength of associations.
Another major class of models of category learning, those based on
explicit representations of past exemplars, have somewhat less to
say about REs. Classic exemplar models (Medin & Schaffer, 1978;
Nosofsky, 1986) predict no temporal effects whatsoever, as all past
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instances participate equally in classification of new stimuli re-
gardless of their time of presentation. Exemplar models can, how-
ever, be made to mimic δ-rule predictions by explicitly incorpo-
rating exponential trace decay (Estes, 1994; Estes & Maddox,
1995; Nosofsky, Kruschke, & McKinley, 1992; Nosofsky & Palm-
eri, 1997). These models and their predictions are detailed in the
following section. In all cases, it will be shown that the REs are
predicted to be static and unresponsive to characteristics of the task
environment.

Simulation 1: Predictions of Categorization Models in
Autocorrelated Ecologies

A simulation study was conducted to elucidate the RE predic-
tions of three prominent models of category learning, with an
emphasis on their predictions regarding statistical dependencies in
the target sequence. The categorization task simulated was the
same as the one used in Experiment 1 below. The cover story used
in that experiment was simulated medical diagnosis: Subjects were
presented with a series of hypothetical patients and asked to
diagnose them as having one of two fictitious diseases (trebitis and
philiosis), based on the presence or absence of three possible
symptoms. Feedback was given after each trial as to what disease
the patient actually had. The task involves two categories (the
diseases) and three binary cues (the symptoms); both pairs of terms
are used interchangeably in subsequent discussion. The design
contrasts three conditions varying in terms of the one-step auto-
correlation present in the target sequence: positive, negative, and
control (independent sampling). Three models were simulated in
this task: the adaptive network (AN) of Gluck and Bower (1988),
the exemplar model with trace decay (ETD), and the attentional
learning covering map (ALCOVE), a hybrid model that incorpo-
rates δ-rule learning in an exemplar-based representation (Krus-
chke, 1992). As all three models have been presented in detail
elsewhere, we describe here only their main features, referring the
reader to the original publications for further details.

Models

Adaptive network (AN). The AN model consists of a two-layer
network, with input nodes representing cues and a single output
node determining responses.1 Activation u of the output node is
calculated as a sum of the input node activities, each multiplied by
its corresponding weight. Response probabilities are then a non-
linear (sigmoid)2 function of u. Learning after each trial takes
place based on the discrepancy between u and the feedback signal
encoding the correct response. This discrepancy of prediction is
termed the δ-signal. The adjustment of each weight is proportional
to this error and to the product of the weight and the corresponding
input activation. Further details can be found in Gluck and Bower
(1988) and the Appendix.

One relevant detail of the AN concerns the representative
scheme of the input layer, for which there are at least three options.
The first, which we refer to here as the single-node network, has
one input node per cue dimension (three total for the present
application), with each node being activated only when the corre-
sponding cue is present. This network essentially assumes that
only present cues are actively represented, and only they provide
a basis for learning. A second alternative is the double-node

network, which has for each cue dimension one node that encodes
cue present and another encoding cue absent. Each node is active
only when its condition is met. The third alternative, the dual-node
network, also assumes that both present and absent cues are ac-
tively encoded but uses a single node per cue dimension to repre-
sent these possibilities. The node is activated positively when the
cue is present and negatively when it is absent. Gluck and Bower
(1988, Experiment 3) were able to reject the dual-node model due
to its prediction of perfectly complementary response probabilities
for complementary cue profiles (a consequence of the zero-sum
nature of its input representation). However, this prediction can be
relaxed by assuming that the context of the task acts as an addi-
tional, constant stimulus. Therefore we consider a version of the
dual-node model that includes an additional context node, which is
always active.

All three versions of the AN make qualitatively the same pre-
dictions regarding REs, with one important distinction: Because of
its negative input activations, the dual-node network can predict a
negative RE when the present and previous cue profiles are suf-
ficiently complementary. The other two networks are incapable of
predicting negative REs of any sort. Because of results reported
later in this article, and because other than this particular prediction
the models’ performance is qualitatively identical, only the results
of the dual-node network are presented for this simulation.

Exemplar with trace decay (ETD). The ETD model is an
extension of the context model of Medin and Schaffer (1978; see
also Nosofsky, 1986) that incorporates decay of memory for past
cases. Specifically, the influence of past exemplars on current
classifications decays exponentially with time since presentation,
operationalized in terms of the number of intervening trials. This
decay of trace strength can be interpreted either as an attenuated
contribution to the choice process, or as a declining probability of
being retrieved from memory (with all retrieved exemplars then
participating equally in the choice process). Knowledge represen-
tation in the ETD model is given by direct storage of all past cases,
including their values on all cue dimensions and their correct
category membership. On presentation of a new instance, the odds
of responding with Category A are given as the ratio of the number
of stored exemplars from Category A to the number of stored
exemplars from Category B, with each case being weighted by its
trace strength and its similarity to the present stimulus. Similarity
is defined as a product over cue dimensions, implying that the
similarity between two cases will be an exponential function of the
number of mismatching cue dimensions. Further details can be
found in Nosofsky et al. (1992) and in the Appendix.

ALCOVE. ALCOVE is a hybrid model that uses an exemplar-
based representation within a neural network updated using gen-
eralized δ-rule learning. The design for ALCOVE was taken

1 For the remainder of this article we restrict attention to situations
involving two categories. For this situation we assume a network with one
output node, representing the probability of Response A versus Response
B, which is formally equivalent to a network with a separate output node
for each category (Gluck & Bower, 1988, p. 234, Footnote 2).

2 For some applications, such as modeling of subjects’ estimated prob-
abilities of specific outcomes, this transformation is taken to be linear
(Gluck & Bower, 1988). We have simulated the model under this alterna-
tive assumption and found it to give the same qualitative predictions.
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directly from Kruschke (1992; see also Kruschke, 1990; Nosofsky
et al., 1992); similar ideas can be found in Estes (1988, 1994) and
in Estes, Campbell, Hatsopoulos, and Hurwitz (1989). The model
architecture is a network consisting of a set of input nodes coding
individual stimulus features, a layer of hidden units corresponding
(in the simplest implementation) to each possible exemplar, and a
pair of output nodes for the two response categories. Each hidden
unit is connected to the input units so that its activation is equal to
the similarity between the stimulus it represents and the one
currently presented. Similarity is defined as in the ETD model
except that each cue dimension contributes a variable amount
determined by a learnable attention weight. Activation of each
output node is determined by summing the activations of the
hidden units with each multiplied by the weight from that hidden
node to the output node. Response probabilities are then given by
a "softmax" function (cf. Luce, 1963) of the output node activa-
tions. Learning of hidden-to-output weights is accomplished in the
same manner as in the AN, using separate δ-signals for each output
node. Attention weights are learned similarly by means of back-
propagation (see Rumelhart, Hinton, & Williams, 1986). Further
details can be found in Kruschke (1992) and in the Appendix.

Method

The task was simulated in three separate conditions, differing in the
autocorrelational pattern of their target sequences. The target sequences of
each condition were generated using a fixed probability that the correct
outcome on each trial would match that of the previous trial: positive
condition: 70%; negative condition: 30%; control condition: 50%. Once
each target had been determined, the cue profile for that trial was randomly
selected according to the conditional probabilities shown in Table 1. Each
model was simulated on each condition for 20,000 trials.

To expand on the basic design, our method for introducing autocorre-
lation was to generate the disease sequence as a Markov chain. Because
events in a Markov chain are independent of earlier history once condi-
tioned on the previous time step, this approach allowed us to isolate the
relevant temporal information on any given trial to the immediately pre-
ceding outcome. Once a patient’s disease had been selected, symptoms
were generated depending on his or her disease according to fixed condi-
tional distributions, independent of the symptoms or diseases of past
patients (see Figure 1). Thus, under the Bayesian framework, a patient’s
symptoms could be thought of as current evidence for inferring the pa-
tient’s disease, while the outcome of the previous trial provided the prior
odds ratio, according to the Markov transition probabilities. According to

Table 1
Symptom Probabilities (in Percentages) Given Diseases in
Simulation 1 and Experiment 1

Disease

Symptom pattern

S1

S1, S3

S1, S2

S3

S2

S3, S2

Note.    S1 = Symptom 1 (runny nose); S2 = Symptom 2 (swollen hands);
S3 = Symptom 3 (sore throat).

Diseasen -2

Symptomsn -1

Diseasen -1 DiseaseDiseasenn

Symptomsn

Figure 1. Method for generation of ecologies, Simulation 1 and Exper-
iment 1. On a given trial, the disease outcome is determined solely by the
previous disease outcome; symptom profiles are determined solely by
present diseases.

Bayes’s theorem, the correct posterior odds ratio for the disease on the nth

trial, once the symptoms have been revealed, is given by

Here T is the target trebitis, F is the likelihood-ratio function taking
different values for each possible stimulus configuration S; Dn-1 is the
disease on the n-1st trial, and G is prior log-odds of trebitis, as
determined by the Markov transition matrix. In the positive condition, G(T)
= log[.70/(1 – .70)] = .85 and G(P) = log[.30/(1 – .30)] = –.85 (where
P indicates philiosis), whereas in the negative condition these values are
reversed. In the control condition G = 0.

The properties of this normative model are illustrated in Figure 2, which
shows the predictive value of Dn-1 as a function of the number of matching
symptom values between the nth and n-1st patients. Two features of Figure
2 are especially noteworthy. First, for the positive and negative conditions,
recent information does have a unique and informative predictive role, as
contrasted with the standard independent-sampling paradigm embodied in
the control condition. Therefore, optimal behavior in the positive and
negative conditions necessarily involves positive and negative REs
(respectively), as dictated by the rightmost term in Equation 2. However,
only the disease of the immediately preceding patient is relevant;
information from earlier patients is redundant. Second, the predictive
effects of present cues and past outcomes are purely additive and nonin-

E
ffe

ct
 o

f D
n 

-1

-2

-1

0

1

2

3

0 1 2 3

P o s i t iv eP o s i t iv e

N e g a t iv eN e g a t iv e

C o n t ro lC o n t ro l

n
nC 1−

Figure 2. Predictive validity of previous outcome in ecologies of Simu-
lation 1 and Experiment 1. The horizontal axis measures the number of
matching cue values between the present and previous patients. The ver-
tical axis gives the coefficient for the previous patient’s disease in pre-
dicting the current outcome (see Equation 1). Note that these values
also represent the magnitudes of one-step recency effects for normative
responding.

Trebitis Philiosis

31.1
24.4
17.8
15.6

8.9
2.2

2.2
8.9

15.6
17.8
24.4
31.1

(1)).()(
)T(P1

)T(P
log 1−+=








− nDGSF



630 JONES AND SIECK

teracting and, more specifically, the information contained in the previous
patient’s disease is independent of the similarity of that patient’s symptoms
to those of the present one. As we show next, this is in contrast to the
behavior predicted by the models.

Results

Analyses of the models’ performance proceeded by linear re-
gression of response probabilities. The predictors of primary in-
terest were the previous disease Dn-1 and its interaction with the cue
commonality nC 1−  between present and previous patients,
measured as the number of symptoms that both had or did not
have. In order to obtain unbiased estimates of these predictors, we
also included in the regression all other predictors that were
correlated with the ones of interest and that could potentially affect
responses. For example, because the models all predict two-step
REs, and because Dn-2 is correlated with Dn-1 in two of the three
conditions, Dn-2 must be included in order to give a fair estimate
of the effect of Dn-1.

3 The full set of predictors was therefore ,1
nS

,2
nS  3

nS  (the three present symptom values), ,1
1−nS  ,1−nS  3

1−nS  (the
symptoms of the previous patient), Dn-1, Dn-2, and the interactions
Dn-1 × nC 1−  and Dn-2 × .1nC −  All variables except nC 1−

 were coded
as ±1/2 so that the regression coefficient for each predictor would
correspond directly to the effect of that variable on average
responses. n

nC 1−  was treated as a categorical (as opposed to numeric)
variable for the Dn-1 × 

n
nC 1−  term to more fully determine the nature

of the interaction, and was coded as (0, 1, 2, 3) for the Dn-2 × 
n
nC 1−

term (the assumption of linearity for the latter interaction allowed
for more power, especially in the empirical investigations to
follow, while not affecting the qualitative pattern of the results).
Although all of these terms needed to be included, as discussed
above, our primary interest was in the influence of the previous
disease outcome, as well as its dependence on the cue
commonality. Figure 3 illustrates these primary features of interest
(comprehensive tables of results from these and all subsequent
regression analyses can be obtained by request from Matt Jones).

As can be seen in Figure 3, the models all predict a positive
one-step RE that interacts positively with cue commonality. Closer
inspection of this interaction reveals clear qualitative differences in
the predictions of the three models: The AN predicts a linear
interaction, with the effect of Dn-1 becoming negative for the
lowest value of 

n
nC 1− , whereas ETD and ALCOVE predict a one-

step RE that is always positive and is positively accelerated as a
function of 

n
nC 1− . Most crucially, the level of one-step RE

exhibited by each of the models is independent of the autocorre-
lation present in the target sequence, as shown by the close overlap
of the lines in Figure 3A-C. This confirms the earlier claim that
current categorization models predict REs to be invariant with
respect to autocorrelation in the target sequence.

Discussion

The results of Simulation 1 are summarized as follows: All three
models predict positive one-step REs that increase with cue com-
monality. The prediction of an overall positive RE is a result of
δ-rule learning in AN and in ALCOVE, and comes directly from
the trace decay assumption in the ETD model. The interaction of
RE with cue commonality in all three models differs from the
normative model, and occurs because similar past cases weigh more
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Figure 3. Influence of previous outcome on response probabilities as a
function of number of common cues between present and previous trials
(

n
nC 1− ), for adaptive network model (A), exemplar model with trace decay

(B), and the attentional learning covering map model (C).

heavily on the present decision. This is an explicit assumption in
the ETD model, whereas in AN and ALCOVE the effect is due to
specificity of the learning mechanisms: Weights are updated in
proportion to their relevance on each trial, implying that the
learning on Trial n – 1 will influence the response on Trial n to the
degree that the two stimuli activate the same input nodes. In the

3 The same argument would seem to apply for the inclusion of Dn-3;
however, the correlation between Dn-3 and Dn-1 is eliminated once Dn-2 is
controlled for, due to the Markov nature of the disease sequences.

n
nC 1−

n
nC 1−

n
nC 1−

n
nC 1−

n
nC 1−

n
nC 1−

n
nC 1−

n
nC 1−

n
nC 1−

,1
nS

,2
nS 3

nS ,1
1−nS ,2

1−nS 3
1−nS

n
nC 1−



ADAPTIVE RECENCY 631

AN this same mechanism produces a negative RE when cue
commonality is minimal, because negative input activations allow
negative transfer of learning between stimuli with opposite cue
values. Note that among the three models, the AN, and specifically
the dual-node version, is unique in predicting this negative RE.
The AN also differs from the other two models in that it predicts
RE to be a linear function of cue commonality; by contrast, ETD
and ALCOVE both predict RE to be markedly greater for a past
case that highly matches the present one, as a consequence of these
models’ multiplicative similarity-activation functions.

Most important, the REs predicted by all three models were
unchanged by the autocorrelation manipulation. This is a robust
prediction that holds under broad changes in all parameter values
(see the Appendix). The invariance of RE with respect to autocor-
relation results from the fact that only the learning rate (in AN and
in ALCOVE) or the rate of forgetting (in ETD) determine the
preferential reliance on recent outcomes. In particular, the models
include no mechanism for recognizing sequential dependencies.
We turn now to an empirical test of this assumption.

Experiment 1: Recency and the Effects of Autocorrelation

The purpose of Experiment 1 was to verify the presence of REs
in category learning, and to test their dependence on cue common-
ality and autocorrelation among outcomes. In order to determine
whether REs in category learning are due to immutable or
adaptable mechanisms, we divided subjects into three groups dif-
fering in the manner of one-step autocorrelation present in the
sequence of diseases they encountered: positive, negative, or none
(control). If REs were immutable, as predicted by the models
simulated above, then β weights for the previous outcomes in
predicting present responses would be equivalent across experi-
mental conditions. If, however, REs were adaptive, then βs would
be expected to shift in the direction supported by each ecology.

Method

Subjects. Subjects were 100 undergraduates from the University of
Michigan who received partial credit in an introductory psychology course
for participation. The experiment was conducted in groups of 10 to 20, with
subjects randomly divided among three conditions: positive (n = 34),
negative (n = 33), and control (n = 33).

Design. There were three between-subjects conditions with positive,
negative, and null (control) autocorrelational patterns, exactly as described
in Simulation 1.

Procedure. The stimulus associated with each successive hypothetical
patient was presented on a Dell PC (Austin, TX) as a pair of vertical lists
of symptoms, arranged side by side, titled The patient presents with and The
patient does NOT exhibit. Each of three symptoms—runny nose (S1), swol-
len hands (S2), and sore throat (S3)—was contained in one of the two lists.
Below the symptom display were buttons labeled with two fictitious
diseases—trebitis and philiosis—from which subjects were instructed to
choose their diagnosis, along with a window in which subjects typed their
percentage of confidence in their diagnosis (subjects entered their re-
sponses using a keyboard and a mouse). The confidence response was
constrained to be between 50% and 100%. Detailed instructions on the
meaning and use of the probability scale were provided, in accordance with
earlier probability judgment research (Sieck & Yates, 2001; Yates, Lee,
Shinotsuka, Patalano, & Sieck, 1998). After both responses were made, the
correct disease was displayed, with the symptoms and the subject’s re-
sponses still visible. The subject then clicked a button to clear the screen
and begin the next patient.

Subjects were each presented with 150 hypothetical patients in two
blocks of 75, with a message displayed on the screen after the first block
telling them to rest, stretch, et cetera, and to hit RETURN when they were
ready to continue. The entire experimental session was completed
within 50 min.

Results

To measure contributions of present and past information to
subjects’ responses, we analyzed the data from each subject using
regression. Subjective probability estimates for the outcome trebi-
tis were obtained from subjects’ confidence judgments in their
diagnoses (by subtracting the given response from 100% on all
trials where the diagnosis was philiosis) and fit with the same
linear regression model used in Simulation 1. Diagnoses were also
fit to a logistic regression model using the same predictors. Note
that this logistic model is a direct generalization of the normative
model (Equation 2) with additional terms included. Because the
central results of the two analyses were qualitatively identical, only
the probability data will be presented here.

Coefficients for the previous outcome Dn-1 at all four values of
cue commonality 

n
nC 1−  are shown graphically in Figure 4. These

coefficients represent the magnitude of subjects’ one-step RE
conditioned on each possible degree of similarity between the
present and previous patients. For example, in the control condi-
tion on trials where the present and previous patients matched on
all symptom dimensions (

n
nC 1−  = 3), reported probabilities of

trebitis were 15% higher when the previous patient had trebitis
than when that patient had the alternative disease philiosis. The
pattern of effects in Figure 4 reveals a heightened one-step RE for
the positive condition as compared with control, with an approx-
imately symmetric and opposite effect in the negative condition.
All three conditions show an increased RE for larger values of

n
nC 1− .

Formal tests of these observations were carried out by means of
a repeated measures analysis of variance (ANOVA), with four
observations per subject corresponding to the β weights for Dn-1 at
all four values of 

n
nC 1− .4 Condition was included as a between-

subjects variable. The test of the main effect of 
n
nC 1−  was signif-

icant, F(2.2, 213.7) = 51.9, p ≈ 0, using Geisser-Greenhouse
(G-G) correction for violation of sphericity with ε = .734, indi-
cating that the influence of Dn-1 does depend on 

n
nC 1− . Furthermore

the quadratic contrast for 
n
nC 1−  was significant, F(1, 97) =

16.4, p < .001, implying that the dependence of RE on cue
commonality is nonlinear. The main effect of condition was also
significant, F(2, 97) = 3.479, p < .05, confirming that the level
of RE differed across conditions. Finally the interaction between
condition    and   

n
nC 1−    was    not   statistically   significant,   F(4.4,

4 The two-stage approach used here, in which β weights are obtained
separately for each subject and then compared across subjects, is nearly
equivalent to a mixed-effects model that analyzes all of the data concur-
rently, using subject as a random effect (interacting with all 10 fixed
effects) nested within condition. The present analysis gives qualitatively
identical results with approximately the same statistical power, but avoids
the difficulty of dependence among trials for a given subject (because, e.g.,
Dn-1 for Trial k is the same as Dn-2 for Trial k – 1). The only independence
assumption required under our approach is that the β weights for different
subjects be independent.

n
nC 1−

n
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n
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Figure 4.    Influence of previous outcome on responses in Experiment 1 as
a function of 

n
nC 1−  (probability judgment data).

213.7) = 0.757, using G-G correction. This corresponds to the
approximate parallelism among the lines in Figure 4 and is con-
sistent with the interpretation that while the overall level of RE
differed among conditions, the dependence of RE on cue com-
monality was unchanged.

Discussion

The results of Experiment 1 confirm the presence of REs in
category learning. In addition, they demonstrate the positive de-
pendence of REs on cue commonality, confirming this particular
prediction of the categorization models discussed above. The form
of this interaction is nonlinear and positively accelerated, consis-
tent with the exemplar-based models (ETD and ALCOVE) but
inconsistent with the version of the AN model considered. In
contrast to the predictions of all three categorization models, the
data clearly show that people can adapt their use of temporal
information to the statistical structure of the task, in that the level
of one-step RE changes in the direction of the one-step autocor-
relation present in the target sequence. There is no need to attempt
quantitative fitting of the models in order to reject them in their
current forms, as their architectural assumptions (specifically the
lack of sequential-learning mechanisms) imply a stronger qualita-
tive prediction, independent of parameter values, that is contra-
dicted by the present results.

Experiment 2: Manipulation of Autocorrelation at
Multiple Lags

The primary purpose of Experiment 2 was to determine better
the specific manner in which sequential dependencies affect cate-
gorization behavior through simultaneous manipulation of target
autocorrelation at multiple lags. Since Simulation 1 and Experi-
ment 1 showed that extant categorization models yielded inade-
quate theoretical guidance regarding sequential dependencies, Ex-
periment 2 tested the previously described competing explanations
offered by earlier models from the probability learning literature.

It has been shown in probability learning (Jarvik, 1951) that
subjects can exhibit a positive RE over single trials concurrent
with a negative RE (gambler’s fallacy) over longer spans. Simi-
larly, Experiment 2 included a new condition in which the current
disease depended positively on the immediately previous outcome
and negatively on that of the patient two trials back. This dual

condition allowed testing of interference effects between temporal
information at different lags. The disease sequences for this con-
dition were generated as a two-step Markov chain, that is with each
outcome dependent on the two before it. The transition probabil-
ities (shown in Table 2 along with the other three conditions) were
specified so that the effects of the previous two patients on the log
odds for the present disease were additive, with Dn-1 having a
positive effect and Dn-2 having a negative effect of equal magni-
tude. The information carried by the n-1st patient was identical in
the dual and positive conditions. The major questions regarding
this new condition were whether the additional two-back informa-
tion would influence diagnoses (as compared with control), and
whether its presence would affect subjects’ learning of the one-
back dependency (by comparison to the positive condition).

The hypotheses concerning learning of sequential dependencies
that arose in the probability learning literature make differing
predictions for these comparisons. Recall that the first hypothesis
was that the previous k trial outcomes would be incorporated as
cues (k-span model). An important special case is the single-span
model where only the previous outcome is incorporated. The
second hypothesis, which we dubbed the aggregation hypothesis,
is that a summary of the previous trials is incorporated, for exam-
ple, the last trial outcome along with the number of consecutive
occurrences. Recall further that the aggregation hypothesis en-
joyed the greatest empirical support in simple probability learning.
But note that generalization to MCCL cannot be assumed pre-
sumptively for the same reasons complicated sequential processing
could not be assumed, that is, there are substantially greater
demands on attention and memory due to the need to process the
nominal cues.

The k-span model (for k > 1) predicts that subjects will be able
to fully learn the dependencies in the dual condition; thus they
should exhibit a one-step RE equal to that seen in the positive
condition, and a two-step RE lower than subjects in the control
condition. The single-span model predicts no learning of two-back
information (two-step REs in all conditions should be equal) and a
one-step RE in line with the one-step conditional probabilities in
the target sequence.5 Finally, the aggregation hypothesis predicts
interference between the two types of autocorrelation in the dual
condition, because they make opposite contributions to the corre-
lation between aggregated recent history and current outcomes.
The presence of the negative two-step autocorrelation in the dual
condition will therefore lead to a one-step RE that is less than that
in the positive condition. This model differs from the single-span
model in that it also predicts differences among the conditions in
the level of two-step RE. The prediction for the comparison
between dual and control conditions on this measure is undeter-
mined, because the interference from the one-step autocorrelation

5 The one-back model predicts a one-step RE in the dual condition that
is less than that in the positive condition although still greater than in
control. This is because of the positive correlation between Dn-1 and Dn-2

 in the dual condition (due to the positive one-step autocorrelation), which
makes the contribution of Dn-1 to the odds ratio for Dn less when Dn-2 is
not controlled for than when it is. Therefore, even though the predictive
contribution of Dn-1 is equal in the positive and dual conditions when
Dn-2 is controlled for, this contribution is weaker in dual when Dn-2 is
ignored (P[Dn = T | Dn-1 = T] = 3/4 in positive condition, = 9/14 in
dual).

n
nC 1−
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Table 2
Conditional Probabilities of Target Event T in Markov Model for
Diseases in Experiment 2

Condition (T, T) (T, P) (P, T) (P, P)

Positive .75 .75 .25 .25

Negative .25 .25 .75 .75

Dual .50 .90 .10 .50

Control .50 .50 .50 .50

Note.    Dn-1 = disease of patient in Trial n – 1; Dn-2 = disease of patient in
Trial n – 2; T = trebitis; P = philiosis.

could either over- or underbalance learning of the two-step con-
tingency. However, because the dual and positive conditions differ
only in terms of the two-step autocorrelation present in the disease
sequence, the aggregation hypothesis must predict that subjects in
the former condition will exhibit a lower value of two-step RE.

Method

Subjects. Subjects were 237 undergraduates from the University of
Michigan who received partial credit in an introductory psychology course
for participation. The experiment was run with groups of 15 to 25, with
subjects randomly divided among four conditions: positive (n = 60),
negative (n = 59), dual (n = 60), and control (n = 58).

Design. There were four between-subjects conditions with distinct
autocorrelational patterns in their respective disease sequences. Diseases
were generated in sequence according to the conditional probabilities
displayed in Table 2. Outcome probabilities were set at 50% for the first
trial for all participants. For subjects in the dual condition, the second
disease was selected so as to have a 75% probability of matching the first.
Once the disease sequence for a subject had been determined, each symp-
tom value for each patient was randomly selected, dependent only on that
patient’s disease, according to the conditional probabilities shown in
Table 3.

Procedure. The procedure was the same as in Experiment 1, except
that subjects were presented with 300 hypothetical patients in three blocks
of 100, with short breaks between blocks. The entire experimental session
was completed within 70 min.

Results

Our general approach was once again to extract β weights from
the models for each subject, and then to compare these betas across
conditions to test for effects of the sequential manipulations. Here,
the data from all but the first two trials for each subject were
subjected to an extended version of the regression analysis de-
scribed earlier. The results of primary interest were the influence
of each of the prior two outcomes as a function of their respective
cue commonalities, that is Dn-1 for each value of 

n
nC 1−  and Dn-2 for

each value of 
n

nC 2−  .
Subjects’ reported confidence in their diagnoses was again

converted into probability judgments for the disease trebitis and fit
with linear regression. Diagnoses (choice data) were fit using the
corresponding logistic model. The logistic model was unidentified
for 5 subjects (2 each in negative and dual, 1 in control) who were
therefore excluded from analyses on the choice data. The coeffi-
cients for previous disease Dn-1 are graphed as a function of cue

commonality nC 1−  in Figures 5A and 5B. As in Experiment 1, all
four conditions showed an interaction between one-step RE and
cue commonality, with the effect of Dn-1 being greater for larger
values of 

n
nC 1− ; furthermore, this relationship was nonlinear. In

addition, the overall level of one-step RE was greater in the
positive condition and lesser in the negative condition, both as
compared with control. The dual condition was nearly indistin-
guishable from control. These observations were confirmed
through repeated measures ANOVAs on each data set, using the
coefficients for Dn-1 at the four levels of 

n
nC 1−  as observations for

each subject (see Table 4). Post hoc comparisons by means of
Tukey’s test, using a global alpha level of .05, revealed significant
differences between all pairs of conditions except dual versus
control.

Figures 5C and 5D show the corresponding data for Trial n – 2.
Again, the lines for all four conditions slope upward, reflecting an
interaction between Dn-2 and 

n
nC 2− , or two-step RE and two-step cue

commonality. The separation of the lines suggests greater
overall two-step RE in the positive condition, and possibly less in
the dual condition, as compared with the other two conditions.
Repeated measures ANOVAs on the four coefficients for Dn-2 for
each subject confirmed the main effects of condition and cue
commonality, with no significant interaction (see Table 4). Pair-
wise comparisons among conditions by means of Tukey’s test,
with a global alpha of .05, showed differences between positive
and dual (both data sets) and between positive and control (choice
data only).

To gain a more direct measure of the effect of cue commonality
on recency, we performed an additional analysis using only the
responses from the second trial for each subject. This restriction
allowed estimates of the effects of previous outcomes (i.e., the
disease from Trial 1) that were not confounded by prior learning of
sequential dependencies. Table 5 shows the proportion of subjects
(collapsed across conditions) who chose on Trial 2 the disease that
was correct on Trial 1, as a function of the cue commonality 2

1C
between the first two patients. This proportion is denoted R2. Also
shown is the mean probability assigned on the second trial to the
correct disease of the first trial, P2(D1), obtained from confidence
judgments on Trial 2 by subtracting from 100% when appropriate.
The positive relationship between 2

1C  and both R2 and P2(D1) is
another manifestation of the RE by cue commonality interaction. A
further observation is that responses appear biased away from D1,

Table 3
Conditional Probabilities (in Percentages) of Symptom Profiles
Given Disease in Experiment 2

Disease

                         Philiosis

Note.    S1 = Symptom 1 (runny nose); S2 = Symptom 2 (swollen hands);
S3 = Symptom 3 (sore throat).

Profile Trebitis

19.0
9.1

39.4
4.4

19.0
9.1

9.1
19.0
4.4

39.4
9.1

19.0

S1

S1, S3

S1, S2

S3

S2

S3, S2

 (Dn-1, Dn-2)
n
nC 1−

n
nC 1−

n
nC 1−

n
nC 1−

n
nC 2−

n
nC 2−
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Figure 5. Influence of past outcomes on responses in Experiment 2. A: Average β weights for Dn-1 as a
function of 

n
nC 1−  in analysis of probability judgments. B: Average β weights for Dn-1 as a function of 

n
nC 1−  in

analysis of diagnoses. C: Average β weights for Dn-2 as a function of 
n

nC 2−  in analysis of probability judgments.
D: Average β weights for Dn-2 as a function of n

nC 2−  in analysis of diagnoses.

that is both R2 and P2(D1) are less than 50%, for low values of 2
1C .

Exact binomial tests on R2 showed this bias to be significant for 2
1C

= 0 (p < .0001) and 2
1C  = 1 (p < .001). A one-sample t test

comparing P2(D1) to 50% for 2
1C  = 0 was also significant, t(46) =

–3.13, p < .01. Thus, for sufficiently dissimilar stimuli the default
RE, prior to any sequential learning effects, was negative. Neither
exemplar model predicts this effect.

Discussion

The results of Experiment 2 replicated those of Experiment 1,
providing further support that REs in cued category learning are
(nonlinearly) dependent on cue commonality and can adapt to
autocorrelations among outcomes. The primary manipulation of
Experiment 2, the dual condition, showed no evidence of learning
of one-back information even though this information was the
same as in the positive condition where learning effects were large.
The results were similar for two-back information: The dual con-
dition was not significantly different from control, whereas the
positive condition (in which the second previous outcome carried
no unique information) showed heightened RE at this lag. These
two results—mutual cancellation of the sequential dependencies in
the dual condition and generalization of one-step autocorrelation to
a two-step RE in the positive condition—contradict both the
single-span and k-span models of sequence learning, but provide

good support for the proposal that the aggregation hypothesis
generalizes to MCCL.

The additional analyses of Trial 2 responses shed more light on
the RE by cue commonality interaction, showing that RE is by
default negative for sufficiently dissimilar cases ( 2

1C  = 0 or 1).
The restriction to Trial 2 allowed us to avoid sequence-learning
effects and to obtain a direct estimate of the generalization from
one instance to another. Only the dual-node version of the AN,
with its negative input activations, can explain the observed neg-
ative generalization effect. Other versions of the AN, along with
ETD and ALCOVE, have no way of producing negative REs of
any sort.

Simulation 2: Sequential Learning Mechanisms

A second simulation was performed in order to explicitly test
whether inclusion of mechanisms for sequential processing can
explain our central results of adaptation of REs to autocorrelation.
Because of the support for the aggregation hypothesis from the
results of Experiment 2, we implemented that hypothesis here
within the architecture of ALCOVE. Specifically, ALCOVE was
augmented so as to have access to aggregated information about
recent outcomes, for use as an additional cue in learning. For
simplicity, this cue was taken to be the sum of the previous two
outcomes, that is, the number of times trebitis appeared on the last
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Table 4
Results of Repeated Measures ANOVAs on Effects of Previous
Outcomes in Experiment 2

Effect F df p

One-back effects
Probability data

Condition 23.7 3, 233 <10–12

120.4 1.69, 394.5 <10–39

Quadratic 92.1 1, 233 <10–18

Condition × 1.6 5.08, 394.5 .11
Choice data

Condition 34.4 3, 228 <10–17

118.7 1.88, 429.4 <10–43

Quadratic 84.1 1, 228 <10–16

Condition × 1.3 5.65, 429.4 .24
Two-back effects

Probability data
Condition 5.8 3, 233 <.001

63.1 2.36, 548.6 <10–29

Quadratic 18.5 1, 233 <.0001
Condition × 1.4 7.06, 548.6 .19

Choice data
Condition 3.6 3, 228 <.05

31.4 1.99, 452.8 <10–12

Quadratic 11.1 1, 228 <.001
Condition × 0.8 5.96, 452.8 .59

Note. Dependent variable is β weight for previous disease for one-back
effects, and for disease of two trials back for two-back effects. Main effects
of 

n
nC 1−  and 

n
nC 2− , and their interactions with condition, were all tested

using Geisser-Greenhouse correction with the following epsilon values:
one-back probability: .564; one-back choice: .628; two-back probability:
.785; two-back choice: .662. 

n
nC 1−  and 

n
nC 2−  = cue commonality measures;

Quadratic = the quadratic contrast for 
n
nC 1−  or 

n
nC 2− .

Discussion

The results of this second simulation demonstrate that augmen-
tation of extant category-learning models with the capacity for
learning of sequential dependencies can provide an adequate fit to
the central results presented here. In particular, the simulation
shows that the aggregation hypothesis is able to explain the inter-
ference and generalization effects across lags that were observed in
Experiment 2. These effects occur in the model because the
learned association from recent history to present responses comes
to reflect an average of the autocorrelation coefficients present in
the ecology, and furthermore acts equally at different lags. There-
fore in the dual condition the positive and negative autocorrela-
tions average out to produce a near-null association from history to
responses. Likewise, in the positive condition there is an effect of
events two trials back because they influence the averaged recent
history as much as do events one trial back. Thus, the association
learned in response to the one-step autocorrelation leads to a
two-step RE.

Closer comparison of Figures 5 and 6 does reveal some discrep-
ancies between the empirical and simulated data. For instance, the
model produces REs at lags of one and two trials that are approx-
imately equal in magnitude, whereas human subjects showed sig-
nificantly stronger one-step REs. Also, the model predicts a neg-
ative two-step RE in the negative condition for which there was no
evidence with humans. Further investigation is required to deter-
mine whether these represent true inconsistencies and, if so, how
they can be eliminated. Nevertheless, the present simulation shows
that perhaps the simplest possible implementation of the aggrega-
tion hypothesis provides a reasonable fit to the pattern of adaptive
REs found here.

two trials. Beyond this modification the implementation of AL-
COVE was exactly as in Simulation 1.

Method

The modified version of ALCOVE was simulated separately on all four
conditions of Experiment 2. Each simulation consisted of 20,000 trials.

Results

The model’s response probabilities were fit using the same
regression model as was used in Experiment 2. Again, the focal
predictors of this model are Dn-1 for each value of 

n
nC 1−  and Dn-2 for

each value of 
n

nC 2− ; that is, the effects of the two previous
outcomes and their interactions with cue commonality. The coef-
ficients for these predictors are shown in Figure 6. The graph of the
one-back effects (Figure 6A) shows that modified ALCOVE re-
produces the increased RE found in the positive condition, along
with the opposite effect in the negative condition. As with human
subjects, the dual condition shows little or no learning of one-back
information (as compared with control). The situation with two-
back effects is nearly identical: An increased two-step RE appears
in the positive condition while again the dual and control condi-
tions are indistinguishable (as was found empirically). One con-
trast with the results of Experiment 2 is the negative two-step RE
in the negative condition.

General Discussion

The present experiments have shown clear evidence of REs in
category learning analogous to those found in the memory and
probability learning literatures. The presence of nominal cues adds
complexity to the phenomenon beyond that in uncued learning,
with REs stronger when past cases are more similar to the present
case. This interaction of RE with stimulus similarity was seen to be
nonlinear and, in particular, positively accelerated. If we assume
that cue commonality is negatively (and linearly) related to the
psychological distance between stimuli, then this observation is

Table 5
Average Responses on Trial 2

2
1C

Statistic 0 1 2 3

R2 (%) 19.1 30.3 54.7 87.2
P2(D1) (%) 41.4 48.5 51.9 65.9
SE (%) 2.8 1.7 1.5 3.2
N 47 76 75 39

Note.  2
1C  = the number of matching cue dimensions between the first and

second patients; R2 = proportion of subjects choosing on Trial 2 the correct
disease from Trial 1; P2(D1) = average probability assigned on Trial 2 to
the correct disease from Trial 1; SE = standard error of P2(D1); N =
number of subjects at each level of 

2
1C .
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Figure 6.    Influence of past outcomes on responses in the modified version of the attentional learning covering map
model (Simulation 2). A: Average β weights for Dn-1 as a function of n

nC 1− . B: Average β weights for Dn-2 as a function
of n

nC 2− .

consistent with Shepard’s (1958, 1987) proposal of exponential
decay of generalization, which states that prior learning will affect
present behavior to a degree that falls off exponentially with the
psychological distance between present and previous stimuli.

Finally, and most significantly, we found that REs can change
adaptively in response to levels of autocorrelation in the target
sequence, showing that they are more than passive effects. This
result is in stark contrast to the predictions of all three categori-
zation models considered, which produce identical patterns of REs
regardless of the sequential structure of the task. Although there are
many other models of human category learning that we did not
explicitly test (e.g., J. R. Anderson, 1991; Ashby & Maddox, 1993;
Kruschke, 2001; Nosofsky, Palmeri, & McKinley, 1994; Smith &
Minda, 1998), none of these anticipates our results either. Contrary
to all existing models of which we are aware, the findings of the
present experiments lead us to conclude that subjects are able to
adaptively modify their use of recent information in response to
temporal statistics of the task. This conclusion is consistent with
parallel observations in probability learning (e.g., N. H. Anderson,
1960) and related results from verbal working memory (R. B.
Anderson et al., 1997). Further results from causal learning in
humans (Matute, Vegas, & De Marez, 2002) and conditioning in
animals (Bouton, 1993) show that the context and nature of testing
can also affect relative use of recent information. The present
results imply that complicated sequence processing is routine even
in situations that demand attention to cues that have greater tem-
poral proximity to target events. Hence, mechanisms that support
such sequence processing need to be incorporated into models of
cued category learning.

The interference effects found for the multiple autocorrelations
in the dual condition, as well as the learned two-step RE in the
positive condition (which is not supported by the ecology), shed
light on the question of how people learn and use sequential
information in this sort of task. Specifically, these results support
the hypothesis that recent past outcomes are aggregated into a
single additional cue that can be used in determining present
responses. Subjects thereby learn whether the present case is more
or less likely to be in the category that has been recently most
prevalent, without distinguishing among sequential information at
different lags. This is consistent with the run-based sequence-

learning models of Restle (1961) and Gambino and Myers (1967),
and contrasts with alternative hypotheses that assume encoding of
past information and learning of sequential dependencies is done
in terms of separate individual events (Burke & Estes, 1957;
Feldman & Hanna, 1966).

Although the three categorization models discussed (AN, ETD,
ALCOVE) all failed to predict the sequential-learning effects
observed here, they did fare well in terms of their other temporal
predictions. The interaction of RE with cue commonality expected
by all three models was confirmed, as was the positively acceler-
ated form of the relationship as predicted by the two exemplar-
based models. The AN’s prediction of a linear function would
seem to be a problem for this model; however, a version that
assumes additional input nodes for configural cues predicts the
nonlinearity (Gluck, 1991; see also Gluck, Bower, & Hee, 1989).
Finally, it was seen in the control condition, where sequential
learning effects are presumably minimal, that positive REs are still
present. This result is consistent with the positive one-step REs
found in probability learning with independent trials (Nicks, 1959)
and with the overestimation of event repetition probabilities found
by Anderson (1960), and is well predicted by all three categori-
zation models. Note that all of the findings just listed clearly
contrast with the strictly normative model.6 Taken together, these
results provide support for the sequential predictions that come
from all three models. This, plus the fact that the variation of
sequential dependencies had no effect on the RE by cue common-
ality interaction, implies that perhaps the REs induced by the
autocorrelation manipulations are mechanistically independent of
those correctly predicted by the models (whether the latter come
from decay of memory or from iterated error-driven learning). The
results of Simulation 2, showing how ALCOVE can be brought to
reproduce our central results with the addition of a mechanism for
processing sequential information, further support this conclusion.
This suggests the possibility that augmenting standard categoriza-

6 One further result from Experiment 2, not presented here but never-
theless predicted by all three categorization models, was an effect of each
of the previous case’s cues, in a direction opposite that of the same cue
acting on the present trial.
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tion models to use sequential information according to the aggre-
gation hypothesis may provide the basis for a unified theory of
category learning and sequence learning.

The biggest current challenge we see for such an integrated
theory comes from the Trial 2 analyses, which showed a negative
RE from Trial 1 when the first two patients had sufficiently
different symptom profiles. As mentioned earlier, this effect is
observed prior to any possible effects of sequence learning, and is
thus a direct measure of the generalization from the stimulus on
Trial 1 to that on Trial 2. Intuitively it seems that what is needed
to capture this result is an implementation of the idea that a past
case that is strongly dissimilar from the present one will be used as
evidence against the present case’s membership in that past case’s
category. The potential for this type of negative generalization
arises naturally in an AN model that allows for negative input
activations (as well as perhaps in certain prototype-based models;
cf. Reed, 1972), but would seem to require significant modifica-
tions in either of the exemplar-based models due to the multipli-
cative nature of their similarity rules. However, the real challenge
for both types of model comes from the fact that the negative RE
is only present early on in the sequence; in our analyses of the full
session REs were never significantly negative except in the neg-
ative condition. This suggests a Bayesian interpretation, in which
the prior expectation of a balanced base rate between the two
categories initially produces the effect but is eventually drowned
out by subsequent learning. Further research is required to deter-
mine whether an approach based on this idea could accurately
reproduce the present results.

Regardless of the mechanisms responsible for REs, it is instruc-
tive to consider their role in the relationship between normative
and descriptive behavior. One possible view of REs is as a type of
suboptimal behavior, perhaps resulting from limitations of the human
memory system (as is implied by the trace decay assumption of the
ETD model). In a stationary ecology with independently sampled
outcomes (the norm in experimental research), all past cases are
equally informative as to the statistical parameters of the task and
the most reliable strategy will therefore weight all past cases
equally. Behavior involving a positive RE in this case amounts to
basing decisions on a smaller sample of the available information,
which leads to higher variance estimates of outcome probabilities.

If, however, recent events happen to be more informative, then
REs can in fact be advantageous (cf. Sieck & Yates, 2001). For
instance, consider a doctor diagnosing patients, using both symp-
toms and knowledge of disease base rates. Because diseases occur
at different rates at different times (e.g., flu season) and can occur
in outbreaks, there is an above-chance tendency for patients who
get sick at the same time to have the same disease. Thus, the doctor
can benefit from using information about other recently encoun-
tered patients to inform current diagnoses. Such a strategy would
manifest a positive RE and would be justified by the varying base
rates in the ecology. In addition, if there exists the possibility that
symptom manifestations associated with diseases are slowly
changing over time (perhaps because of mutation) then a temporal
bias in learning of cue-category correspondences would be adap-
tive as well. Such a bias would appear as an interaction between
REs and cue commonality of the type reported here. This type of
rational analysis of REs in categorization is analogous to similar
empirical analyses of need probabilities for memory retrieval as a

function of past occurrences, which have been interpreted as
providing rational justification for REs observed in memory tasks
(Anderson & Schooler, 1991, 2000). Both arguments rely critically
on the increased relevance and reliability of recent information,
suggesting a deeper functional, and perhaps mechanistic, connec-
tion between REs in the two domains.

Another example of the benefit of preferential reliance on recent
outcomes comes from experimental work on flower foraging de-
cisions of bumblebees. Real (1991) argued that the short-term
memory exhibited by bees’ strategies is made advantageous by the
presence of spatial autocorrelation in the nectar rewards of flowers
(which translates into a temporal autocorrelation in the bee’s
experience). Dukas and Real (1993) subsequently showed that
bees’ decisions are based largely on the last flower visited. A
similar result was found by Cuthill, Kacelnik, Krebs, Haccou, and
Iwasa (1990), concerning flight times in starlings’ predatory be-
havior as a function of recent experience. Thus, it could be argued
that REs are an adaptation to a natural environment that is pre-
dominantly autocorrelated. Our natural environment is far from a
static one, and temporally distant information may often be less
reliable than that which is more immediate. Positive REs observed
in tasks involving independent sampling could result from subjects
coming into the experiment with an expectation (implicit or ex-
plicit) that contiguous events are related in that they have a
tendency toward the same outcome (but see Gilovich, Vallone, &
Tversky, 1985, for an alternative interpretation). A similar argu-
ment could be made concerning the RE by cue commonality
interaction: Although not normatively justified by the task envi-
ronment in the present experiments, such behavior could be a
manifestation of subjects’ default expectation of nonstationarity of
cue-category correspondences (in the manner discussed above). If
so, then this effect would be expected to extinguish after sufficient
training. As is often the case with hypotheses concerning func-
tionality, a direct test is rather difficult, but results like the ones
reported here, showing that REs respond adaptively to artificially
induced autocorrelation, can be interpreted as evidence in favor of
the functional interpretation.

A similar approach was taken by Flood (1954) in his defense of
the rationality of probability-matching, another supposed subopti-
mality in repeated judgments whereby people tend to make re-
sponses with frequencies approximating the probabilities of each
outcome, rather than simply selecting the most likely alternative
every time (Grant, Hake, & Hornseth, 1951). Flood’s idea was that
subjects in these experiments expect probabilities to change over
time, and therefore continue to occasionally explore responses
even if they have not paid off well in the past. Although the results
of Flood’s experimental manipulations designed to influence sub-
jects’ expectations of stationarity were less than conclusive, his
argument highlights the connection between REs and probability
matching: Both have similar ecological justification, and (as a
simple argument can show) mechanisms for the former can in turn
produce the latter. This along with other work implicating REs as
a cause of people’s overconfidence in their probability of making
correct predictions (Sieck & Yates, 2001) suggests that REs may
play a fundamental role in those aspects of human decision-
making behavior not captured by current normatively inspired
theories.
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Appendix:  Model Details

The implementation details of the models in both simulations are given
as follows. Parameter values for the data presented (see Figures 3 and 6) as
well as ranges of other values tested for Simulation 1 (all giving the same
qualitative predictions) are displayed in Table A1.

Adaptive Network (AN)

Each input node takes value 1 when its cue is present and –1 when
absent. Activation of the context node is constant at 1. Activation u of the
output node is given by

Table A1
Parameter Values for Simulations

Tested

Parameter Shown Low High

AN
ε .10 .01 .25
θ 1.00 .10 10.00

ETD
s .14 .01  .5
t .90 .10 .99
C 1.00 0.00 10.00

ALCOVE
c 1.00 .10 10.00
εex .20 .01 .50
εatt .10 0.00 .50
φ 1.00 .10 10.00

Note. Tested columns give ranges of other values tested in Simulation 1.
Shown column indicates parameter values used for data presented. AN =
adaptive network; ETD = exemplar model with trace decay; ALCOVE =
attentional learning covering map; ε = learning rate; θ = scaling param-
eter; s = similarity parameter; t = decay parameter; C = background noise
constant; c = hidden node tuning specificity; εex = learning rate for
association weights; εatt = learning rate for attention weights; φ = choice
temperature.
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where i indexes input nodes and ai and wi represent the corresponding
activities and weights, respectively. The probability of responding with
Category A is given by a sigmoid transformation of u:
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where 0 > 0 is a scaling parameter. After feedback is given, weights are
updated according to

   ),( ufaw ii −⋅⋅ε=∆

where ε is the learning rate. The feedback f is equal to 1 if Category A
was correct and 0 if B was correct.

Exemplar with Trace Decay (ETD)

Similarity of a stored exemplar k to the present case n is calculated as

dsnkS =),( , (A4)

where d gives the number of cue dimensions on which the cases disagree.
The similarity parameter s is taken to be between 0 and 1. Response
probability is given as

(Appendix continues)

 (A2)

(A3)
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Here the sums are taken separately over those stored exemplars for Cate-
gory A and those for B. The decay parameter t, strictly between 0 and 1,
controls how quickly exemplars fade from memory. The background noise
constant C serves to bias response probabilities towards 50%, especially
early in the session.

ALCOVE

Activation ai of the ith input node, coding the ith cue for the present case,
is 1 when that cue is present and 0 otherwise.  For the additional sequential
cue used in Simulation 2, a is equal to the number of times trebitis was
correct over the last two trials.  Activation bj of the jth hidden unit is then
calculated as:

∑ −α−= i ijii ahc
j eb

||
. (A6)

Here hji is the value on the ith cue dimension of the exemplar represented
by hidden node j, and the αi represent attention weights.  The parameter c
determines the tuning specificity of the hidden nodes.

Activation of output nodes is determined by a weighted sum of the
hidden activations:

∑ ⋅=
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where wkj is the weight from hidden node j to output node k.  Response
probability is then given by:
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where φ is the choice temperature parameter.
The weights wkj and αi are updated by means of back-propagation, with

respective learning rates εex and εatt.  The feedback signal given to each
output node is equal to 1 if the corresponding category was correct, and –1
otherwise; however the δ-signal is taken to be 0 if the actual activation
overshoots the desired value (e.g., an activation of 2 at the correct category
node).
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