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Our decisions are guided by outcomes that are associated with decisions made in the past. However, the amount of influence

each past outcome has on our next decision remains unclear. To ensure optimal decision-making, the weight given to decision

outcomes should reflect their salience in predicting future outcomes, and this salience should be modulated by the volatility of

the reward environment. We show that human subjects assess volatility in an optimal manner and adjust decision-making

accordingly. This optimal estimate of volatility is reflected in the fMRI signal in the anterior cingulate cortex (ACC) when each

trial outcome is observed. When a new piece of information is witnessed, activity levels reflect its salience for predicting future

outcomes. Furthermore, variations in this ACC signal across the population predict variations in subject learning rates. Our

results provide a formal account of how we weigh our different experiences in guiding our future actions.

The statistics of the environment have been shown to exert optimal
influence on the organization and function of perceptual and motor
systems1,2. However, higher-level processes, such as voluntary choice,
have often proved to be immune to such statistical description. Instead,
recent descriptions of choice have emphasized its unpredictable
nature3. We report interlinked findings that challenge this perspective
and suggest that an estimate of a higher-order statistical feature of the
environment affects the way that voluntary decisions are made.

The decisions that we make are guided by the outcomes of similar
decisions made in the past4–7. Understanding how we build such
associations between events, and therefore between actions and their
outcomes, has been the principal goal of learning theory. According to
models of reinforcement learning8,9, when an animal receives new
information, it updates its belief about the environment in proportion
to its prediction error, d, which is the difference between the expected
and actual outcomes8,9. It is often overlooked, however, that d must be
multiplied by an additional factor called the learning rate, a (refs. 8,9),
to determine the degree by which the action value is updated10.

Although the learning rate is a fundamental feature of the behavior of
all organisms and even artificial agents, reflecting the rate at which new
information replaces old, it has never been clear whether, how or why it
changes11. In neuroscience, it is customary to fit the learning rate to
observed data5. In psychology, attempts have been made to determine
its influencing factors8,12,13, but the accounts have been contested.

Bayesian accounts of learning propose formal strategies for optimally
updating beliefs when new data are observed14. Applied to rein-
forcement learning, they suggest that a should depend on the current
levels of uncertainty in the estimate of the action’s value. This
uncertainty is determined by the statistics of the reward environment
(for example10,11,15–17). In circumstances where recent experience is
more predictive of the future than is distant experience, a should be
large (for example, in a fast-changing, or volatile, environment), but

in situations where historical information is salient, an animal should
consider experiences from an extended period, using a small value for a.
Short and long decision histories are corollaries of high and low
learning rates, respectively. The learning rate should be set such that
the organism maximizes its power to predict future outcomes, which is
the goal of the learning process.

Evidence that this may be the case comes from comparing studies of
decision-making in macaque monkeys in which learning rates were
markedly different despite many similarities in task18,19. Furthermore,
rats’ ability to detect changes in reward rates depends on their previous
experience of change20. However, direct evidence that manipulations of
volatility alter learning rates has been lacking, and moreover, the brain
mechanisms underlying such behavior remain unclear.

Here we present two experiments that investigate whether humans
can track the statistics of a reward environment, and adapt their
learning rate accordingly. First, we show that, in the course of a single
behavioral experiment, humans can modulate their learning rate in a
fashion that is predicted quantitatively by a Bayesian learner carrying
out the same task. Next, using fMRI, we show that the parameter
necessary for producing such behavior correlates with the blood oxygen
level–dependent (BOLD) response of the ACC at the time in the trial
when the key computation is being performed.

RESULTS

Statistics of the reward environment predict human learning

Subjects carried out a decision-making task, repeatedly choosing
between blue and green rectangles (Fig. 1a). This task is analogous to
a weighted coin-flipping task in that either blue or green must be
correct at each trial, but not both. Subjects were instructed that
the chance of the correct color being blue or green depended only
on the recent outcome history. However, as a result of the difference
in reward magnitudes associated with blue and green options,
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subjects often picked the less likely color if it was associated with a
higher reward.

First, subjects underwent 120 trials where the probability of a
blue outcome was 75%: a stable environment. In the second phase
(170 trials), reward probabilities switched between 80% blue and 80%
green every 30 or 40 trials: a volatile environment. Throughout the
experiment, rewards for correct blue responses (fb) were selected
randomly between 0 and 100, and rewards for correct green responses
were set to (100 – fb).

Bayesian learner

Optimal behavior requires subjects to estimate
the probability of reward on each color and to
compute the expected value as reward prob-
ability � reward size. The subject was
informed about reward size at the start of
each trial and told that there was no pattern to
its trial-by-trial changes so that it is neither
necessary nor possible to estimate reward size.
The optimal agent is the one that makes the
most efficient use of historical information to
track reward probabilities (a graphical
description of the probability-tracking pro-
blem can be seen in Fig. 1b; see Supplemen-
tary Information online for an algebraic
description). The reward probability, r, varies
between trials, controlled by the volatility, v;
changes in this parameter reflect changes from
stable to volatile environments. Changes in
volatility itself are controlled by the parameter
k. The estimate of k represents the distrust in
the constancy of the volatility. Data, y, is
observed as a succession of trial outcomes.
This Bayesian learner updates its estimates of
parameters r, v and k when it gets a new piece
of information at the outcome of each trial.
Crucially, the update equation relies only on
parameter estimates from the preceding trial,
and the latest trial outcome to determine
decision and learning on the next trial (Sup-
plementary Information). The agent does
not have to retain memories of recent out-
comes. Although the update equations can
only be formally expressed in probabilistic
terms, it is useful to describe their behavior
in terms of effective learning rates. Coarsely,
the learning rate is dictated by the uncertainty
or variance in the estimate of reward rate.

This, in turn, reflects how unpredictable recent outcomes have been.
A history of surprising outcomes will increase estimated volatility and
uncertainty, and therefore learning rate. Figure 2a–c shows the Bayesian
learner’s estimates of r, v and k at three time points while encountering
the reward schedule in Figure 2d. When the volatility is low, the
estimated reward rate changes little with each observation.
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Figure 2 Behavior of Bayesian learner and human subjects. (a) Marginal posterior distributions on

tracking variables at three stages in the experiment. Left, the distribution on reward probability and

volatility. Right, the distribution on volatility and control parameter, k. After 120 trials, the Bayesian

learner was confident that the reward probability was 0.75, the system was stable, and that this stability

was unlikely to change. (b) After a further 15 trials in which the reward probability changed to 0.2, the
Bayesian learner was uncertain about the state of the environment. Left, high probability in two regions,

either reflecting that the environment was unchanged, or that the environment was changing and that the

new reward rate was low. (c) After a further 25 trials of low reward rate, the learner had recovered

confidence, but still believed the stability might change (right), ensuring that it would react faster to any

future change in reward rate. (d) Experiment I, the reward schedule and the Bayesian parameter

estimates for the stable-first experiment are shown. Left, the dashed line shows true reward probabilities

and the solid line shows the Bayesian-estimated reward rate. Right, estimate of volatility through the

course of the same experiment. Note that when volatility is low, the estimated reward rate in (left)

changes little with each trial. (e) Human behavior. Average learning rates during the stable and volatile

phases of each experiment (stable-first and volatile-first, respectively). Red and black bars show the

mean and s.e.m. values for the human subjects. Dots show the behavior of the Bayesian learner.

Figure 1 Probability-tracking task. (a) Experimental procedure. Subjects

carried out a one-armed bandit task, choosing between blue and green on the

basis of both the past success and the reward associated with each color

(yellow numbers). Subjects attempted to move the red bar toward the silver

bar for d10 or toward the gold bar for d20. The bar moves a distance

proportional to the chosen reward only if the chosen color was correct. In this

instance, the subject chose green, but the correct choice was blue so the red

bar remained stationary. (b) Graphical description of the probability-tracking
problem. Arrows indicate the direction of influence. At each trial i, data yi is

observed (blue or green is correct), which is governed by probability ri. This

probability can change between trials, governed by the volatility, vi, which can

itself change (as the environment moves between volatile and stable periods)

and is governed by control parameter k. The goal of the Bayesian learner is to

track these parameters through the course of the experiment, given only the

observed data, y.
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Human behavior

Eighteen subjects (9 males, aged 18–32) carried out the behavioral task.
Nine subjects encountered the reward contingencies described above
(Fig. 2d), and nine subjects encountered the same schedule with the
blocks reversed to counteract a potential block-ordering effect. To test
for changes in subject behavior in the two phases of the experiment, we
considered data from the second part of each phase when the estimated
volatility was most constant (gray regions in Fig. 2d and the equivalent
regions in the reverse experiment). We estimated subject learning rates,
a, during each phase by fitting a delta rule model8 (Methods).
Independent of the block-ordering, subjects were more responsive to
new outcomes when the reward schedule was volatile than when the
reward schedule was stable (Fig. 2e; paired t(17) ¼ 2.91, P o 0.005).
We then applied the same routine to the decisions of the Bayesian
learner. In each case, the Bayesian learner lies within one standard error
of the human behavior (Fig. 2e). Furthermore, the Bayesian learner,
with no free learning rate–related parameters, was a significantly better
predictor of subject decisions than a reinforcement learning model
with either one learning rate per subject, or one per task phase
per subject (models with 18 or 36 free parameters), despite these
competing models being tuned to fit the data (Supplementary
Table 1 online).

To make the best decisions, it is not sufficient to integrate recent
reward outcomes into a single action-outcome association. Instead, we
must continually track the statistics of the environment to assess the
salience of every new piece of information. This allows us to choose the
appropriate weight for this new information when estimating the
action value.

Volatility related activity in the ACC

An agent learning from experience needs a system for monitoring and
integrating the outcomes of its actions. A good candidate for such a
system is the ACC21,22. Although much interest has been focused on
ACC activity when actions lead to errors23,24 and when errors are
likely25, the ACC may have a more general role in representing and
updating action values22,26,27. Indeed, after lesions to the ACC sulcus,
macaques no longer use more than the most recent outcome to guide
each choice19.

We carried out a second experiment, using fMRI in 18 subjects to test
whether ACC activity reflected the estimate of the environment’s
volatility when participants monitored decision outcomes. Subjects
carried out the same task as they did in the behavioral experiment. Each
trial was divided into three phases, decide, interval and monitor
(Methods), allowing us to dissociate activity related to volatility in
the different trial phases. If the ACC differentially integrates informa-
tion from previous trials depending on the current estimate of
volatility, ACC activity should be modulated by this estimate during
the monitor phase.

The reward environment was stable for 60 trials (75% blue) and
volatile for 60 trials (80% swapping between actions every 20 trials).
Subjects were split equally into groups experiencing the stable and
volatile environments first. Using the Bayesian learner, we calculated
the predicted volatility estimate at each trial, determined by the
subjects’ observations, to use as a regressor in the analysis (Fig. 3a).
We analyzed the data using the FMRIB software library28 (Supple-
mentary Information). Seven regressors were included in the analysis:
three defining the phases of the experiment (decide, interval and
monitor), three defining interactions between these phases and the
predicted estimate of volatility, and one defining subject errors in the
monitor phase.

Activations in the decide and monitor phases of the trial comprise a
network of regions involved in decision-making29 (Figs. 2 and 3a and
Supplementary Information). Notably, the decide phase activates
caudal ACC, which may be comparable to macaque rostral cingulate
motor area. This area has connections to primary motor cortex and
spinal cord30, regions that execute actions after the decision. In
contrast, the monitor phase activates a rostral part of ACC. This area
resembles the region in macaque that is interconnected with structures
such as the amygdala, orbitofrontal cortex and ventral striatum, which
are implicated in processing value and reward31. The fMRI data
necessarily contained considerably fewer trials than the behavioral
experiment. Nevertheless, the behavioral change in learning rate
survived as a trend inside the scanner.

In contrast, the monitor � volatility interaction revealed a circum-
scribed activation in the ACC (Fig. 3b), the only brain region that
survived thresholding (max Z ¼ 4.2, at MNI x ¼ –6, y ¼ 26, z ¼
34 mm). The BOLD signal here reflects the subjects’ estimate of
the volatility of the environment. It is higher when monitoring
trial outcomes that will have greater influence on future actions.
Notably, this region is approximately at the boundary between the
main effects of decide and monitor. It may access information
about outcome value from structures such as orbitofrontal cortex,
amygdala and ventral striatum, and about actions from the cingulate
motor area. There were no significant effects of decide � volatility or
interval � volatility, either Z 4 2.3 cluster-corrected, or of more than
10 voxels at Z 4 3.1 voxel-thresholded.

Previous accounts of either ACC or of reward-guided decision-
making have emphasized factors other than volatility8,9,24,25,32,33, but
none of these can explain the same portion of the fMRI signal. The
task was carefully controlled to account for the following potential

a

b

Figure 3 Experiment II, cingulate activity reflecting estimated volatility.

(a) Coronal (y ¼ 24) and sagittal (x ¼ –4) slices through the z-statistic maps

reflecting main effects of decide (orange) and monitor (blue). Both phases of

the experiment recruited cingulate cortex activity. Notably, activity related to

decide was caudal in the ACC, when compared with activity related to

monitor. A wide network of other brain regions was also recruited

(Supplementary Information). (b) Coronal and sagittal slices through

z-statistic maps relating to the interaction volatility � monitor. A region in

the ACC was the only region to survive thresholding at z ¼ 3.5, and the only

region of greater than 50 voxels to survive thresholding at z ¼ 3.1.
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confounds: reward attained by the subject, switch trials, predicted
value of the chosen option (outcome size � outcome probability),
reaction time, prediction error, magnitude of prediction error,
predicted reward likelihood (and therefore error likelihood25), error
trials24, local (15 trial) variance in reward attained, and the differ-
ence in value between the two options presented at the trial. The
reaction-time and value-difference regressors constitute indices of
trial difficulty. Among these potential confounding regressors,
there was no case of a significant correlation that could explain
the fMRI signal that was attributed to the volatility estimate
(Fig. 4a), and when all of these confounds are included as

regressors-of-no-interest in the model, the effect of volatility remains
untouched (Fig. 4).

Two features of the task design made it possible to control for so
many potential confounds. First, subjects often ignored the more
probable option, in favor of the option with higher reward magnitude.
Such choices were independent of estimated volatility. Second, the true
maximum-reward likelihood was slightly higher in the volatile than in
the stable phase (0.8 and 0.75, respectively), such that the average
apparent-reward likelihood to the subjects was equal in the two phases.

Although, on average, human behavior is well predicted by a
Bayesian learner, there is variability in learning rates across the
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Figure 4 Region-of-interest analysis and potential confounding factors. (a) Correlation between estimated volatility (y axis) and ten potential factors that

have previously been proposed to explain ACC activity. There was no case of a significant correlation that could explain the effect of estimated volatility.

(b) Robustness to potential confounds. The time courses of effect sizes through the course of the trial are shown, fit with a general linear model (see Methods
and Supplementary Information). Data are taken from local maxima. The black line shows the effect size when estimated volatility was included as a lone

regressor. The effect of estimated volatility was confined to the monitor period of the task. The gray line shows the effect size when ten related confounds that

have previously been thought to explain ACC activity were included as potential confounding regressors in the model. None of the ten confounds could explain

the signal related to volatility. (c) Volatility related activity in the ACC explains between-subject variation in overall learning rates. A time series of correlations

(signed r2) between the effect size in the ACC and the mean learning rate fitted to subject behavior over both phases of the experiment is shown. Subjects

showing a greater effect of volatility in the ACC in the outcome-monitoring period were likely to show a higher average learning rate in the behavioral data.

Insert, scatter plot at the time of the peak effect of volatility in the ACC (r2 ¼ 0.27, P o 0.01 (F-test), max r2 ¼ 0.32).
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population. We tested whether the volatility related signal change in the
ACC could predict mean learning rates across individuals. Individuals
with a greater effect of volatility in the ACC in the monitor period had a
higher mean learning rate, and therefore gave more weight to the most
recent piece of information (Fig. 4c).

The Bayesian description suggests that volatility is detected by
subjects and induces uncertainty in their estimate of reward likelihood,
which drives the learning rate. This uncertainty is measured as variance
in the marginal posterior distribution on r (vertical width of white areas
in left panels, Fig. 2a–c). Crucially, this variance is correlated with the
estimated volatility. It is through this that volatility drives the learning
rate. If either estimated volatility or variance in r are included as sole
regressors, they can explain ACC BOLD signal in the monitor phase,
and when they are included together in the analysis they each survive
the inclusion of the other, albeit explaining slightly different portions of
the signal (Fig. 5).

Notably, simple reinforcement learning models such as those com-
pared with the Bayesian learner here do not contain the concepts of
environment statistics (volatility) or uncertainty in the estimate of
reward rate, which are central to the Bayesian description. Finding a
neural correlate of these parameters, in a brain region already thought
to be involved in monitoring the consequences of actions, offers further
evidence in favor of the more complex neural representation of the
environment that is suggested by the Bayesian approach.

Different forms of uncertainty

Neural representations of uncertainty have recently received attention.
For example, there is evidence that dopaminergic neurons in macaque
monkeys34 and dopaminoceptive brain regions in humans35 represent
the probability of a reward occurring. Theoretical models have divided
uncertainty into the expected unpredictability of a stimulus-outcome
association, and the unexpected uncertainty caused by changes in such
contingencies (similar to the volatility driven uncertainty that we
analyze here)17, and have suggested that these two forms of uncertainty
should combine to drive behavior. It is suggested that this unexpected
uncertainty is driven by norepinephrine17 and its interaction with the
ACC36, and that the expected uncertainty is represented in the
cholinergic nuclei17. To draw contrast with the volatility related activity
in the ACC, we therefore carried out a second analysis (Supplementary
Information) that included the probability of a reward during the
interval phase as a regressor. Although there were no significant
activations after corrections for multiple comparisons, reducing the
threshold (Z 4 2.3, P o 0.01 uncorrected) revealed a highly focal
activation in a region of the brain anatomically consistent with the
dopaminergic ventral tegmental area (VTA) (MNI x ¼ –4, y ¼ –28,
z ¼ –14, Z ¼ 2.76, x ¼ 4, y ¼ –26, z ¼ –12, Z ¼ 2.66) (Fig. 6).
At the same threshold, cortical activation was present at the SMA/
preSMA boundary (MNI x ¼ –2, y ¼ –4, z ¼ 52, Z ¼ 2.73), but no
similar effect was seen in the ACC region modulated by volatility.
Correlation with the prediction error signal during the outcome phase
revealed overlapping activation patterns in the VTA7 and preSMA
(Supplementary Fig. 2 online).

DISCUSSION

The learning rate is a fundamental feature of behavior that determines
how agents should adjust the decisions that they make in the face
of changing circumstances. Bayesian analysis suggests that optimal
learning for decision-making should reflect the salience of each new
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Figure 6 VTA correlate of reward prediction. The correlate of the probability

of obtaining a reward examined during the interval phase when subjects were

awaiting an outcome is shown. No regions survived multiple comparisons

corrections, but a focal activation was present at Z 4 2.3 (P o 0.01,
uncorrected) in the VTA, as predicted by macaque studies. The signal was

specific to the probability of the outcome, as the expected value of the

outcome was included amongst other coregressors (Supplementary

Information). There was also cortical activation for the same regressor at the

SMA/preSMA boundary.

Figure 5 Estimated volatility and variance on r. (a) Effect of volatility when

the variance on the estimate of reward probability r was included as a

regressor (as well as the aforementioned confounds). This variance was a

crucial link between the volatility estimate and the learning rate. Time

courses are presented as in Figure 4b. (b) Effect of the variance on the

estimate of r. In the absence of estimated volatility as a coregressor, this

variance explained the data in a similar way to the volatility estimate.

However, when the volatility was included as a coregressor, the two effects
both survived, albeit explaining different portions of the signal.
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piece of information for predicting future outcomes15,16, and that
environmental volatility, a factor seen as being important in financial
markets37, is a determinant of such salience. This is a key example of the
general hypothesis of Bayesian reasoning: multiple sources of informa-
tion should be reconciled according to their respective predictive
values. This hypothesis has previously been demonstrated in the
context of combining simultaneous cues1,2. Here we show that humans
repeatedly combine prior and subsequent information as data accu-
mulate over time, even in the context of changing environmental
volatility, and therefore changing reliability of one or more sources
of information. Remarkably, people both estimate and use this
volatility parameter optimally, gauging the value of each new piece of
information that they acquire. The fact that the volatility estimate
modulates the ACC response to new pieces of information suggests
that activity in this region may influence subsequent learning and
decision-making.

The ACC is part of a distributed neural system that is implicated in
the representation and updating of decision values5,7,32. Prediction
error signals have been found in dopaminergic regions38 and the
ventral striatum39, and action value signals have been found in the
putamen40,41, but the ACC’s special contribution has been unclear. Our
data suggest that fluctuations in ACC activity in the update period are
related to the estimated volatility of the environment, and hence to the
learning rate. The projection from the ACC to ventral striatum42 would
allow the learning rate to modulate the influence of the current
prediction error on the next value estimate8.

Although there has been an emphasis on the ACC’s role in detecting
errors and error likelihood24,25, the observation that volatility influ-
ences ACC activity resolves a number of discrepant observations. For
example, in single-unit data, some ACC neurons respond to errors,
rewards or to both outcomes when macaques first explore their
available options, but all neurons are less active once reward associa-
tions have been worked out21. However, ACC neurons continued to be
active when reward associations changed stochastically on each
option43. The current approach also explains why neurons in inter-
connected cingulate regions carry signals that are related to the recent
average reward rate43 and its variance33, parameters that are closely
related to those in our model. Other researchers have reported a high
ACC BOLD signal when human subjects switch task set or revise their
estimate of the current situation22,44. According to the current per-
spective, ACC activity should indeed be greater when circumstances are
changing, or when an outcome is especially informative. The ACC
circuit has also been implicated in psychiatric diseases such as obses-
sive-compulsive disorder45. Such conditions may be conceived of as
disorders of decision-making, in which the wrong information is given
the greatest weight.

Rather than stressing the representation and updating of action
values, alternative accounts of ACC function have focused on subject
arousal46 and changes in attention caused by response conflict47.
A number of recent studies, however, suggest that response conflict
may be mediated by more dorsal regions of the medial frontal cortex48.
Although it is possible that these psychological processes have some
role in guiding learning, there are some key differences with the signal
investigated here. First, in decision-making tasks, conflict and arousal
have tended to be related to ACC activity when the subject is making a
decision and awaiting the outcome46,47. In our study, there is wide-
spread ACC activity during these periods, but it does not correlate with
the volatility signal, and therefore may be consistent with these
alternative theories of ACC function. However, the volatility affects
the ACC signal when the outcome is observed, which is the crucial time
for learning. Second, there are many features of the task that are

expected to cause arousal or conflict, but cannot explain our data. For
example, our data cannot be explained by the difficulty of the trial, or by
trials when subjects take risky decisions (Fig. 4). Furthermore, we have
demonstrated that the specific ACC response to volatility has a direct
effect on learning. Subjects with a higher response to volatility in the
outcome phase have higher average learning rates in the behavioral data
(Fig. 4c). It is possible that the detection of volatility itself causes
arousal, although comparison with lesion data19 suggests that such
arousal should have a central part in the learning process. To investigate
this possibility, researchers should measure autonomic responses in
future experiments when outcomes are observed in conditions of
differing volatility.

The results presented here are confined to the update period (Figs. 4
and 5), and therefore do not necessarily implicate the ACC in the initial
computation or storage of volatility or uncertainty. In this study,
volatility estimates varied more slowly than low-frequency fMRI
oscillations. The crucial regressor was, therefore, the interaction
between estimated volatility and the monitor period, which allowed
us to test where the volatility estimate was used in calculations. That
macaques with ACC lesions use only the outcome of the most recent
trial to guide their next decision is consistent with the importance of
ACC in mediating the influence of volatility on behavior19.

It is notable that the Bayesian learner in this study was not tuned to
the structure of task contingencies used in the experiment. In the
experimental procedure, the true outcome probability changed between
discrete levels. In contrast, the Bayesian learner assumes that probabil-
ities vary in a continuous fashion. This model was chosen to fit with the
subjects’ state at the outset of the task. When subjects carry out the task,
they are naive to not only the task contingencies, but also to any
possible structure therein. However, an alternative would be to assume
subjects were aware of the task structure and therefore aimed to look for
abrupt jumps in reward rate17,49 (such an assumption can easily be
placed in the framework of Fig. 1b; Supplementary Information). The
fact that this alternative model, suitably extended, makes predictions of
subject behavior that are equivalent to those of the continuous model
(Supplementary Table 1) demonstrates that our analyses do not
depend on the exact assumptions made about the generative model.
The detection of volatility in any reward environment allows an agent to
adjust its learning rate without knowledge of task structure.

There has recently been considerable interest in the representation of
reward expectation and probability in the brain5,7,18,27,40,49,50. It is
becoming increasingly clear, however, that several aspects of reward are
represented distinctly35. The present findings of cortical activation
reflecting environment volatility, and therefore uncertainty, in the
reward estimate once again underscores the need to represent many
distinct aspects of an organism’s experience of the reward environment
in order for decisions to be made effectively.

METHODS
Estimating the learning rate from the subject decisions. For Experiment 1,

subjects decided between blue and green rectangles in each trial, determined by

their expectation of the correct result and the reward associated with each

outcome (Fig. 1). We characterized the subjects’ responsiveness to new

observations at two stages of the experiment: when the subjects should estimate

the environment to be at its most stable, and when they estimated it to be at its

most volatile (Fig. 1). We then fit a reinforcement-learning model to the

subjects’ decisions in each phase. The model has two parts: a ‘predictor’, which

estimates the current reward rate given past observations, and an ‘selector’,

which generates actions on the basis of these estimates.

The predictor is in the form of a simple delta-learning rule8. This rule has a

single free parameter, the learning rate. The delta-learning rule8 estimates

outcome probabilities using the following equation:
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r̂i + 1 ¼ r̂i + aei

where r̂i+1 is the predicted outcome probability for the (i+1)th trial, r̂i is the

predicted outcome probability for the ith trial, ei is the prediction error at the ith

trial, and a is the learning rate. By choosing different values for a, the model can

make different approximations of the subject’s outcome probability estimates

The selector model explains subject decisions on the basis of these estimates.

Here, decisions are determined by both the estimated reward likelihood, r̂i+1,

and by the reward magnitude on each option. Optimal action selection would

involve computing the estimated Pascalian value (outcome size � outcome

probability) of each option as follows:

gblue i+ 1 ¼ r̂i+ 1fblue i+ 1

ggreen i + 1 ¼ ð1 � r̂i+1Þfgreen i+ 1

where fgreen,i and fblue,i are the known reward sizes of each color. The optimal

response is then the color with the highest predicted profit. However, we do not

make the assumption that human subjects weigh reward likelihood with reward

magnitude in this optimal Pascalian fashion. Instead, we include a free

parameter that allowed subjects to increase the weight of either reward

likelihood or reward magnitude when valuing an outcome (respectively

representing risk-averse and risk-prone behavior).

Subjects are taken to value each option according to the following equations:

gblue i+1 ¼ Fðr̂i+ 1; gÞfblue i+ 1

ggreen i+1 ¼ Fð1 � r̂i+ 1; gÞfgreen i+ 1

where function F(r, g) is a simple linear transform within the bounds of 0

and 1:

Fðr; gÞ ¼ max½min½ðgðr � 0:5Þ+ 0:5Þ; 1�; 0�

and g ¼ 1, g o 1 and g 4 1 imply optimal, risk-prone and risk-averse

behavior, respectively.

Subjects were then assumed to generate actions stochastically, according to a

sigmoidal probability distribution (for example39,49):

PðC ¼ GreenÞ ¼ 1

1 + expð�bðggreen � gblueÞÞ

We fit this model using Bayesian estimation techniques (using direct numerical

integration) to compute the expected value of the marginal posterior distribu-

tion on a for each subject in each task phase.

Learning rule-related activity in the ACC. For Experiment 2, each trial was

divided into three phases. In the first phase, decide (4–8 s, jittered), the subjects

could see the available options, but could not respond until a question mark

appeared on the screen. The second phase, interval (4–8 s, jittered), consisted of

the time after making the decision, but before the correct answer was revealed.

In the third phase, monitor (3 s), subjects observed the correct outcome of the

trial in the center of the screen. If the subject guessed correctly at that trial, the

prize bar moved forward by the distance associated with that option. There was

an intertrial interval (3–7 s, jittered). There were a total of 120 trials.

fMRI data and analyses. fMRI data acquisition and whole brain analysis were

carried out using standard procedures described in full in the Supplementary

Information. fMRI volumes were acquired with repetition time ¼ 3 s.

Region of interest analyses. We took BOLD data in each subject from the local

maximum in a mask back-projected from the group ACC activation in the

monitor � volatility regressor. We separated each subject’s time series into

trials, and resampled each trial to a duration of 20 s, such that the decision was

presented at 0 s, the response was allowed at 6 s, and the outcome was

presented from 12–15 s. The resampling resolution was 100 ms. We then carried

out a general linear model across trials at every time point in each subject

independently. Lastly, we calculated group average effect sizes at each time

point, and their standard errors. The graphs in Figs. 4 and 5, and Supple-

mentary Fig. 1 show these time series of effect sizes throughout the trial for the

regressor of interest.

Note: Supplementary information is available on the Nature Neuroscience website.
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