
 

 

Figure S1: Plots show the effect of volatility at each timepoint when the data is 

divided into a) error and rewarded trials and b) switch and stay trials. The effect of 

volatility remains even if only error trials, or only rewarded trials, or only switch 

trials, or only stay trials are included in the analysis.  



 

Figure S2: 

Neural correlates of the value of the decision, during the DECIDE phase (a), and the 

prediction error during the MONITOR phase. Slices are taken at: coronal, y=-6, 

sagittal, x=-2, axial, z=22. a) clusters are shown for a cluster forming threshold of 

Z=2.8, (p<0.05 cluster corrected). b) No activations were present at corrected levels. 

The figure shows effects of prediction error in the presma, and Ventral tegmental 

Area for Z>2.3, p<0.01 uncorrected. These regions overlap with regions coding the 

predicted probability of an outcome during the INTERVAL phase. See supplementary 

and main text.   



Supplementary Table 1 

Model #params 
(predictor) 

#params 
(selector) 

Prediction 
success 

Log 
likelihood 

Bayesian 0 36 87%  (76%) -1432 
Bayesian jump 0 36 87%  (76%) -1435 

RL 1 18 36 85%  (69%) -1516 
RL2 36 72 86%  (73%) -1478 
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Supplementary information. 

Description of the Bayesian learner  

Here we describe a Bayesian approach to tracking outcome probabilities given a past 

history of stochastic trial outcomes in an environment where these probabilities may 

change. At trial i a new outcome yi is generated. In the context of this experiment, yi 

is a reward either on blue or on green, where yi is on blue with probability ri, and on 

green with probability (1- ri). The goal of the subject is to estimate ri+1 from all 

previous data y[0-i] in order to choose optimally at the following trial. However, in a 

time-varying environment, r may change from trial-to-trial. It is beneficial to the 

subject to understand how r is changing. Effectively, it will allow them to know how 

best to discount information with passing trials. For example, in an environment 

where r is known to be stable, a subject should consider all historical trials with equal 

weight, in order to obtain the best prediction of r at the following trial. However, in an 

environment where r may change, recent trials are most likely to be representative of 

the current situation, so an outcome’s predictive power is diminished as it moves 

further into the past. 

 The optimality of this approach relies on the assumption that the problem is 

solved in a Markovian fashion. That is, when an outcome is observed, the new 

outcome probability depends only on this observed outcome and on the previous 

outcome probability, but not on the full history of previous outcome probabilities. A 

Markovian approach is compelling since it can parsimoniously capture many of the 



statistical regularities of the environment without explicitly considering states of the 

remote past.  In other words, the environment can be well represented without 

needing to store the entire history of estimated reward probabilities and outcomes. 

Under this Markovian assumption, a diagram of the probability- tracking problem can 

be seen in Main figure 1, in the form of a generative model. In the Markovian setting, 

the changeability of r is represented by p(ri+1 |ri ), i.e. the probability that r will move 

from the value ri to the value ri+1 over the course of a single trial. This is a probability 

distribution on the next reward rate ri+1, which must lie between 0 and 1. The 

distribution is centred on ri, encoding the prior expectation that the reward rate at the 

next trial, ri+1, depends upon the current reward rate, ri . We represent this  distribution 

as a beta distribution:  

 

p(r i+1|ri , v ) ∼ β (ri , V )                                      (1)  
 

where ri defines the mean of the distribution and V=exp(v) defines the width of the 

distribution (See appendix for a definition of the reparameterised beta distribution as 

used here). Note that the exponential is taken so that integrals on the width parameter 

are performed in log space. A large value of v leads to a wide distribution, implying r 

may be expected to change greatly; a small value of v leads to a narrow distribution, 

implying r may be expected to change very little. Hence, we refer to v as the volatility 

as it controls the extent to which the observed outcomes of decisions can update the 

estimated reward probability between trials.  If the subject treats the environment 

exactly as described above, they will make the assumption that the environment is 

always susceptible to the same rate of change, and they will therefore be unable to 

profit from periods of local stability to form more accurate estimates of the reward 

rate. If, in fact, the environment may go through stable phases and volatile phases, the 



subject must understand this changing volatility in order to perform optimally.  

Mathematically, we track the changing volatility, vi, in the same manner as the reward 

rate, ri , by again assuming a Markovian progression. The changeability of v is 

represented as p(vi+1 |vi ). Here, the distribution does not need to be constrained 

between 0 and 1, so the form of the transitional distribution can be taken to be 

Gaussian:  

p(vi+1 |vi , k)∼N (vi , K)                                         (2)  

where K=exp(k) controls the rate of change of volatility. Again, the exponent is taken 

so that integrals are performed in log space; the natural space for a variance 

parameter. A large value for k leads to a wide transitional distribution, and would 

describe an environment that moves quickly between stable and volatile periods; a 

small value for k leads to a narrow distribution and would describe an environment 

whose volatility could only change slowly. In other words, the parameter k represents 

the distrust in the constancy of the environment’s volatility. 

 

An alternative forward model.  

The forward model described above is optimal for tracking drifting reward rates. 

However, an alternative model, is to assume that the reward rate remains constant for 

a period of time, and then jumps to a new unknown value. This second scenario is, in 

fact, the case in our experiment, but subjects cannot know this going into the task. 

Here we will lay out such a model, and later we show that the predictions of the 

Bayesian learner are not sensitive to this modeling choice.  

 For this model, we must introduce a latent variable Si, which takes the value 1 

when a jump in reward rate occurs, and 0 when the reward rate remains stable.  

The conditional probability distribution on ri can now be written: 



! 

p(ri | ri"1,Si) =
#(ri " ri"1)

U(0,1)

Si = 0

Si =1

$ 
% 
& 

 

The volatility in this model is taken as the log probability of witnessing a reward rate 

jump at each trial. Hence: 

! 

p(Si) =Vi
 

where, Vi=exp(vi). We can now marginalise over the latent variable Si, to leave: 

! 

p(ri | ri"1,Vi) = (1"Vi)#(ri " ri"1) +ViU(0,1). 

And the conditional distribution on vi is exactly as in the original model above.  

p(vi+1 |vi , k)∼N (vi , K) 

Note that the only difference between the two models is therefore the exact form on 

the conditional distribution on vi, and that the graphical description of the problem 

(main figure 1) is identical for the two models.  

 

Inferring r from past observations. 

During the experiment, the Bayesian learner’s task is to use previous data 

(decision outcomes) to establish a belief about the statistics of the reward 

environment to use in the next trial. These unknown statistics are the outcome 

probability, r, the volatility, v, and the rate of change of volatility, k. It can be shown 

that this is done in the most efficient unbiased way by using Bayesian learning 1.  

Bayesian learning is implemented using Bayes rule: 

p(unknowns | data) ∝ p(data | unknowns)p(unknowns)  
 
where, in this experiment, the data is the history of decision outcomes from all trials; 

the unknowns are the statistics of the reward environment r, v, and k; and the 

likelihood, p(data | unknowns), is the generative model represented graphically in 

main figure 1b. This equation can be used to implement the Bayesian learner. It 



provides the means to use the evidence in the data to update p(unknowns), the prior 

probability distributions of (or belief in) the unknown parameters prior to seeing the 

data at each trial, in order to obtain p(unknowns | data), the posterior probability 

distributions of (or belief in) the unknown parameters after seeing the outcome of the 

trial. 

Bayes rule can be used to write down the joint probability distribution at trial i 

of all the parameters representing the statistics of the reward environment through the 

course of the experiment: 

! 

p(r" i,v" i,k | y" i)# p(k)p(r1)p(v1) p(y j | rj )p(rj | rj$1,v j )p(v j | v j$1,k)
j=1

i

%  

where y≤i is all data (decision outcomes) up to and including trial i,  r≤I and v≤I are the 

entire history of reward rates and volatilities at each trial and k is the distrust in the 

constancy of volatility (see main figure 1b). yi,ri and vi represent the data, reward rate 

and volatility at a particular trial, i. Note that this makes use of the Markovian 

properties of ri and vi : 

! 

p(rj | r" j ,v" j ) = p(rj | rj#1,v j )

p(v j | v" j ,k) = p(v j | v j#1,k)
 

Marginalizing (integrating) over the history of r and v previous to trial i gives the 

posterior probability distribution for the parameters r,v, and k at trial i as: 

  

! 

p(ri,vi,k | y" i)# p(k) L$ p(r1)p(v1) [p(y j | rj )p(rj | rj%1,v j )p(v j | v j%1,k)
j=1

i

& ]dr" i%1dv" i%1$ (eq A)

 

A similar expression can be written down for the posterior probability for (belief in) 

the parameters r,v, and k at trial i+1:  

  

! 

p(ri+1,vi+1,k | y" i+1)# p(k) L$ p(r1)p(v1) [p(y j | rj )p(rj | rj%1,v j )p(v j | v j%1,k)
j=1

i+1

& ]dr" idv" i$

Importantly, this can then be much simplified by substituting in the expression for the 



posterior probability for (belief in) the parameters r,v, and k at the previous trial i (given 

in equation A): 

! 

p(ri+1,vi+1,k | y" i+1)# p(yi+1 | ri+1) p(ri,vi,k | y" i)p(vi+1 | vi,k)dvi$[ ]$ p(ri+1 | ri,vi+1)dri (eq B)

 

This equation provides a way of updating our belief in the parameters r, v, and 

k on a trial-by-trial basis without needing to store the full history of decision 

outcomes or the full history of statistics of the reward environment. This can be seen, 

as no data points previous to yi+1 and no parameters previous to trial i exist in the 

equation. The entire history of previous rewards is summarized in the joint probability 

distribution p(ri,vi,k). This distribution, the current belief in the parameters r, v, and k, 

is all the information that is carried to trial i+1.   

We perform the integrals in equation B using numerical integration on a 5-

dimensional grid (the five dimensions represent ri+1,vi+1,ri,vi and k, with integration 

over two of them, ri and vi). This leaves a 3-dimensional grid representing the joint 

distribution p(ri+1,vi+1,k), which is stored between trials. At the beginning of the 

experiment the joint distribution is set to be uniform, reflecting the fact that the 

subjects have no information about any of the parameters before the experiment 

begins. 

 In order to make a decision at trial i+1, the Bayesian learner requires an 

estimate of the reward rate ri+1. This estimate is the mean of the probability 

distribution on ri+1. The final computation for the Bayesian learner is therefore to 

compute the marginal distribution p(ri+1) from the joint probability distribution 

p(ri+1,vi+1,k). This is obtained by marginalising (integrating over) vi+1 and k:  

! 

p(ri+1) = p(ri+1,vi+1,k)dvi+1dk""  

The current estimate of the reward rate is then given by the mean of this distribution: 



! 

ˆ r i+1
= E(ri+1

) = ri+1
p(ri+1

)dri+1"  

Again, the integrals in this and in the previous equation are performed numerically, 

this time across a 3-dimensional grid (the three dimensions are ri+1,vi+1 and k). 

 

Experiment 1: Human Behaviour 

Model performance: 

In order to further test the performance of the model, we compared subject 

performance to predictions made by both the Bayesian learner (with both forward 

models) and by classical reinforcement-learning models. We used two different RL 

models for the comparison. The first (RL1) used one learning rate for each subject. 

The second (RL2) used separate learning rates in each phase (volatile and stable) in 

each subject. The RL1 model has 18 parameters (1 per subject), and the RL2 model 

has 36 parameters (2 per subject) that are fit to the subject data. In contrast, the 

Bayesian learner has no parameters that can be fit to the subject data. If the Bayesian 

model can perform as well as the reinforcement-learning models, despite having no 

free parameters to fit to the subject data, it is strong evidence for the Bayesian 

rationale for setting the learning rate. 

 On top of each of these “predictor” models, we used the “selector” model 

described above, and again fit model parameters using Bayesian estimation. We then 

made predictions of subject decisions from each model, assuming that the model 

would choose the action with the higher value at each trial. We compared these 

predictions against subject decisions in two ways (Table 1). First, we compared 

against subject decisions in all trials. However, due to the nature of the task, most of 

the decisions made by the subjects are trivial, and predicted by any reasonable model. 

We therefore further tested the models by examining only “difficult” trials. These 



trials are defined as those where the expected Pascalian values of the two options are 

separated by less than 5 points (results in parentheses in table 1).  

Despite the difference in number of parameters, the three models perform comparably 

over all trials, with the Bayesian model marginally out-performing the reinforcement 

learning models. Examining the data from the difficult trials, where chance 

performance is 50%, RL1 predicts subject decisions at 19% better than chance, RL2 

predicts at 23% better than chance, and the Bayesian model predicts at 26% better 

than chance.  Comparing the log likelihood of the three models with the fitted 

parameters reveals behavioural data to be best fit by the Bayesian model, followed by 

the RL2 model, again confirming that the data is best predicted by models in which 

the learning rate can change.  

Comparing the two possible forward models for the Bayesian learner revealed a very 

similar level of prediction of the subject performance. This is unsurprising as, of all 

580 trials in the two schedules, the two Bayesian forward models made different 

predictions of subject choice in only 9 trials.  

 

Experiment II: Learning rule related activity in the ACC 

FMRI experiment timing. 

Subjects performed the same basic task as in the behavioural experiment 

described in the main text. Each trial was divided into 3 phases: DECIDE (4-

8seconds jittered): The phase when subjects made the decision. The subjects could 

see the available options, but could not respond until a question mark appeared on the 

screen. INTERVAL (4-8 seconds jittered): After making the decision, but before the 

correct answer was revealed. MONITOR (3ss): Subjects observed the correct 

outcome of the trial in the centre of the screen. If the subject had guessed correctly at 

that trial, the prize bar moved forward by the distance associated with that option. 



There was an inter-trial interval (3-7 seconds jittered). Total trial time was 20s on 

average. We had 120 trials, giving an average scan time of just over 40 minutes. 

 

FMRI data 

FMRI data were acquired in 20 subjects on a 3T Siemens TRIO scanner. 

Data were excluded from one subject due to rapid head motion, and from one subject 

as mean activation levels over the entire brain were 5 standard deviations from the 

population mean. The remaining 18 subjects were included in the analysis.   

 FMRI data were acquired with a voxel resolution of 3x3x3 mm3, TR=3s, TE=30ms, 

Flip angle=87o.  The slice angle was set to 15o and a local z-shim was applied around 

the orbitofrontal cortex to minimize signal dropout in this region2, which had been 

implicated in other aspects of decision-making in previous studies. The number of 

volumes acquired depended on the behaviour of the subject. The mean number was 

830, giving a total experiment time of around 42 minutes.  

Field Maps were acquired using a dual echo 2D gradient echo sequence with 

echos at 5.19 and 7.65 ms, and repetition time of 444ms. Data were acquired on a 

64x64x40 grid, with a voxel resolution of 3mm isotropic.  

T1-weighted structural images were acquired for subject alignment using an 

MPRAGE sequence with the following parameters: Voxel resolution 1x1x1 mm3 on a 

176x192x192 grid, Echo time(TE)= 4.53 ms, Inversion time(TI)= 900 ms, Repitition 

time (TR)= 2200 ms. 

 



FMRI analysis 

FMRI analysis was carried out using FMRIB’s Software library (FSL3). 

Single subject processing. 

Preprocessing 

Data were preprocessed using FSL default options: motion correction was 

applied using rigid body registration to the central volume4; Gaussian spatial 

smoothing was applied with a full width half maximum of 5mm; brain matter was 

segmented from non-brain using a mesh deformation approach5; high pass temporal 

filtering was applied using a Gaussian-weighted running lines filter, with a 3dB cut-

off of 100s. 

Model estimation 

  A general linear model was fit in pre-whitened data space (to account for 

autocorrelation in the FMRI residuals)6. The following regressors were included in 

the model (see main text): DECIDE – times when the subjects were making the 

decisions, before they make a response; INTERVAL – times between making a 

response and the true outcome being displayed; MONITOR – 3 second period after 

the outcome has been displayed on the screen. DECIDExVOLATILITY – decision 

phase modulated by the volatility estimate at each trial; 

INTERVALxVOLATILITY– interval phase modulated by the volatility estimate at 

each trial; MONITORxVOLATILITY– monitor phase modulated by the volatility 

estimate at each trial; ERROR – monitor phase on trials when the subject chose the 

incorrect option. Note, for all volatility interactions, the most likely, or modal value 

was used from the posterior distribution on volatility at each trial.  

 These regressors were convolved with the FSL default haemodynamic response 

function (Gamma function, delay=6s, standard deviation =3s), and filtered by the 

same high pass filter as the data. 



 
Field Inhomogeneity correction. 

EPI distortions due to magnetic field inhomogeneity were corrected using the 

acquired field-maps. Field-maps were unwrapped using a common-phase region 

expansion approach7, and the parameter and variance estimates from the model were 

spatially shifted according to the local field.  

 

Group data processing. 

Subjects were aligned to the MNI152 template using affine registration8. A 

general linear model was fit to estimate the group mean effect of the regressors 

described above9.  

Inference: Main effects. 

For the main effects of DECIDE and MONITOR, which were expected to 

have widespread activations throughout the brain, inference was carried out using 

Gaussian random field theory and cluster-based thresholding10, with a cluster-forming 

threshold of Z=2.8 and a family-wise false positive rate of p=0.05. Clusters surviving 

thresholding can be found in table 1.  

Inference: Interaction effects.  

The interaction between monitoring and volatility were expected to induce 

more focal activations than the main effects described above, and therefore not to be 

suitable for cluster-based thresholding. They were also expected to lie within the 

region of the anterior cingulate cortex (ACC). For this reason, inference for this 

interaction was carried out using Gaussian random field-based voxel-wise 

thresholding, with a small volume correction in the region of the ACC (3800 voxels). 

This gave a Z-threshold of 3.5.  A region of 42 voxels in the Anterior Cingulate 

Cortex survived this threshold (max Z=4.23, at MNI x=-6,y=26,z=34 mm). Note that, 

as predicted no region in the brain outside the Anterior Cingulate Cortex would have 

survived at this threshold level.  For purposes of display, main figure 3b is rendered 

with a Z-threshold of 3.1 (163 voxels in the ACC survived at this threshold level).  



 

Region of interest analyses.  

We performed several region of interest analyses on data take from the region of 

activation in the ACC. These analyses were performed in order to examine the nature 

of the BOLD signal fluctuations, and to exclude the possibility that these fluctuations 

could be accounted for by several potential confounding regressors.  

 We took BOLD data in each subject from a mask back-projected from the 

group ACC activation in the MONITORxVOLATILITY regressor. We separated 

each subject’s timeseries into each trial, and resampled each trial to a duration of 20s, 

such that the decision was presented at 0s, the response was allowed at 6s and the 

outcome was presented from 12s-15s.  The resampling resolution was 100ms.  We 

then performed a GLM across trials at every trial timepoint in each subject 

independently. Lastly, we calculated the group average effect sizes at each timepoint, 

and their standard errors. The graphs in main figures 4 and 5, and supplementary 

figure 1 therefore show a timeseries of effect sizes throughout the trial, for the 

regressor of interest (volatility).  

Supplementary figure 1 shows the effect of volatility on the BOLD signal separated 

out for a) error and rewarded trials and b) switch and stay trials. It can be seen that the 

effect of volatility is present independent of whether the trial in question was 

rewarded, and independent of whether the subject had switched response on the trial 

in question.  Notice that in figure 1 and main figures 4,5 the effect of volatility is 

limited to the period when the subject is observing the outcome of the trial. This is the 

crucial period when the subject must use their estimated volatility, and therefore 

uncertainty, in updating their estimate of the future reward likelihood.    
 



We performed a second analysis looking for the effects of a different form of 

uncertainty (the probability that a trial would be rewarded) to contrast with the effect 

of volatility we had already found. The crucial time for this form of uncertainty is the 

INTERVAL phase when the subject is awaiting the outcome of the trial. This new 

analysis followed the same procedure described above. 

 While our original experiment was carefully designed to control for any 

possible confounding effect of volatility, we were not able to control for possible 

confounding effects between other parameters in our model. In this analysis we 

therefore included other regressors that may confound with reward probability. We 

also included a prediction error regressor (and potential confounds), reasoning that 

brain regions that code for the predicted probability of a reward when the subject is 

waiting for an outcome, would be ideally placed to code for the error on this 

prediction when the outcome was observed.  

We therefore used the following regressors: 

Three regressors coding the phases of the experiment 

DECIDE,INTERVAL,MONITOR; three regressors coding their interaction with 

volatility; the estimated probability of a reward on the chosen option during the 

DECIDE and INTERVAL phases; the value (probability x outcome size) of the 

chosen option during the DECIDE and INTERVAL phases; the prediction error 

during the MONITOR phase; the actual reward obtained during the MONITOR 

phase.  

Other signals of interest generated by the model.  



1) The “value” regressors during the DECIDE phase showed significant clusters in: 

The ventro-medial prefrontal cortex (max Z=4.74), the posterior cingulate cortex 

(max Z=4.43), the left posterior insular (max Z=4.8), the supramarginal gyrus, 

bilaterally (max Z=4.2), the middle temporal gyrus bilaterally (max Z=3.95) and the 

superior occipital lobe bilaterally (max Z=3.8).  These activations can be seen in 

figure S2. 

2) The “value” regressor during the prediction phase shows significant effects in 

various visual and attention related areas in the occipital and parietal lobes. We do not 

detail these individually here.  

3) The error trial regressor shows a significant effect at the SMA/preSMA boundary 

(max Z=3.6, MNI x=-4,y=0,z=52). 

 

However, because of the firm hypotheses about the coding of reward probability in 

Fiorillo et al. 2003, we looked for the reward-prediction signal during the 

INTERVAL phase in the dopaminergic VTA at a lower threshold (p<0.01 

uncorrected, Z>2.3) , and found a significant effect (main figure 6).  

 

We first note that, as predicted by the ROI analysis presented in the main manuscript, 

the effect of volatility was unchanged by the inclusion of the extra regressors.  

The only new regressors to have significant activations either at voxel-wise or cluster 

corrected levels were: 



Appendix 

Beta distribution 

The standard form of the beta distribution is parameterised as follows: 

10
)()(

)1)((
),;(

11

!!
""

#+"
=

##

x
xx

x
$%

$%
$&'

&$

 

 

This function is valid for x between 0 and 1, and has a mean at 
!"

"
µ

+
= . The 

sharpness of the distribution is defined by the effective number of samples drawn 

from a binomial distribution, !" +=I . This can be easily interpreted in terms of 

estimating the probability of throwing a head from a number of coin tosses. The mean 

is the number of heads divided by the number of tosses, the sharpness (or certainty) of 

the distribution is the number of tosses.   

We further reasoned that the same regions that coded the reward prediction signal 

during the INTERVAL phase, would be ideally positioned to code for the prediction 

error signal during the MONITOR phase. This was the case at the same threshold, 

(figure S2). 

 

The ACC region that codes for the volatility-related uncertainty showed no signal 

relating to the contrasting form of uncertainty: the probability of an outcome during 

the prediction phase (Z=0.6).  



We reparameterise this distribution in terms of the expected reward rate and 

the volatility. 
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Activated clusters for main effects of DECIDE and MONITOR, x,y,z are the MNI152 

space locations of local maxima in the z-statistic. 

 

DECIDE  

Cluster size 

(Voxels) 

Brain region x (mm) y (mm) z (mm) z-score 

14822      

 Striate and 

extrastriate 

visual cortex 

38 

-44 

28 

26 

-88 

-72 

-96 

-90 

-12 

-12 

-2 

-8 

6.09 

5.93 

5.84 

5.84 

 Fusiform 

gyrus 

34 

-44 

-44 

-62 

-20 

-18 

5.79 

4.9 

 Cerebellum -36 -50 -34 6.29 

3814      

 Superior 

temporal 

gyrus 

60 

66 

-40 

-46 

20 

16 

5.11 

4.77 



 Insular 

Cortex 

46 12 -4 5.1 

 Frontal 

Operculum 

42 

38 

42 

18 

20 

18 

-4 

-14 

-8 

5.07 

4.97 

4.96 

3250      

 Anterior 

Cingulate 

Cortex 

6 

4 

2 

-8 

20 

16 

-8 

-8 

26 

30 

48 

52 

5.71 

5.2 

4.94 

4.87 

 Pre-SMA 

 

SMA 

2 

4 

0 

6 

16 

-8 

60 

56 

68 

5.17 

5.14 

3.97 

2235 Insular cortex -44 

-38 

-34 

-32 

-4 

-2 

18 

14 

2 

6 

6 

10 

4.87 

4.76 

4.74 

4.67 

 Frontal  

Opercular 

Cortex 

-46 

-28 

8 

24 

0 

0 

4.77 

4.8 

 Globus 

pallidus 

-20 

18 

2 

0 

-2 

-2 

4.18 

3.9 

2209 Parietal  

operculum 

-54 

-48 

-56 

-24 

-26 

-22 

14 

12 

20 

4.88 

4.59 

4.31 



 Intraparietal 

sulcus 

Post-central 

Sulcus 

-30 

-34 

-38 

-56 

-54 

-34 

52 

54 

42 

4.47 

4.44 

4.36 

1173 STN 8 

-8 

-22 

-18 

-4 

-4 

5.51 

5.07 

 hippocampus 24 -34 -6 4.7 

 Centromedian 

thalamus 

10 

-12 

-20 

-20 

2 

0 

4.64 

3.9 

940 Dorsolateral 

Prefrontal 

Cortex 

34 

30 

36 

32 

28 

28 

30 

46 

48 

54 

26 

24 

34 

22 

12 

4.92 

4.79 

4.69 

4.4 

4.14 

455 Dorsolateral 

prefrontal 

cortex 

-34 

-32 

46 

56 

24 

20 

4.83 

4.53 

284 Posterior 

cingulate 

cortex 

6 -24 26 4.19 

140 Parietal 

operculum 

48 -24 16 4.06 

 

 

 



MONITOR  

Cluster size 

(Voxels) 

Brain region x (mm) y (mm) z (mm) z-score 

34609 Parahippocampal 

Gyrus 

20 -48 -14 6.13 

 Striate and 

extrastriate 

visual and cortex 

46 

-4 

18 

-20 

-70 

-72 

-74 

-72 

0 

6 

-10 

-10 

6.09 

6.09 

5.94 

5.92 

 Intraparietal 

sulcus 

36 

42 

6 

8 

-36 

-52 

-52 

-66 

-46 

-54 

54 

40 

48 

44 

54 

5.43 

4.95 

5.12 

4.11 

4.87 

 Superior 

temporal sulcus  

50 -42 12 5.11 

 Ventral striatum -10 

16 

6 

6 

-8 

-4 

4.75 

3.4 

 Midbrain 10 -20 -10 3.95 

 Mediodorsal 

thalamus 

12 

 

-22 12 4.2 

 Hippocampus 22 

-20 

-26 

-22 

-10 

-10 

5.45 

5.45 

 Premotor cortex 44 

52 

-4 

6 

50 

16 

5.31 

5.01 



 Dorsolateral 

prefrontal 

52 

50 

14 

36 

34 

20 

5.25 

4.45 

1746 Anterior 

cingulate cortex 

-4 

6 

4 

34 

36 

32 

6 

10 

24 

4.94 

4.74 

4.48 

 Pre-

SMA/superior 

frontal gyrus 

6 34 44 4.80 

548 Frontal 

operculum 

-28 

-32 

16 

14 

0 

-10 

4.9 

4.8 

 Insular cortex -32 14 -10 4.8 

417 Parietal 

operculum 

-58 -14 28 4.45 

 Ventral premotor -54 2 42 3.59 

259 Posterior 

cingulate cortex 

8 -36 24 4.41 

356 Superior 

temporal sulcus 

-56 -50 8 3.53 
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