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INTRODUCTION

Much of the work in the field of artificial neural networks concerns the prob-
lem of supervised learning. Here we may be interested in regression problems
(by which we mean the prediction of some real-valued variable(s)), or clas-
sification problems (predicting a class label) given the values of some input
variables. Due to factors such as measurement noise, it is necessary to take
a statistical view of the learning problem.

Given (possibly noisy) observations of a function at n points, it is neces-
sary to impose extra assumptions about the function if there is to be hope
of predicting its value elsewhere. Here we take a Bayesian approach, placing
a prior probability distribution over possible functions and then letting the
observed data “sculpt” this prior into a posterior using the available data.
The Bayesian approach can provide solutions to several problems such as
local optima in weight space, the setting of regularization parameters, over-
fitting and model selection (see MacKay 1992, Neal 1996 and BAYESIAN
METHODS FOR SUPERVISED NEURAL NETWORKS).

One can place a prior distribution P(w) on the weights w of a neural
network to induce a prior over functions P(y(x;w)) but the computations
required to make predictions are not easy due to the non-linearities in the
system, and one needs to resort to analytic approximations or Monte Carlo
methods. Gaussian processes are a way of specifying a prior directly over
function space; it is often simpler to do this than to work with priors over
parameters. Gaussian processes (GPs) are probably the simplest kind of
function space prior that one can consider, being a generalization of finite-

dimensional Gaussian distributions over vectors.
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A finite-dimensional Gaussian distribution is defined by a mean vector
and covariance matrix. A GP is defined by a mean function (which we
shall usually take to be identically zero), and a covariance function C(x,x’'),
which indicates how correlated the value of the function y is at x and x'.
This function encodes our assumptions about the problem (for example that
the function is smooth and continuous) and will influence the quality of the
predictions.

Gaussian process prediction is illustrated in Figure 1. The upper panel
shows a sample of 5 functions drawn from the prior. The lower panel shows
5 samples from the posterior after two observations have been made; notice
that the posterior is tightly constrained near to the observations, but varies
more widely further away. Essentially what has happened is that prior sam-
ples not consistent with the observations have been eliminated. The crucial
computational point is that it is not necessary to draw samples to make pre-
dictions; for regression problems only linear algebra is required. Below we
give more detail on this computation, discuss how to use GPs for classifica-
tion problems, and describe how data can be used to adapt the covariance
function to the given prediction problem.

Further discussion of Gaussian processes is available in Scholkopf and

Smola (2001), MacKay (1998) and Williams (1998).

GAUSSIAN PROCESSES

Formal definition

A stochastic process is a collection of random variables {Y(x)|x € X} in-
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dexed by a set X. In our case X will often be R?, where d is the number
of inputs. The stochastic process is specified by giving the joint probability
distribution for every finite subset of variables Y (x;),...,Y (xx) in a consis-
tent manner. A Gaussian process (GP) is a stochastic process for which any
finite set of Y-variables has a joint multivariate Gaussian distribution. A
GP is fully specified by its mean function p(x) = E[Y(x)] and its covariance
function C'(x,x") = E[(Y (x) — p(x))(Y (x') — u(x'))]. For a multidimensional
input space a Gaussian process may also be called a Gaussian random field.

Below we consider Gaussian processes which have u(x) = 0. A non-zero
p(x) can be incorporated into the framework at the expense of a little extra
complexity.

Example: Bayesian linear regression

Consider the model y(z) = Y7, w;d;(x) = wl ¢p(x), where {¢;} is a set of
fixed basis functions and w is a vector of “weights”. Let w have a Gaus-
sian distribution with mean 0 and covariance ¥. Then u(x) = Ely(x)] =
E[wT]¢(x) = 0 as E[w] = 0. As the mean is zero we have that C(x,x’) =
o' (x)E[lwwT]|p(x') = ¢' (x)Z(x'). For example, using basis functions 1
and the components of x along with ¥ = I gives C(x,x') = 1 + x.x'.

In the case of a finite dimensional model we can make predictions using
calculations in the parameter space (of dimension m), or a GP prediction
(which is n dimensional, where n is the number of data points). For m < n
the parameter space method is preferable, but for many useful covariance

functions (see, e.g. equation 1) m is infinite and the GP method is necessary.

Covariance functions

The only constraint on the covariance function is that it should generate a
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non-negative definite covariance matrix for any set of points in X. This gives
wide scope, and different choices of C'(x,x’) can give rise to such differing
priors as straight lines of the form y = wy + wix (as discussed above) to
the very rough and jagged sample paths associated with a Wiener process (a
model for Brownian motion) or an Ornstein-Uhlenbeck process.

One very common form of covariance function is the stationary covari-
ance function, where C(x,x’) is a function of x — x’. The use of station-
ary covariance functions is appealing if one would like the predictions to
be invariant under shifts of the origin in input space. For example, in one
dimension letting h = 2 — 2/, the covariance of the Ornstein-Uhlenbeck pro-
cess is Cop(h) = voe_””/)‘, where vy sets the overall variance of the process
and A\ sets a lengthscale in the input space. Another example of a sta-
tionary covariance function is the “squared exponential” covariance function
Csi(h) = voexp(—h?/\?) (sometimes called the “Gaussian” covariance func-
tion).

One commonly-used covariance function for inputs in R is

C(x,x') = v exp{—z(”%ﬁ}. (1)

This is simply the product of d squared-exponential covariance functions,
but with different lengthscales on each dimension. The general form of the
covariance function expresses the idea that cases with nearby inputs will have
highly correlated outputs, and the A parameters allow a different distance
measure for each input dimension. For irrelevant inputs, the corresponding
A; will become large, and the model will effectively ignore that input. This

is closely related to the Automatic Relevance Determination (ARD) idea of
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MacKay and Neal (Neal, 1996).
The term kernel function used in the Support Vector Machines litera-
ture is broadly equivalent to the covariance function. Further information

on kernel/covariance functions can be found in Schélkopf and Smola (2001,

chapters 4 and 13), MacKay (1998), Williams (1998) and references therein.

GAUSSIAN PROCESSES FOR

REGRESSION PROBLEMS

Above we have discussed the properties of Gaussian processes. We now
assume that we have input points x" = x3,...,X, and target values t =
t1,...,tn, and wish to predict the function value y, corresponding to an input
x,. We assume that the target values ¢; are obtained from the corresponding
function value y; by means of additive Gaussian noise, i.e. t; = y; + ¢; for

t=1,...,n, where ¢; is an independent zero-mean Gaussian random variable

2

of variance oZ. (The generalization to different variances at each location
is straightforward, but notationally a bit more complex.) As the prior is
a Gaussian process, the prior distribution over the y;’s is given by Y ~
N(0, K), where K is the nxn covariance matrix with entries K;; = C(x;, ;).
It is then easy to show that the prior distribution over the targets is N (0, K +
o21,) where I,, is the n x n identity matrix.

To make a prediction for y, we now need to consider the n+ 1-dimensional
vector which consists of the n variables in t with the variable y, appended,
and condition on t to obtain P(y.|t). As conditional distributions of jointly

Gaussian variables are also Gaussian, it is clear that this distribution will be
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Gaussian, and our task is to compute the mean §(x,) and variance 62(x,).

It turns out that

j(x.) = K'(x)E+0L) 6= aiClx;, %), (2)
i=1
5i(x,) = C(x.,x.) — kI (x,)(K + 02I,) 'k(x,), (3)
where k(x,) is the n x 1 vector of covariances (C(xy,X,),...,C (X, x4))7,

and o = (K + 02I,,)~'t. Unpacking equation (2), we see that the prediction
function 7(x.) is a linear combination of the kernel functions C'(x;, x.), with
coefficients given by the appropriate entries of the vector a.

Equations 2 and 3 require the inversion of a n x n matrix which is in
general a O(n?) operation. When n is of the order of a few hundred then
this is quite feasible with modern computers. However, once n ~ O(1000)
these computations can be quite time consuming, and much recent research
effort has gone into developing approximation methods; see Tresp (2001) for
a review. Note that in special cases (notably when the input space is R and
for certain Markovian kernels), the necessary calculations can be carried out
in linear time (see, Wahba, 1990 for further details).

The use of Gaussian processes for regression problems has been studied
extensively by Carl Rasmussen in (Rasmussen, 1996) and in his PhD thesis
(available from http://www.cs.utoronto.ca/"carl/). He carried out a
careful comparison of the Bayesian treatment of Gaussian process regression
with several other state-of-the-art methods on a number of problems and
found that its performance is comparable to that of Bayesian neural networks

as developed by Neal (1996), and consistently better than the other methods
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tested.

Adapting the covariance function
Given a covariance function it is straightforward to make predictions for new
test points. However, in practical situations we are unlikely to know which
covariance function to use. One option is to choose a parametric family
of covariance functions (with a parameter vector 8) and then to search for
parameters that give good predictions.

Adaptation of @ is facilitated by the fact that the log likelihood [ =

log P(t|@) can be calculated analytically as
1 1
| = =5 logdet(K +021,) — 5t (K +071,)"'t - g log2r.  (4)

This is just the log likelihood of the vector t under a Gaussian with mean
0 and covariance K + o21,,. The evaluation of the likelihood and its partial
derivatives with respect to the parameters takes time O(n?), unless special
structure in the problem can be exploited. Given [ and its derivatives with
respect to @ it is straightforward to feed this information to an optimization
package in order to obtain a local maximum of the likelihood.

One can also combine P(t|@) with a prior P(@) to yield a Bayesian ap-
proach to the problem. Another approach to adapting 0 is to use the cross-
validation (CV) or generalized cross-validation (GCV) methods, as discussed

in Wahba (1990).

Relationship to other methods
Prediction with Gaussian processes is certainly not a very recent topic; the
basic theory goes back at least as far as the work of Wiener and Kolmogorov

in the 1940’s on time series. Gaussian process prediction is also well known
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in the geostatistics field (see Cressie, 1993) where it is known as “kriging”,
although this literature naturally has focussed mostly on two- and three-
dimensional input spaces.

As mentioned above, there is a close relationship between Bayesian ap-
proaches and regularization theory. This connection was described in Kimel-
dorf and Wahba (1970), and further details can be found in Wahba (1990),
Poggio and Girosi (1990) and GENERALIZATION AND REGULARIZA-
TION IN NONLINEAR LEARNING SYSTEMS (q.v.).

When the covariance function C'(x,x") depends only on h = |x — x'|, the
predictor derived in equation 2 has the form ) . ¢,C(|x — x;|) and may be
called a Radial Basis Function (or RBF) network. This is one derivation of
RBF's, which are described in more detail in RADIAL BASIS FUNCTION
NETWORKS.

The Gaussian process approach adds a stochastic process view to the
regularization viewpoint, giving us “error bars” on the prediction (equation
3), an expression for P(t|@) and its derivatives, and allows us to use the

Bayesian machinery for hierarchical models.

GAUSSIAN PROCESSES FOR

CLASSIFICATION PROBLEMS

Given training data and an input x, the aim of a classifier is to predict the
corresponding class label. This may be done by simply predicting a class
label (“hard” classification), or by outputting an estimate of the posterior

probabilities for each class P(k|x) (“soft” classification), where k = 1,...C
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indexes the C' classes. Naturally we require that 0 < P(k|x) < 1 for all &
and that ), P(k|x) = 1. A naive application of the regression method for
Gaussian processes using, say, targets of 1 when an example of class k is
observed and 0 otherwise will not obey these constraints. Soft classification
has the advantage that the posterior probability estimates can be used in a
principled fashion with loss matrices, rejection thresholds etc.

For the two-class classification problem it is only necessary to represent
P(1]x), since P(2|x) = 1 — P(1]|x). An easy way to ensure that the estimate
7(x) of P(1]x) lies in [0, 1] is to obtain it by passing an unbounded value y(x)
through an appropriate function which has range [0,1]. A common choice is
the logistic function o(z) = 1/(1 + e?) so that 7(x) = o(y(x)). The input
y(x) to the logistic function will be called the activation. In the simplest
method of this kind, logistic regression, the activation is simply computed as
a linear combination of the inputs, plus a bias, i.e. y(x) = wlx + b. Using
a Gaussian process or other flexible methods allow y(x) to be a non-linear
function of the inputs.

For the classification problem with more than two classes, a simple exten-
sion of this idea using the “softmax” function gives the predicted probability

for class k as

_ expyp(x)
m(k|x) = S exp ym(x) (5)

For the rest of this section we shall concentrate on the two-class problem;

extension of the methods to the multi-class case is relatively straightforward.
Defining a Gaussian process prior over the activation y(x) automatically
induces a prior over 7(x). To make predictions for a test input x, when using

fixed parameters in the GP we would like to compute 7, = [ 7. P(m.|t, 0) dr.,
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which requires us to find P(m,|t) = P(7(x,)|t) for a new input x,. This can
be done by finding the distribution P(y.|t) (y. is the activation of ) as
given by

P(y,|t) :/P(y*|Y)P(Y|t)dY= %/P(QJY)P(Y)P(UY)C[}’, (6)

where y = (y1,...,y,) denotes the activations corresponding to the data-
points. P(m|t) can then be found from P(y.|t) using the appropriate Ja-
cobian to transform the distribution. When P(t|y) is Gaussian then the
integral in equation 6 can be computed exactly to yield equations 2 and 3.
However, the usual expression for P(t|ly) = [[, P(t|y:) and P(t;|y;) = =, if
t; =1 and P(t;|y;) = (1 —m;) for t; = —1 for classification data (where the ’s
take on values of 1 or —1), means that the marginalization to obtain P(y,|t)
is no longer analytically tractable. Faced with this problem we can either use
an analytic approximation to the integral in equation 6 or use Monte Carlo
methods to approximate it. These two approaches will be considered in turn.

First we note that P(y.|t) is mediated through P(y|t) and that P(y.|y)
is Gaussian, so that obtaining information about P(y|t) is the essential step.
It is easy to find the maximum of this distribution by optimizing log P(y) +
log P(t]y) with respect to y, e.g. with a Newton-Raphson iteration. It can
be shown that the optimization problem is convex. This yields the mazimum
a posteriori estimator yMAP. We could build a classifier based on yMAF
by calculating y™4”(x,) as the mean of P(y.|y™4?”). This can then be
fed through the logistic function to obtain an approximation to 7,. This
MAP solution is the one used in spline smoothing approaches to classification
(Wahba, 1990).

One can also make a Gaussian approximation to P(y|t) with mean yM4F
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and inverse covariance matrix —VV log P(y|t). This yields a Laplace ap-
proximation to the integral in equation 6.

Neal (1998) has developed a MCMC method for the Gaussian process
classification model. This works by generating samples from P(y|t) by up-
dating each of the n individual y;’s sequentially using Gibbs sampling. This
sampling process can be also be interleaved with sampling for the parameters
0. As with the regression problem, there has been much work on approxi-
mation schemes for large data sets, see Tresp (2001) for further details.

Classifiers using splines have been used extensively on a wide variety of
problems, see Wahba (1990) and references in GENERALIZATION AND
REGULARIZATION IN NONLINEAR LEARNING SYSTEMS. Gaussian
process classifiers using MCMC sampling over @ have been described in

Williams and Barber (1998).

Relationship to Support Vector Machines
Above we have seen that the mazimum a posteriori solution y™ 4% is obtained
by minimizing ¥(y) = — log P(y)—log P(t]y). This expression can be refined
using — log P(t|y) = — >, log P(t;|y;) and —log P(t;|y;) = log(1 + e %) to
give

U(y) = %yTK_ly + zZ: log(1+ e ") + ¢ (7)
where ¢ is a constant independent of y. The criterion optimized by the
Support Vector Machine (SVM) learning algorithm (Vapnik, 1995) is very
similar, but with ggp(z)déf log(1+e~%) replaced by gSVM(z)déf[l — 2|4, where

[z]; = max(z,0). These are both monotonically decreasing functions of z

which are linear for 2 — —o0. They both decay to zero as z — oo, but the
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main difference is that the ggy3s takes on the value 0 for z > 1, while ggp
asymptotes to 0 as z — oo. The SVM optimization problem is convex, but
inequality constraints mean that it is quadratic programming problem.

By replacing gop with gy we obtain ¢V (x,) instead of y™4¥(x,). To
make a “hard” (4+1/ — 1) prediction we simply take the predicted class label
as sgn(y(x.)). Thisis the SVM classifier. The effect of the flat region of gsy s

SVM(X*)7

is to introduce sparsity into the prediction of the corresponding y
where only those data points with ¢;y; < 1 contributing; these are known
as the support patterns. Note that gsy s is not interpretable as a negative
log likelihood as it does not normalize properly. For further discussion see

Wahba (1999) and SUPPORT VECTOR MACHINES (q.v.).

DISCUSSION

In this article we have seen how Gaussian process priors over functions (which
are in general infinite-dimensional objects) can be used in a computationally
efficient manner to make predictions.

Methods such as Gaussian Processes and Support Vector Machines have
come to be known under the umbrella term of kernel machines, see (Scholkopf
and Smola, 2001). The website http://www.kernel-machines.org/ has
extensive links to research publications and software in this area.

One key issue concerning obtaining good performance with kernel meth-
ods is the choice of kernel. The squared-exponential kernel is widely used
in practice, but it only encodes a general notion of smoothness. For par-

ticular problems incorporation of prior/domain knowledge requires “kernel
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engineering”. A second key issue for kernel methods is developing good ap-

proximation algorithms for large datasets.
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FIGURE CAPTION

Figure 1. Top: Five samples from a Gaussian process prior. Bottom: Five
samples from the Gaussian process posterior (shown as dot-dash lines) and
the posterior mean (solid line), after observing the data points (0.2,0) and

(0.6, —1).
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