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Abstract

The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We
start from Bayesian linear regression, and show how by a change of viewpoint one can see this
method as a Gaussian process predictor based on priors over functions, rather than on priors over
parameters. This leads in to a more general discussion of Gaussian processes in section 4. Section
5 deals with further issues, including hierarchical modelling and the setting of the parameters that
control the Gaussian process, the covariance functions for neural network models and the use of
Gaussian processes in classification problems.
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1 Introduction

In the last decade neural networks have been used to tackle regression and classification problems,
with some notable successes. It has also been widely recognized that they form a part of a wide
variety of non-linear statistical techniques that can be used for these tasks; other methods include,
for example, decision trees and kernel methods. The books by Bishop (1995) and Ripley (1996)
provide excellent overviews.

One of the attractions of neural network models is their flexibility, i.e. their ability to model a
wide variety of functions. However, this flexibility comes at a cost, in that a large number of
parameters may need to be determined from the data, and consequently that there is a danger
of “overfitting”. Overfitting can be reduced by using weight regularization, but this leads to the
awkward problem of specifying how to set the regularization parameters (e.g. the parameter « in
the weight regularization term aw”w for a weight vector w.)

The Bayesian approach is to specify an hierarchical model with a prior distribution over hyper-
parameters such as «, then to specify the prior distribution of the weights relative to the hyper-
parameters. This is connected to data via an “observations” model; for example, in a regression
context, the value of the dependent variable may be corrupted by Gaussian noise. Given an ob-
served dataset, a posterior distribution over the weights and hyperparameters (rather than just a
point estimate) will be induced. However, for neural network models this posterior cannot usually
be obtained analytically; computational methods used include approximations (MacKay, 1992) or
the evaluation of integrals using Monte Carlo methods (Neal, 1996).

In the Bayesian approach to neural networks, a prior on the weights of a network induces a prior over
functions. An alternative method of putting a prior over functions is to use a Gaussian process (GP)
prior over functions. This idea has been used for a long time in the spatial statistics community
under the name of “kriging”, although it seems to have been largely ignored as a general-purpose
regression method. Gaussian process priors have the advantage over neural networks that at least
the lowest level of a Bayesian hierarchical model can be treated analytically. Recent work (Williams
and Rasmussen, 1996, inspired by observations in Neal, 1996) has extended the use of these priors
to higher dimensional problems that have been traditionally tackled with other techniques such as
neural networks, decision trees etc and has shown that good results can be obtained.

The main aim of this paper is to provide a tutorial on regression with Gaussian processes. The
approach taken is to start with Bayesian linear regression, and to show how by a change of viewpoint
one can see this method as a Gaussian process predictor based on priors over functions, rather than
performing the computations in parameter-space. This leads in to a more general discussion of
Gaussian processes in section 4. Section 5 deals with further issues, including hierarchical modelling
and the setting of the parameters that control the Gaussian process, the covariance functions for
neural network models and the use of Gaussian processes in classification problems.

2 Bayesian regression

To apply the Bayesian method to a data analysis problem, we first specify a set of probabilistic
models of the data. This set may be finite, countably infinite or uncountably infinite in size. An
example of the latter case is when the set of models is indexed by a vector in R™. Let a member
of this set be denoted by #,,, which will have a prior probability P(#,). On observing some data
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Figure 1: The four possible curves (labelled a, b, ¢ and d) and the two data points (shown with
+ signs).

D, the likelihood of hypothesis Ho is P(D|H,). The posterior probability of H, is then given by

posterior oc prior X likelihood (1)
P(Ha|D) o< P(Ha)P(DIHa). (2)

The proportionality can be turned into an equality be dividing through by P(D) = )  P(D|Ha)P(Ha)
(where the summation may be interpreted as an integration where appropriate).

Suppose we are now asked to make a prediction using this set of probabilistic models; say we are
to predict some quantity y. Under each of the individual models the prediction for y is given by
P(y|Hs)- The combined prediction is

P(y) = Y P(y[Ha) P(HalD). 3)

In this paper we will discuss the Bayesian approach to the regression problem, i.e. the discovery
of the relationship between input (or independent) variables x and the output (or dependent)
variable y. In the rest of this section we illustrate the Bayesian method with only a finite number
of hypotheses; the case of an uncountably infinite set is treated in section 3.

We are given four different curves denoted f,(z), f5(z), fo(z) and f4(z) which correspond to the
hypotheses labelled by H,, Hs, H. and Hg; see the illustration in Figure 1. Each curve #H, has a
prior probability P(H,); if there is no reason a priori to prefer one curve over another, then each
prior probability is 1/4.

The data D is given as input-output pairs (x1,1), (X2,%2),--- , (Xn, ). Assuming that the targets
t; are generated by adding independent Gaussian noise of variance o2 to the underlying function
evaluated at x;, the likelihood of model H, (for a € {a,b,c,d}) when the data point (x;,t;) is
observed is

(ti — fa(mi))z.

P(ti|xi’HC¥) = 202

exp —

1
Grod) @

The likelihood of each hypothesis given all n data points is simply [], P(t;|x;, Ha)-

Let us assume that the standard deviation of the noise is much smaller (say less than 1/10) than
the overall y-scale of Figure 1. On observing one data point (the left-most + in Figure 1), the
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likelihood (or data fit) term given by equation 4 is much higher for curves a, b and ¢ than for curve
d. Thus the posterior distribution after the first data point will now have less weight on #4 and
correspondingly more on hypotheses #H,,#H, and H.. A second data point is now observed (the
right-most + in Figure 1). Only curve c fits both of of these data points well, and thus the posterior
will have most of its mass concentrated on this hypothesis. If we were to make predictions at a
new z point, it would be curve c that had the largest contribution to this prediction.

From this example it can be seen that Bayesian inference is really quite straightforward, at least
in principle; we simply evaluate the posterior probability of each alternative, and combine these
to make predictions. These calculations are easily understood when there are a finite number
of hypotheses, and they can also be carried out analytically in some cases when the number of
hypotheses is infinite, as we shall see in the next section.

3 From linear regression ...

Let us consider what may be called “generalized linear regression”, which we take to mean linear
regression using a fixed set of m basis functions {¢;(x)}. Thus the regression function will have
the form y(z) = Y7°, wigi(z) = wl(x), for some vector of “weights” w. If there is a Gaussian
prior distribution on the weights and we assume Gaussian noise then there are two equivalent ways
of obtaining the regression function, (i) by performing the computations in weight-space, and (ii)
by taking a Gaussian process view. In the rest of this section we will develop these two methods
and demonstrate their equivalence.

3.1 The weight-space view

Let the weights have a prior distribution which is Gaussian and centered on the origin, w ~
N(0,%,), i-e.

1

P(W) = —(27r)m/2|2w|1/2 exp

{-5w T, w). 5)

Although a common choice for the prior (e.g. in ridge regression) is to set X,, o I,,, it may be
more sensible to choose X, so as to approximate a Gaussian process (see section 5.3).

Again, assuming that the targets t; are generated by Gaussian noise of variance o2 from the
underlying function, the likelihood of w is

_ 1 - (ti — y(zi; w))*
P(t1,t2,... ,ta|w) = Wgexp{—T}- (6)
The posterior distribution for the weights is given by
_ P(D|w)P(w)
P(w|D) = W (7)

where P(D) = [ P(D|w)P(w)dw. As the prior and likelihood are Gaussian, the posterior is also
Gaussian. The posterior mean value of the weights wpsp is the choice of w that minimizes the
quadratic form

_ 1 - T 2 1 Ty —1
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Let 8 =1/02, let ® be the n x m design matrix

$1(x1)  @a(x1) -+ Pm(x1)
5 b1 (:Xz) b2 (:Xz) . bm Exz) ©)

and let t denote the vector of targets. Then we can rewrite equation 8 as

1

E = g(t —dw)T(t — dw) + §WTE;1W (10)
1

= 5WT(E;I + 88T ®)w — pwldTt + gtTt, (11)

and wp,p is the minimizer of this quadratic form, i.e. it is the solution of
(25 + BT ®)wyp = BBt (12)

Let A=3%,1+387®. Then wyp = BA 1®Tt and the posterior covariance matrix for the weights
is AL,

The mean prediction for a new input x, (under the weight-space view) is
pos(%:) = @7 (x.)wup = BT (x.) A7 2Tt (13)

We can also obtain “error bars” for this prediction; the variance about the mean is given by

oy(x) = Eyupl(y(x) = pruws(x4))’] (14)
= ¢" (%) Eypl(w — wap)(w — warp) T]¢(x.) (15)
= ¢ (x)ATP(x.). (16)

To obtain the predictive variance var t(x.) it is necessary to add o}, to o7 (x.) to account for the
additional variance due to the noise, since the two sources of variation are uncorrelated.

The Bayesian approach to linear regression is discussed in most texts on Bayesian statistics, for
example Box and Tiao (1973).

3.2 The function-space view

In the previous section the uncertainty in the problem was described through a probability distri-
bution over the weights. It is also possible to deal directly with uncertainty with respect to the
function values at the points we are interested in. This is the stochastic process or function-space
view of the problem. A stochastic process Y (x) is a collection of random variables indexed by
x. In the cases considered below, x will usually be a vector in RP, where p is the dimensional-
ity of x-space. A general stochastic process is specified by giving the probability distributions of
any finite subset (Y'(x1),Y (x2),...,Y (xx)) in a consistent way. Gaussian processes are a subset of
stochastic processes that can be specified by giving only the mean vector and covariance matrix for
any finite subset of points. In fact we shall further specialize and consider only Gaussian processes
which have zero mean.

In the function-space view of linear regression we consider the kinds of function that can be
generated from a fixed set of basis functions with random weights. The Y value at a particular
point x in the input space is a random variable Y (x) = >>; W;¢;(x), which is simply a linear
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Figure 2: (a) shows four basis functions, and (b) shows three sample functions generated by
taking different linear combinations of these basis functions.

combination of the Gaussian random variables W, where W ~ N(0,%,,) as in equation 5. (The
notation W indicates that the weights are viewed as random variables.) We can calculate the
mean and covariance functions for the stochastic process,

B,[Y(x)] = 0 (17)
E,Y®Y ()] = ¢ (x)Tud(x'). (18)

In fact since it is derived as a linear combination of Gaussian random variables it is clear that Y is
a Gaussian process. Some examples of sample functions are shown in Figure 2(b), using the basis
functions shown in Figure 2(a). The sample functions are obtained by drawing samples of W from
N(0,%,).

3.3 Prediction using Gaussian Processes

We will first consider the general problem of prediction using a Gaussian process, and then focus
on the particular Gaussian process derived from linear regression. The key observation is that
rather than deal with complicated entities such as priors on function spaces, we can consider just
the function values at the x points that concern us, namely the training points x;,... ,x, and
the test point x, whose y-value we wish to predict. Thus we need only consider finite-dimensional
objects, namely covariance matrices.

Consider n+1 random variables (Z1, Zs, . .. , Z,, Z,) which have a joint Gaussian distribution with
mean 0 and covariance matrix K. Let the (n+1) x (n+ 1) matrix K be partitioned into an xn
matrix K, an x 1 vector k and a scalar k,

K= (4 o) (19)

If particular values are observed for the first n variables, i.e. Z1 = 21,25 = 22,... , 4, = 2z, then
the conditional distribution for Z, is Gaussian (see, e.g. von Mises, 1964, section 9.3) with

E[Z.] = X'K™lz (20)
var[Z,] = k.—-kTK 'k (21)
where zT = (21, 22,... ,2,). Notice that the predicted mean (equation 20) is a linear combination

of the 2’s.
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3.4 LINEAR REGRESSION USING THE FUNCTION-SPACE VIEW

Returning to the linear regression case, we are interested in calculating the distribution of Y (x.) =
Y., given the noisy observations (¢1,...,t,). To do this we calculate the joint distribution of
(Ty,Ts,...,T,,Y,) and then condition on the specific values Ty = t1,T> = t2,...,T, = t, to
obtain the desired distribution P(Y.|t). Of course this distribution will be a Gaussian so we need
only compute its mean and variance.

The distribution for (Ty,T>,...,T,,Y:) is most easily derived by first considering the joint dis-
tribution of Y = (Y1,Y>,...,Y,,Y.). Under the linear regression model this is given by Y, ~
N(0,8,%,87), where &, is an extended  matrix with an additional bottom row ¢, = @(x.) =
(¢1(%+), #2(%+),- - - , m(x+)). Under the partitioning used in equation 19, the structure of & %, &%
can be written

33,87  8%,0, )

T __
‘I’+E“"}+‘( 5,87 $TS, 6, (22)

The joint distribution for T3, ...T,, Y, can be found by realizing that the T”’s are obtained by cor-
rupting the corresponding Y’s with Gaussian noise, and hence that (71, ...T,,Y.) ~ N(O, <I>+Ew<1>£+
E,), where E, is the n x n matrix 02I, bordered on the right and bottom by bands of ze-
ros. (The reason that E, is not 021, is that we are predicting Y., not 7,.) Conditioning on
Ty =t1,T> = ta,...,T, =t, and using equations 20 and 21, we obtain

ElY.] = pps(x.)=¢l2,8TP ¢t (23)
varlY,] = ¢I%ué, — ¢l 5,3TP1ET,e, (24)

where we have defined P = (®%,,®7 + 02I,). Note that if the number of basis functions (m)
is less than the number of data points (n), as will often be the case, then the covariance matrix
&%, 87 will be rank-deficient, i.e. it will have some zero eigenvalues, so that the probability of
points lying outside a linear subspace will be zero. However, the addition of 02I,, ensures that P
will be strictly positive definite.

The challenge is now to show that these results for the mean and variance are consistent with the
expressions obtained in section 3.1. To obtain the formula for the mean as in equation 13 we note
that

A%, 8T = o7 4+ poTox, 87 = g87 (621 4+ %,87) = fBTP. (25)

By multiplying through by A=! and P~! we obtain £,8TP~! = 3471®7 which can be substi-
tuted into equation 23 to yield the desired result.

The equivalence of the two expressions for the variance can be proved by using the following matrix
identity (the Woodbury formula, Press et al, 1992, section 2.7)

(X+YZ)'=X"'1-X"YU+2zX'Y)lzx! (26)
on A7t = (2, + 38T®) ! to obtain
A7l =%, - 32,8721+ o%,9T) tox,, (27)
which may be substituted into equation 16 to give equation 24.
Given that the weight-space and function-space views are equivalent, it is interesting to ask which

of the two methods is computationally more efficient. In the weight-space approach it is necessary
to form and invert the matrix A which is of dimension m x m. Similarly for the function-space
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view one has to form and invert the n x n matrix P. As the inversion of a | x [ matrix takes time
O(13), it is natural to choose the method which takes less time. Usually for simple linear regression
problems m < n and so the weight-space view will be preferred. But for other kinds of linear
prediction (see section 4) m can be infinite and thus the function-space view is the only tenable
one.

4 ... to linear prediction ...

As we have already seen in section 3.3, if the prior is a general Gaussian process and we assume a
Gaussian noise model, then the predicted y-value is just some linear combination of the ¢-values;
the method is said to be a linear smoother (Hastie and Tibshirani, 1990) or a linear predictor. In
section 3 we have seen how linear regression can be seen from a function-space viewpoint. This
opens up further possibilities, as linear regression with a prior on the weights is just one way of
specifying the covariance between points x and x’. In general the covariance function C'(x,x') of a
zero-mean Gaussian process Y (x) is defined as E[Y (x)Y (x')]. Formally, the covariance function can
be any function that will generate a non-negative definite covariance matrix for any set of points
(x1,X2,... ,Xg). It is non-trivial to come up with functions that obey this condition, although
several families are known in the literature.

One well-known class is the stationary and isotropic covariance functions where C'(x,x') = C(|x —
x'|) = C(h), where |-| denotes the Euclidean norm. These can be derived as the characteristic func-
tion (or Fourier transform) of an isotropic probability density!. For example C(h) = exp(—(h/0)")
is a valid covariance function for all dimensions p and for 0 < v < 2, corresponding to the multi-
variate Cauchy and Gaussian distributions when v = 1 and v = 2 respectively. Note that in this
case o sets the correlation length-scale of the random field, although other covariance functions
(e.g. those corresponding to power-law spectral densities?) may have no preferred length scale.

Samples from Gaussian processes can have very different properties depending on the choice of
the covariance function. For example in 1-d, the Ornstein-Uhlenbeck process (with covariance
function e~ /") has very rough sample paths which are not mean-square differentiable. On the
other hand, choosing C(z,2') = 02 + o2zz’ (which arises from y = wl ¢(x) with ¢(x) = (1, )T
and w ~ N(0,diag(c,0?)) ) leads to straight-line sample paths of the form y = wo + wiz. It
should also be noted that the covariance function C'(h) = e~ gives rise to sample paths that are
infinitely mean-square differentiable.

Given a covariance function which is assumed to characterize the data D, it is easy to make
predictions for new test points; we simply use equations 20 and 21; as in section 3.4 the overall
covariance function will be made up of the prior covariance function and a noise term. If the
covariance function is unknown (as will always be the case in practice) but is assumed to come
from some parametric class, then maximum likelihood estimation or a Bayesian approach can be
taken; this is discussed in section 5.2 below.

Prediction with Gaussian processes is certainly not a very recent topic; the basic theory goes back
to Wiener and Kolmogorov in the 1940’s and applications to multivariate regression are discussed
in Whittle (1963). ARMA models for time series are Gaussian process models. Gaussian process
prediction is also well known in the geostatistics field (Journel and Huijbregts, 1978; Cressie, 1993)
where it is known as “kriging”, although this literature naturally has focussed mostly on two-
and three-dimensional input spaces. Wahba has been influential in promoting the use of spline

In fact Bochner’s theorem (see, e.g. Wong, 1971) states that the positive definite functions C(h) which are
continuous at 0 and satisfy C(0) = 1 are exactly the characteristic functions.
2For stationary covariance functions the spectral density is the Fourier transform of the covariance function.
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techniques for regression problems; her work dates back to Kimeldorf and Wahba (1970), although
Wahba (1990) provides a useful overview. Essentially splines correspond to Gaussian processes
with a particular choice of covariance function?.

Gaussian process prediction was also suggested by O’Hagan (1978), and is widely used in the
analysis of computer experiments (e.g Sacks et al, 1989), although in this application it is assumed
that the observations are noise-free. A connection to neural networks was made by Poggio and
Girosi (1990) and Girosi, Jones and Poggio (1995) with their work on Regularization Networks.
When the covariance function C(x,x') depends only on h = |x — x'|, the predictor derived in
equation 20 has the form ), ¢;C(|x — x;|) and may be called a radial basis function (or RBF)
network.

4.1 Covariance functions and eigenfunctions

It turns out that general Gaussian processes can be viewed as Bayesian linear regression with an
infinite number of basis functions. One possible basis set is the eigenfunctions of the covariance
function. A function ¢(-) that obeys the integral equation over the domain R

/ O(x,¥')(x)dx = Ap(x') (28)
R

is called an eigenfunction of C' with eigenvalue A\. In general there are an infinite number of
eigenfunctions, which we label ¢;(x), #2(x),.... The eigenfunctions are orthogonal and can be
chosen to be normalized so that [, ¢;(x)¢;(x) dx = d;; where d;; is the Kronecker delta.

Mercer’s theorem (see, e.g. Wong, 1971) states that the covariance function can be expressed as

Clx,x) = 3 Nidi(x)gi(x'). (29)

This decomposition is just the infinite-dimensional analogue of the diagonalization of a real sym-
metric matrix. Note that if R is RP, then the summation in equation 29 can become an integral.
This occurs, for example, in the spectral representation of stationary covariance functions. How-
ever, it can happen that the spectrum is discrete even if R is RP as long as C(x,x’) decays fast
enough.

The equivalence with Bayesian linear regression can now be seen by taking the prior weight ma-
trix X, to be the diagonal matrix A = diag(A1, As,...) and choosing the eigenfunctions as the
basis functions; equation 29 and the equivalence of the weight-space and function-space views
demonstrated in section 3 completes the proof.

The fact that an input vector can be expanded into an infinite-dimensional space (¢1(x), ¢2(x),-..)
but that the necessary computations can be carried out efficiently due to Mercer’s theorem has been
used in some other contexts, for example in the method of potential functions (due to Aizerman,
Braverman and Rozoner, 1964) and in support vector machines (Vapnik, 1995). In support vector
regression the prior over functions is as described above, but instead of using a squared error loss
function (which corresponds to Gaussian noise), a modified version of the l; error metric |¢t; — y;
is used, called the e-insensitive loss function. Finding the mazimum a posteriori (or MAP) y-
values for the training points and test point can now be achieved using quadratic programming
(see Vapnik, 1995 for details).

3Technically splines require generalized covariance functions (see Cressie §5.4), and they have a power-law spectral
density S(w) o« w™? with 8 > 0.
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5 ... and beyond ...

In this section some further details are given on the topics of modelling issues, adaptation of
the covariance function, computational issues, the covariance function for neural networks and
classification with Gaussian processes.

5.1 Modelling issues

As we have seen above, there is a wide variety of covariance functions that can be used. The
use of stationary covariance functions is appealing as usually one would like the predictions to
be invariant under shifts of the origin in input space. From a modelling point of view we wish to
specify a covariance function so that nearby inputs will give rise to similar predictions. Experiments
in Williams and Rasmussen (1996) and Rasmussen (1996) have demonstrated that the following
covariance function seems to work well in practice:

. . 1< . .
C(X(’),x(])) = v exp{—§ Zal(xl(Z) _ ‘Tl(J))2}
=1
p o .
+ag +alle(z)xl(” +v16(4,5), (30)
=1
where Bdéf(log vo,logvy,logay,... ,logay,logag,logas) is the vector of adjustable parameters.

The parameters are defined to be the log of the variables in equation (30) since they are positive
scale-parameters.

The covariance function is made up of three parts; the first term, a linear regression term (involving
ao and a;) and a noise term v19(%,7). The first term expresses the idea that cases with nearby
inputs will have highly correlated outputs; the «; parameters allow a different distance measure
for each input dimension. For irrelevant inputs, the corresponding o; will become small, and the
model will ignore that input. This is closely related to the Automatic Relevance Determination
(ARD) idea of MacKay and Neal (MacKay, 1993; Neal 1996). The v, variable gives the overall
scale of the local correlations, ag and a; are variables controlling the scale of the bias and linear
contributions to the covariance. A simple extension of the linear regression part of the covariance
function would allow a different hyperparameter a;; for each of the input dimensions. The last
term accounts for the noise on the data; v; is the variance of the noise.

The ARD idea was demonstrated for Gaussian processes in an experiment described in Williams
and Rasmussen (1996), where irrelevant inputs were added to a regression task. By adapting the
a parameters as described in section 5.2 below, their values for the irrelevant inputs became very
small, successfully indicating the irrelevance of these inputs.

A graphical example of ARD is given in Figure 3. The left hand panel shows a sample from the
prior when a; = as. Notice that the length-scale of variation is the same on both axes. In the
right hand panel a; = 10a2, indicating much slower variation along the z» axis. In the limit as
as — 0, the x5 coordinate is irrelevant.

5.2 Adapting the covariance function

Given a covariance function it is straightforward to make predictions for new test points. However,
in practical situations we are unlikely to know which covariance function to use. One option is to
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Figure 3: Functions drawn at random from the ARD prior. In the left hand plot @1 = a2 while
on the right oz = 10as.

choose a parametric family of covariance functions (with a parameter vector 8) and then either
to estimate the parameters (for example, using the method of maximum likelihood) or to use a
Bayesian approach where a posterior distribution over the parameters is obtained.

These calculations are facilitated by the fact that the log likelihood I = log P(D|@) can be calculated
analytically as

1 1
l= —ilogdetK - EtTKflt - glog27r. (31)

It is also possible to express analytically the partial derivatives of the log likelihood with respect
to the hyperparameters, using the equation

LI WY S SR PP o
56 = 2tr(K 89i>+2tK oo Kt (32)

as derived, for example, in Mardia and Marshall (1984). The evaluation of the likelihood and the
partial derivatives takes time O(n®). Given [ and its derivatives with respect to @ it is straight-
forward to feed this information to an optimization package in order to obtain a local maximum
of the likelihood. An alternative to maximum likelihood estimation of the parameters is to use
a cross-validation (CV) or generalized cross-validation (GCV) method, as discussed in Wahba
(1990). However, it would appear that it is difficult to use these methods when a large number of
parameters are involved.

In general one may be concerned about making point estimates when the number of parameters is
large relative to the number of data points, or if some of the parameters may be poorly determined,
or if there may be local maxima in the likelihood surface. For these reasons the Bayesian approach
of defining a prior distribution over the parameters and then obtaining a posterior distribution
once the data D has been seen is attractive. To make a prediction for a new test point x, one
simply averages over the posterior distribution P(@|D), i.e.

P(y«|D) = /P(y*|0, D)P(6|D)d6. (33)
It is not possible to do this integration analytically in general, but numerical methods may be
used. If @ is of sufficiently low dimension, then techniques involving grids in 8-space can be used.

See, for example the paper by Handcock and Stein, (1993).

If @ is high-dimensional it is very difficult to locate the regions of parameter-space which have
high posterior density by gridding techniques or importance sampling. In this case Markov chain
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Monte Carlo (MCMC) methods may be used. These work by constructing a Markov chain whose
equilibrium distribution is the desired distribution P(6|D); the integral in equation 33 is then
approximated using samples from the Markov chain.

Two standard methods for constructing MCMC methods are the Gibbs sampler and Metropolis-
Hastings algorithms (see, e.g., Gelman et al, 1995). However, the conditional parameter distribu-
tions are not amenable to Gibbs sampling if the covariance function has the form given by equation
30, and the Metropolis-Hastings algorithm does not utilize the derivative information that is avail-
able, which means that it tends to have an inefficient random-walk behaviour in parameter-space.
Following the work of Neal (1996) on Bayesian treatment of neural networks, Williams and Ras-
mussen (1996) and Rasmussen (1996) have used the Hybrid Monte Carlo method of Duane et al
(1987) to obtain samples from P(8|D). Rasmussen (1996) carried out a careful comparison of the
Bayesian treatment of Gaussian process regression with several other state-of-the-art methods on
a number of problems and found that its performance is comparable to that of Bayesian neural
networks as developed by Neal (1996), and consistently better than the other methods.

5.3 Computational issues

Equations 20 and 21 require the inversion of a n x n matrix. When n is of the order of a few
hundred then this is quite feasible with modern computers. However, once n ~ O(1000) these
computations can be quite time consuming, especially if this calculation must be carried out many
times in an iterative scheme as discussed above in section 5.2. It is therefore of interest to consider
approximate methods.

One possible approach is to approximate the matrix inversion step needed for prediction, i.e.
the computation of K~'z in equation 20. Gibbs and MacKay (1997a) have used the conjugate
gradients (CG) algorithm for this task, based on the work of Skilling (1993). The algorithm
iteratively computes an approximation to K ~'z; if it is allowed to run for n iterations it takes
time O(n®) and computes the exact solution to the linear system, but by stopping the algorithm
after k < n iterations an approximate solution is obtained. Note also that when adjusting the
parameters of the covariance matrix, the solution of the linear system that was obtained with the
old parameter values will often be a good starting point for the new CG iteration.

When adjusting the parameters one also needs to be able to calculate quantities such as tr(K ~*0K/96;).

For large matrices this computation can be approximated by using the “randomized trace method”.
Observe that if d ~ N(0,1,,), then E[dT Md] = trM, and thus the trace of a matrix M may be
estimated by averaging dT Md over several d’s. This method has been used in the splines litera-
ture by Hutchinson (1989) and Girard (1989) and also by Gibbs and MacKay (1997a) following the
independent work of Skilling (1993). Similar methods can be brought to bear on the calculation
of logdet K.

An alternative approximation scheme for Gaussian processes is to project the covariance kernel
onto a finite number of basis functions, i.e. to find the ¥,, in equation 5 which leads to the best
approximation of the covariance function. This method has been discussed by Silverman (1985),
Wahba (1990) Zhu and Rohwer (1996) and Hastie (1996). However, if we also can choose which
basis functions we wish to use then the m eigenfunctions which have the largest eigenvalues should
be used. This truncated expansion makes sense when the eigenvalues in equation 29 decay to zero
fast enough so that the sum Y .°; ); converges. The technique is an infinite-dimensional analogue
of principal components analysis, and is discussed, for example, in Zhu et al (1997).

There may well be other methods of speeding up the computations; one possible example is to ignore
data points which are far away from the test point when making predictions, thereby producing a
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Figure 4: The architecture of a network with a single hidden layer.

smaller matrix to be inverted.

5.4 The covariance function of neural networks

My own interest in using Gaussian processes for regression was sparked by Radford Neal’s obser-
vation (Neal, 1996), that under a Bayesian treatment, the functions produced by a neural network
with certain kinds of prior distribution over its weights will tend to a Gaussian process prior over
functions as the number of hidden units in the network tends to infinity. In the remainder of this
section the covariance function for a neural network with a single hidden layer is derived.

Consider a network which takes an input x, has one hidden layer with H units and then linearly
combines the outputs of the hidden units with a bias b to obtain f(x). The mapping can be written

H
F(x) = b+ vih(x;uy) (34)
j=1

where h(x;u) is the hidden unit transfer function (which we shall assume is bounded) which
depends on the input-to-hidden weights u. This architecture is important because it has been
shown by Hornik (1993) that networks with one hidden layer are universal approximators as the
number of hidden units tends to infinity, for a wide class of transfer functions (but excluding
polynomials). Let b and the v’s have independent zero-mean distributions of variance af and
o2 respectively, and let the weights u; for each hidden unit be independently and identically

distributed. Denoting all weights by w, we obtain (following Neal, 1996)

Ew[f(x)] = 0 (35)
Eu[fx)f(x)] = op+ Z oy Balhj(x;u)h;(x'; u)] (36)
= 0} + Ho2E,[h(x;u)h(x';u)] (37)

where equation 37 follows because all of the hidden units are identically distributed. The final
term in equation 37 becomes w? Ey[h(x; u)h(x'; u)] by letting o2 scale as w?/H.
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The sum in equation 36 is over H identically and independently distributed random variables.
As the transfer function is bounded, all moments of the distribution will be bounded and hence
the Central Limit Theorem can be applied, showing that the stochastic process will converge to a
Gaussian process in the limit as H — oo.

By evaluating E,[h(x)h(x')] for all x and x' in the training and testing sets we can obtain the
covariance function needed to describe the neural network as a Gaussian process. These expec-
tations are, of course, integrals over the relevant probability distributions of the biases and input
weights. For some choices of transfer function and weight priors these integrals can be calculated
analytically. For Gaussian weight priors and a transfer function that is either (i) the error function
®(2) = 2/ [y e t’dt or (i) a Gaussian, explicit expressions for the covariance functions are
given in Williams (1997a) and Williams (1997b).

One attraction of using infinite neural networks (represented as GPs) is that the full Bayesian
computation should be much easier than with finite networks in some circumstances. Finite net-
works require integration over the joint posterior in weight-space and (hyper)parameter space, and
currently this high-dimensional integration can only be tackled with MCMC methods. With GPs,
in effect the integration over the weights can be done exactly (using equations 20 and 21) so that
only the integration over the parameters remains. This should lead to improved computational
efficiency for GP predictions over neural networks, particularly for problems where n is not too
large.

5.5 Classification problems

Given an input x, the aim of a classifier is to produce an estimate of the posterior probabilities
for each class P(k|x), where k = 1,...C indexes the C classes. Naturally we require that 0 <
P(k|x) <1 for all k and that ", P(k|x) = 1. A naive application of the regression method for
Gaussian processes using, say, targets of 1 when an example of class k is observed and 0 otherwise
will not obey these constraints.

For the two-class classification problem it is only necessary to represent P(1|x), since P(2|x) =
1 — P(1|x). An easy way to ensure that the estimate 7(x) of P(1|x) lies in [0, 1] is to obtain it
by passing an unbounded value y(x) through a the logistic transfer function o(z) = 1/(1 + e™?)
so that 7(x) = o(y(x)). The input y(x) to the logistic function will be called the activation. In
the simplest method of this kind, logistic regression, the activation is simply computed as a linear
combination of the inputs, plus a bias, i.e. y(x) = wlx + b. Using a Gaussian process or other
flexible methods allow y(x) to be a non-linear function of the inputs. An early reference to this
approach is the work of Silverman (1978).

For the classification problem with more than two classes, a simple extension of this idea using the
“softmax” function (Bridle, 1990) gives the predicted probability for class k as

exp yx (x)

k) = & expym(®)”

(38)

For the rest of this section we shall concentrate on the two-class problem; extension of the methods
to the multi-class case is relatively straightforward.

By defining a Gaussian process prior over the activation y(x) automatically induces a prior over
7(x), as illustrated in Figure 5.5. To make predictions for a test input x. when using fixed
parameters in the GP we would like to compute 7, = [ 7. P(m,|t,0) dr,, which requires us to
find P(m.|t,0) = P(n(x4)[t,0) for a new input x,. This can be done by finding the distribution
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Figure 5: m(x) is obtained from y(x) by “squashing” it through the sigmoid function o.

P(y.|t,0) (y« is the activation of m,) as given by
1
P(y.[t,0) = | P(y.,y|t,0)dy = —— [ P(y.,y|0)P(t|y)d
e16:0) = [ Plun.y1t.0)dy = s [ PluyIO)P(ely)dy (39)

and then using the appropriate Jacobian to transform the distribution. When P(t|y) is Gaussian
then the integral in equation 39 can be computed exactly to give equations 20 and 21. However,
the usual expression for P(t|y) = [[; 7/ (1 — m;)' % for classification data (where the t’s take on
values of 0 or 1), means that the marginalization to obtain P(y.|t,0) is no longer analytically
tractable.

Faced with this problem there are two routes that we can follow: (i) to use an analytic approx-
imation to the integral in equation 39 or (ii) to use Monte Carlo methods, specifically MCMC
methods, to approximate it. These two methods will be considered in turn.

The first analytic method we shall consider is Laplace’s approximation, where the integrand
P(y.,y|t, 0) is approximated by a Gaussian distribution centered at a maximum of this function
with respect to y.,y with an inverse covariance matrix given by —VV log P(y., y|t,8). Finding a
maximum can be carried out using the Newton-Raphson (or Fisher scoring) iterative method on y,
which then allows the approximate distribution of y. to be calculated. This is also the method used
to calculate the mazimum a posteriori estimate of y,. For more details see Green and Silverman
(1994) §5.3 and Barber and Williams (1997).

An alternative analytic approximation is due to Gibbs and MacKay (1997b). Instead of using the
Laplace approximation they use variational methods to find approximating Gaussian distributions
that bound the

marginal likelihood P(t|@) above and below, and then use these approximate distributions to
predict P(y.|t,0) and thus 7 (x,).

For the analytic approximation methods, there is also the question of what to do about the param-
eters 6. Maximum likelihood and GCV approaches can again be used as in the regression case (e.g.
O’Sullivan et al, 1986). Barber and Williams (1997) used an approximate Bayesian scheme based
on the Hybrid Monte Carlo method whereby the marginal likelihood P(t]|6) (which is not avail-
able analytically) is replaced by the Laplace approximation of this quantity. Gibbs and MacKay
(1997b) estimated @ by maximizing their lower bound on P(t|6).

Recently Neal (1997) has developed a MCMC method for the Gaussian process classification model.
This works by generating samples from P(y, @|D) in a two stage process. Firstly, for fixed 8, each of
the n individual y;’s are updated sequentially using Gibbs sampling. This “sweep” takes time O(n?)
once the matrix K~! has been computed (in time O(n?)), so it actually makes sense to perform
quite a few Gibbs sampling scans between each update of the parameters, as this probably makes
the Markov chain mix faster. Secondly, the parameters are updated using the Hybrid Monte Carlo
method.
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It should also be noted that MCMC method for Gaussian processes can be applied to other situ-
ations. For example Neal (1997) describes how to use it for a regression problem where the noise
model is assumed to be t-distributed rather than the standard Gaussian distribution. This is im-
portant as the ¢-distribution is widely used when it is desired that the noise model be “robust”,
i.e. less sensitive to outliers than the Gaussian model. The MCMC approach can also be used
in a hierarchical regression model where it is assumed that the noise process has a variance that
depends on x, and that this noise-field N(x) is drawn from a prior generated from an independent
Gaussian process Z(x) by N(x) = exp Z(x) (see Goldberg et al, 1997).

6 Discussion

In this paper I have shown how to move from simple Bayesian linear regression to regression with
Gaussian processes, and have discussed some of the issues in using Gaussian process prediction for
the kinds of problem that neural networks have also been used on.

There are still further elaborations that can be made. One weakness of the method described
above is that the covariance functions used are stationary, which means that the length-scales
over which interactions occur are the same everywhere in the input space. This is a very strong
assumption, and can be relaxed in a number of ways. One appealing method is to warp the
original input space x into another space, say &, which may be taken to be of the same dimension
as x, and then to use a stationary covariance function in &-space. This is, roughly speaking, the
approach proposed by Sampson and Guttorp (1992). Of course this warping is defined by co-
ordinate functions &;(x),i = 1,...p, which may again be modelled with Gaussian processes?, so
one can derive a hierarchical Gaussian process model.

It is also interesting to consider the differences between finite neural network and Gaussian process
priors. One difference is that in functions generated from finite neural networks, the effects of
individual basis functions can be seen. For example, with sigmoidal units a steep step may be
observed where one basis function (with large weights) comes into play. A judgement about
whether this type of behaviour is appropriate or not should depend on prior beliefs about the
problem at hand. Of course it is also possible to compare finite neural networks and Gaussian
process predictions empirically. This has been done by Rasmussen (1996), where GP predictions
(using MCMC for the parameters) were compared to those from Neal’s MCMC Bayesian neural
networks. These results show that for a number of problems, the predictions of GPs and Bayesian
neural networks are similar, and that both methods outperform several other widely-used regression
techniques.
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