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ABSTRACT

Competition in the wireless telecommunications industry is rampant. To maintain profitability, wireless
carriers must controlchurn, the loss of subscribers who switch from one carrier to another. We explore
techniques from statistical machine learning to predict churn and, based on these predictions, to determine
what incentives that should be offered to subscribers to improve retention and maximize profitability to the
carrier. The techniques include: logit regression, decision trees, neural networks, and boosting. Our experi-
ments are based on a data base of nearly 47,000 U.S. domestic subscribers, and includes information about
their usage, billing, credit, application, and complaint history. Our experiments show that under a wide
variety of assumptions concerning the cost of intervention and the retention rate resulting from interven-
tion, using predictive techniques to identify potential churners and offer incentives can yield significant
savings to a carrier. We also show the importance of a data representation crafted by domain experts.
Finally, we report on a real-world test of the techniques which validate our simulation experiments.

Index terms: churn, telecommunications, customer satisfaction, profit maximization, wireless industry,
prediction, retention, boosting, decision trees, logistic regression



2

INTRODUCTION

Competition in the wireless telecommunications industry is rampant. As many as seven competing carriers
operate in each market. The industry is extremely dynamic, with new services, technologies, and carriers
constantly altering the landscape. Carriers announce new rates and incentives weekly, hoping to entice new
subscribers and to lure subscribers away from the competition. The extent of rivalry is reflected in the del-
uge of advertisements for wireless service in the daily newspaper and other mass media.

The United States had 69 million wireless subscribers in 1998, roughly 25% of the population. Some
markets are further developed; for example, the subscription rate in Finland is 53%. Industry forecasts are
for a U.S. penetration rate of 48% by 2003. Although there is significant room for growth in most markets,
the industry growth rate is declining and competition is rising. Consequently, it has become crucial for
wireless carriers to controlchurn—the loss of customers who switch from one carrier to another. At
present, domestic monthly churn rates are 2-3% of the customer base. At an average cost of $400 to
acquire a subscriber, churn cost the industry nearly $6.3 billion in 1998; the total annual loss rose to nearly
$9.6 billion when lost monthly revenue from subscriber cancellations is considered [5]. It costs roughly
five times as much to sign on a new subscriber as to retain an existing one. Consequently, for a carrier with
1.5 million subscribers, reducing the monthly churn rate from 2% to 1% would yield an increase in annual
earnings of at least $54 million, and an increase in shareholder value of approximately $150 million. (Esti-
mates are even higher when lost monthly revenue is considered; see [2] and [5]).

Typically, carriers attempt to control churn with a welcome call after subscribers have been on board
for one or two months. Churn rates among subscribers at this point are about 10%. Thus, carriers have con-
cluded that it is profitable to operate a call center that contacts nine satisfied subscribers for every one dis-
satisfied subscriber. Until very recently, there was seldom if ever been a systematic attempt to proactively
contact subscribers outside of the initial few months of service, although many carriers have a win-back
group that tries to talk subscribers out of leaving after the subscriber calls to disconnect. Some carriers
have begun to look at their churn data, typically examining a small number of variables and searching for
dependencies using traditional statistical models.

The goal of our research is to evaluate the benefits of predicting churn using techniques from statisti-
cal machine learning. We designed models that predict the probability of a subscriber churning within a
short time window, and we evaluated how well these predictions could be used for decision making by esti-
mating potential cost savings to the wireless carrier under a variety of assumptions concerning subscriber
behavior.

THE FRAMEWORK

Figure 1 shows a framework for churn prediction and profitability maximization. Data from a sub-
scriber—on which we elaborate in the next section—is fed into four components which estimate: the like-
lihood that the subscriber will churn, the reason for subscriber dissatisfaction given the likelihood of churn,
the profitability (expected monthly revenue) of the subscriber, and the subscriber’s credit risk, which influ-
ences profitability. The profitability determines how valuable the subscriber is to the carrier, and hence
influences how much the carrier should be willing to spend to retain the subscriber. Based on the predicted
quantities, a decision making component determines anintervention strategy—whether a subscriber
should be contacted, and if so, what incentives should be offered to appease them and at what cost. We
adopt a decision-theoretic approach which aims to maximize the expected profit to the carrier.

In the present work, we focus on churn prediction and utilize simple measures of subscriber profitabil-
ity and credit risk. However, current modeling efforts are directed at more intelligent models of profitabil-
ity and credit risk. Additionally, we have found it valuable to model the likelihood of success of an
intervention for a particular subscriber, in order to assess the benefit of intervention.
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DATA SET

The subscriber data used for our experiments was provided by a major wireless carrier. The carrier
does not want to be identified, as churn rates are confidential. The carrier provided a data base of 46,744
primarily business subscribers, all of whom had multiple services. (Each service corresponds to a cellular
telephone or to some other service, such as voice messaging or beeper capability.) All subscribers were
from the same region of the United States, about 20% in major metropolitan areas and 80% more geo-
graphically distributed. The total revenue for all subscribers in the data base was $14 million in October
1998. The average revenue per subscriber was $234. We focused on multi-service subscribers, because
they provide significantly more revenue than do typical single-service subscribers.

When subscribers are on extended contracts, churn prediction is relatively easy: it seldom occurs dur-
ing the contract period, and often occurs when the contract comes to an end. Consequently, all subscribers
in our data base were month-to-month, requiring the use of more subtle features than contract termination
date to anticipate churn.

The subscriber data was extracted from the time interval October through December, 1998. Based on
these data, the task was to predict whether a subscriber would churn in Januaryor February 1999. The car-
rier provided their internal definition of churn, which was based on the closing of all services held by a
subscriber. From this definition, 2,876 of the subscribers active in October through December churned—
6.2% of the data base. Because the prediction window is over two months, the monthly churn rate is 3.1%.

INPUT FEATURES

Ultimately, churn occurs because subscribers are dissatisfied with the price or quality of service, usually as
compared to a competing carrier. The main reasons for subscriber dissatisfaction vary by region and over
time. Table 1 lists important factors that influence subscriber satisfaction, as well as the relative importance
of the factors [6]. In the third column, we list the type of information required for determining whether a
particular factor is likely to be influencing a subscriber. We categorize the types of information as follows.

Network. Call detail records (date, time, duration, and location of all calls), dropped calls (calls lost due to lack
of coverage or available bandwidth), and quality of service data (interference, poor coverage).

Billing . Financial information appearing on a subscriber’s bill (monthly fee, additional charges for roaming and
additional minutes beyond monthly prepaid limit).

churn
prediction

profitability
estimation

credit risk
assessment

dissatisfaction
prediction

subscriber
data

decision
making

intervention
strategy

FIGURE 1. The framework for churn prediction and profitability maximization
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Application for Service. Information from the initial application for service, including contract details, rate
plan, handset type, and credit report.

Market . Details of rate plans offered by carrier and its competitors, recent entry of competitors into market,
advertising campaigns, etc.

Demographics. Geographic and population data of a given region.

A subset of these information sources were used in the present study. Most notably, we did not utilize mar-
ket information, because the study was conducted over a fairly short time interval during which the market
did not change significantly. More important, the market forces were fairly uniform in the various geo-
graphic regions from which our subscribers were selected. Also, we were unable to obtain information
about the subscriber equipment (age and type of handset used).

The information sources listed above were distributed over three distinct data bases maintained by the
carrier. The data bases contained thousands of fields, from which we identified 134 variables associated
with each subscriber which we conjectured might be linked to churn. The variables included: subscriber
location, credit classification, customer classification (e.g., corporate versus retail), number of active ser-
vices of various types, beginning and termination dates of various services, avenue through which services
were activated, monthly charges and usage, number, dates and nature of customer service calls, number of
calls made, and number of abnormally terminated calls.

DATA REPRESENTATION

As all statisticians and artificial intelligence researchers appreciate, representation is key. A significant por-
tion of our effort involved working with domain experts in the wireless telecommunications industry to
develop a representation of the data that highlights and makes explicit those features which—in the
expert’s judgement—were highly related to churn. To evaluate the benefit of carefully constructing the rep-
resentation, we performed studies using bothnaive and asophisticated representations.

The naive representation mapped the 134 variables to a vector of 148 elements in a straightforward
manner. Numerical variables, such as the length of time a subscriber had been with the carrier, were trans-
lated to an element of the representational vector which was linearly related to the variable value. We
imposed lower and upper limits on the variables, so as to suppress irrelevant variation and so as not to
mask relevant variation by too large a dynamic range; vector elements were restricted to lie between –4 and
+4 standard deviations of the variable. One-of-n discrete variables, such as credit classification, were trans-
lated into ann-dimensional subvector with one nonzero element.

The sophisticated representation incorporated the domain knowledge of our experts to produce a 73-
element vector encoding attributes of the subscriber. This representation collapsed across some of the vari-
ables which, in the judgement of the experts, could be lumped together (e.g., different types of calls to the

TABLE 1. Factors influencing subscriber satisfaction

Factor Importance Nature of data required for
prediction

call quality 21% network
pricing options 18% market, billing
corporate capability 17% market, customer service
customer service 17% customer service
credibility / customer
communications

10% market, customer service

roaming / coverage 7% network
handset 4% application
billing 3% billing
cost of roaming 3% market, billing
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customer service department), and expanded on others (e.g., translating the scalar length-of-time-with-car-
rier to a multidimensional basis-function representation, where the receptive-field centers of the basis func-
tions were suggested by the domain experts), and performed transformations of other variables (e.g., ratios
of two variables, or time-series regression parameters).

PREDICTORS

The task is to predict the probability of churn from the vector encoding attributes of the subscriber. We
compared the churn-prediction performance of three classes of models: logit regression, the C5.0 decision
tree (a commercial software product based on the C4.5 algorithm of [6) and nonlinear neural networks with
a single hidden layer and weight decay [1]. The neural network model class was parameterized by the
number of units in the hidden layer and the weight decay coefficient. We originally anticipated that we
would require some model selection procedure, but it turned out that the results were remarkably insensi-
tive to the choice of the two neural network parameters; weight decay up to a point seemed to have little
effect, and beyond that point it was harmful, and varying the number of hidden units from 5 to 40 yielded
nearly identical performance. We likely were not in a situation where overfitting was an issue, due to the
large quantity of data available; hence increasing the model complexity (either by increasing the number of
hidden units or decreasing weight decay) had little cost.

Rather than selecting a single neural network model, we averaged the predictions of an ensemble of
models which varied in the two model parameters. The average was uniformly weighted.

For the decision tree and the neural network, we also examined the use of boosting. Adaboost [3] was
used for the decision tree, and a variant of Adaboost appropriate when a classifier produces confidence rat-
ings [8, 9] was used for the neural network. For neural net boosting, we used a network with 10 hidden
units and no weight decay.

METHODOLOGY

We constructed predictors by selecting a model class (logit regression, decision tree, or neural network), a
subscriber representation (naive and sophisticated), and a model combination technique (none, averaging,
or boosting). For each predictor, we performed a ten-fold cross validation study, utilizing the same splits
across predictors. In each split of the data, the ratio of churn to no churn examples in the training and vali-
dation sets was the same as in the overall data set.

For the neural net models, the input variables were centered by subtracting the means and scaled by
dividing by their standard deviation. Input values were restricted to lie in the range [–4, +4]. Networks
were trained until they reached a local minimum in error.

RESULTS AND DISCUSSION

CHURN PREDICTION

For each predictor, we obtain an estimate of the probability of churn for each subscriber in the data set by
merging the test sets from the ten data splits. Because decision making ultimately requires a “churn” or “no
churn” prediction, the continuous probability measure must be thresholded to obtain a discrete predicted
outcome. In the telecommunications industry the outcome is often expressed using alift curve. The lift
curve is related to the ROC curve of signal detection theory [4] and the precision-recall curve in the infor-
mation retrieval literature.

For a given threshold on the probability of churn, we determine two quantities: the fraction of all sub-
scribers having churn probability above the threshold, and the fraction of all churners having churn proba-
bility above the threshold. The lift curve plots one quantity against the other. Figure 2a shows a lift curve
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indicating perfect discrimination of churners from nonchurners. Churners have higher predicted probabil-
ity than nonchurners; consequently, as the decision threshold is lowered from 1.0, only churners are identi-
fied. Because the churn rate is 6.2%, when the decision threshold is lowered such that 6.2% of the
subscribers are above the threshold, 100% of the churners have been identified, and the curve reaches
asymptote. Figure 2b shows a lift curve indicating no discrimination of churners from nonchurners. This
curve is what one would expect if the churn probabilities are random: the proportion of churners identified
grows at the same rate as the proportion of subscribers identified. Thus, the more bowed the curve is to the
upper-left corner of the graph, the better the predictor is at discriminating churners from nonchurners. The
reason why the lift curve is relevant to the telecommunications industry is that customer service centers
have a fixed staff which is able to contact a fixed fraction of the subscriber base in a given month, say 10%.
The wireless carriers are interested in estimating what fraction of churners they will catch if 10% of the
subscriber base were contacted. Based on Figure 2a, 100% of the churners will be caught; based on
Figure 2b, 10% of the churners will be caught.

Figure 3 shows the lift curves for neural network and logit regression predictors, using the naive and
sophisticated representations. As the Figure indicates, discriminability is clearly higher for the sophisti-
cated representation than for the naive representation. Further, for the sophisticated representation at least,
the nonlinear neural net outperforms the logit regression. It appears that the neural net can better exploit
nonlinear structure in the sophisticated representation than in the naive representation, perhaps due to the
basis-function representation of key variables.

Figure 4 shows the lift curves for neural network and decision tree predictors, both with and without
boosting. For this data set, the neural net appears to outperform the decision tree, and boosting seems to
help in at least the upper portion of the lift curve.

Although the various predictors appear to yield similar lift curves, they produce large differences in
estimated cost savings. We describe how we estimate cost savings next.

DECISION MAKING

Based on a subscriber’s predicted churn probability, we must decide whether to offer the subscriber some
incentiveto remain with the carrier, which will presumably reduce the likelihood of churn. The incentive
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FIGURE 2. (a) Lift curve indicating perfect discrimination of churners from nonchurners. (b) Lift
curve indicating no discrimination of churners from nonchurners.
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FIGURE 3. Test-set performance for four predictors. The predictors are based on different models
(logit regression, neural network) and input representations (naive, sophisticated).
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(decision tree, neural network) and whether or not boosting was applied.
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will be offered to any subscriber whose churn probability is above a certain threshold. The threshold will
be selected to maximize the expected cost savings to the carrier; we will refer to this as theoptimal deci-
sion-making policy.

The cost savings will depend not only on the discriminative ability of the predictor, but also on: the
cost to the carrier of providing the incentive, denoted Ci  (the cost to the carrier may be much lower than the
value to the subscriber, e.g., when air time is offered); the time horizon over which the incentive has an
effect on the subscriber’s behavior; the reduction in probability that the subscriber will leave within the
time horizon as a result of the incentive, Pi ; and the lost-revenue cost that results when a subscriber churns,
Cl.

We assume a time horizon of six months. We also assume that the lost revenue as a result of churn is
the average subscriber bill over the time horizon, along with a fixed cost of $500 to acquire a replacement
subscriber. (This acquisition cost is higher than the typical cost we stated earlier because subscribers in this
data base are high valued, and often must be replaced with multiple low-value subscribers to achieve the
same revenue.) To estimate cost savings, the parameters Ci, Pi, and Cl are combined with four statistics
obtained from a predictor:

N(pL,aL):  number of subscribers who are predicted to leave (churn) and who actually leave barring
intervention

N(pS,aL):  number of subscribers who are predicted to stay (nonchurn) and who actually leave barring
intervention

N(pL,aS):  number of subscribers who are predicted to leave and who actually stay
N(pS,aS):  number of subscribers who are predicted to stay and who actually stay

Given these statistics, the net cost to the carrier of performing no intervention is:

net(no intervention) = [ N(pL,aL) + N(pS,aL) ] Cl

This equation says that whether or not churn is predicted, the subscriber will leave, and the cost per sub-
scriber will be Cl. The net cost of providing an incentive to all subscribers whom are predicted to churn can
also be estimated:

net(incentive) = [ N(pL,aL) + N(pL,aS) ] Ci + [ Pi N(pL,aL) + N(pS,aL) ] Cl

This equation says that the cost of offering the incentive, Ci, is incurred for all subscribers for who are pre-
dicted to churn, but the lost revenue cost will decrease by a fraction Pi for the subscribers who are correctly
predicted to churn. The savings to the carrier as a result of offering incentives based on the churn predictor
is then

savings per churnable subscriber =
[ net(no intervention) – net(incentive) ] / [ N(pL,aL) + N(pS,aL) ]

The contour plots in Figure 5 show expected savings per churnable subscriber, for a range of values of
Ci, Pi, and Cl, based on the optimal policy and the sophisticated neural-net predictor. Each plot assumes a
different subscriber retention rate (= 1-Pi) given intervention. The “25% retention rate” graph supposes that
25% of the churning subscribers who are offered an incentive will decide to remain with the carrier over
the time horizon of six months. For each plot, the cost of intervention (Ci) is varied along the x-axis, and
the average monthly bill is varied along the y-axis. (The average monthly bill is converted to lost revenue,
Cl, by computing the total bill within the time horizon and adding the subscriber acquisition cost.) The
shading of a region in the plot indicates the expected savings assuming the specified retention rate is
achieved by offering the incentive. The grey-level bar to the right of each plot translates the shading into
dollar savings per subscriber who will churn barring intervention. Because the cost of the incentive is fac-
tored into the savings estimate, the estimate is actually the net return to the carrier.

The white region in the lower right portion of each graph is the region in which no cost savings will be
obtained. As the graphs clearly show, if the cost of the incentive needed to achieve a certain retention rate
is low and the cost of lost revenue is high, significant per-subscriber savings can be obtained.



9

As one might suspect in examining the plots, what’s important for determining per-subscriber savings
is the ratio of the incentive cost to the average monthly bill. The plots clearly show that for a wide range of
assumptions concerning the average monthly bill, incentive cost, and retention rate, a significant cost sav-
ings is realized.

The plots assume that all subscribers identified by the predictor can be contacted and offered the
incentive. If only some fraction F of all subscribers are contacted, then the estimated savings indicated by
the plot should be multiplied by F.

To pin down a likely scenario, it is reasonable to assume that 50% of subscribers can be contacted,
35% of whom will be retained by offering an incentive that costs the carrier $75, and in our data base, the
average monthly bill is $234. Under this scenario, the expected savings—above and beyond recovering the
incentive cost—to the carrier is $93 based on the sophisticated neural net predictor. In contrast, the
expected savings is only $47 based on the naive neural net predictor, and $81 based on the sophisticated
logit regression model. As we originally conjectured, both the nonlinearity of the neural net and the bias
provided by the sophisticated representation are adding value to the predictions.
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REAL-WORLD TESTING

The results presented to this point have been from cross-validation studies in which the test set completely
overlaps in time with the training set. That is, we trained a predictor to estimate the likelihood of churn in
January or February 1999 based on data from a subset of subscribers, and evaluated the predictor on Janu-
ary/February churn prediction for the remaining subscribers. In real-world usage, however, one would train
the predictor onall subscribers at a given point in time, say to predict January/February churn, and then
test the following months, predicting March/April churn. Because the wireless market could be highly
nonstationary, one might question the validity of our results based on a single window of time.

To evaluate the quality of predictions with a test window shifted in time relative to the training win-
dow, and to evaluate the predictors in the real world, the carrier who provided us with data conducted a six
week experiment. Subscribers were randomly split intocontrol andtreatment groups, and we were blind to
this split. We trained a neural network ensemble (forming the ensemble by averaging outputs) on input
data from a March through August 1999 time window. This ensemble was used to recommended subscrib-
ers with high churn probability for intervention. The carrier contacted the most likely churners in the treat-
ment group, but did nothing for customers in the control group. We retrained networks weekly using a
sliding time window, and repeated the procedure for six one-week periods.

Total churn over the six week period was 3.7% in the control group, but only 2.2% in the treatment
group. The drop in churn was 40% as a result of treatment. The cost of intervention to the carrier was $92
per subscriber, of which $17 was for the incentives offered and about $75 for the call center staff and facil-
ities. The $75 per contact internal cost is quite high1, and was due to the fact that the call center was being
operated on a small scale for this experiment, and because customer care representatives spent significant
time to address the concerns and questions of subscribers who indicated a lack of satisfaction with the car-
rier. Nonetheless, by our decision-theoretic framework, if a 40% reduction in churn is obtained by spend-
ing $92 for intervention on accounts valued at $234/month, the savings per churnable subscriber is $417.
To remind the reader, this figure is the savingsafter the intervention cost has been incorporated.

ONGOING RESEARCH

Our ongoing research involves extending our initial results in a several directions. First, we have confirmed
our positive results with data from several different time windows. Second, we have further tuned and aug-
mented our sophisticated representation to obtain higher prediction accuracy, using exploratory data-analy-
sis techniques. Third, we are applying a variety of techniques, including sensitivity analysis, committees
consisting of several different types of models, and Gaussian processes [10], to further improve prediction
accuracy. Fourth, we are exploring input variable selection techniques. Fifth, we have begun to explore the
consequences of iterating the decision making process and evaluating savings over an extended time
period. Regardless of these current directions of research, the results presented here show the promise of
data mining in the domain of wireless telecommunications. As is often the case for decision-making sys-
tems, the predictor need not be a perfect discriminator to realize significant savings.

1.  Industry data suggest that this level of expense is abnormal. It should be appreciated that when typical internal costs are applied, the total sav-
ings associated with the reported levels of detection and retention will be significantly higher.
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founded which provided a wide range of services to the legal industry, and as a Genetic

Technician for the Salk Institute in La Jolla, California. Mr. Johnson is a noted speaker at various telecom-
munication technology conferences and financial symposiums. Mr. Johnson earned dual degrees in Biol-
ogy and Psychology from the Claremont colleges in 1981.
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 HOWARD KAUSHANSKY

Howard Kaushansky joined Athene in November 1997 as the vice president of business
development. Prior to joining Athene, Mr. Kaushansky held the position of vice president
of strategic planning and general counsel for Coral Systems, Inc., a software develop-
ment company, focused on telecommunications subscriber fraud and retention manage-
ment. Mr. Kaushansky has more than eight years experience in the communications
industry, with an emphasis on structuring successful business relationships with infra-
structure and service providers. Mr. Kaushansky received his undergraduate degree from
the University of California, Los Angeles in 1980, and his Juris Doctor from the Univer-

sity of Southern California in 1983, where he graduated Order of the Coif. Mr. Kaushansky holds and has
filed several patents in the communications industry.


