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Abstract
Many different high dimensional data sets are
characterized by the same underlying modes of
variability. When these modes of variability
are continuous and few in number, they can
be viewed as parameterizing a low dimensional
manifold. The manifold provides a compact
shared representation of the data, suggesting cor-
respondences between the high dimensional ex-
amples from different data sets. These corre-
spondences, though naturally induced by the un-
derlying manifold, are difficult to learn using tra-
ditional methods in supervised learning. In this
paper, we generalize three methods in unsuper-
vised learning—principal components analysis,
factor analysis, and locally linear embedding—
to discover subspaces and manifolds that provide
common low dimensional representations of dif-
ferent high dimensional data sets. We use the
shared representations discovered by these algo-
rithms to put high dimensional examples from
different data sets into correspondence. Finally,
we show that a notion of “self-correspondence”
between examples in the same data set can be
used to improve the performance of these algo-
rithms on small data sets. The algorithms are
demonstrated on images and text.

1. Introduction

Many problems in statistical pattern recognition blur the
common distinction between methods in supervised and
unsupervised learning. A traditional problem in supervised
learning is classification: the mapping of multivariate in-
puts to discrete outputs. Decision trees, neural networks,

and support vector machines provide solutions to these
problems when the input examples are high dimensional.
Suppose, however, that the desired outputs are not discrete
labels, but are themselves high dimensional examples from
another data set. In such a problem, the goal is not to clas-
sify the inputs, but to learn their high dimensional corre-
spondences. One solution to this problem is to learn com-
mon low dimensional representations for different high di-
mensional data sets. Dimensionality reduction has been ex-
tensively studied in the framework unsupervised learning,
but not generally with the idea of putting high dimensional
examples from different data sets into correspondence. For
these reasons, the problem of learning high dimensional
correspondences is best tackled by a mixture of supervised
and unsupervised methods.

In this paper, we investigate automatic methods for learn-
ing correspondences between high dimensional examples
from different data sets (Hotelling, 1936). For example,
one data set

�������
could consist of images of an object

taken from multiple viewpoints, and another data set
�������

could consist of images of a different object from different
viewpoints. Given an image of the first object, is it possi-
ble for a learning algorithm to determine the corresponding
view of the second object?

We assume that the algorithm is given a subset of examples
that are in correspondence,

�����	�
 ���	 � , and a larger set of
examples

�����
 � and
������ � with unknown correspondence.

Simple regressions do not work well for such data because
of the high dimensionality of the examples and the small
number of labelled correspondences. This is shown in the
first two rows of Figure 1, where a linear perceptron and a
backpropagation neural network have been trained to map
images of one object from rotated viewpoints into corre-
sponding images of another object. Because the number
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Figure 1. On the left are reconstructed images of a teapot, given the corresponding image of an action figure from the same viewpoint.
On the right are reconstructed images of the action figure, given the corresponding view of the teapot. The original images are given
in row (A); the reconstructions were generated by a linear perceptron (B), a backpropagation neural network (C), principal components
analysis (D), factor analysis (E), and constrained locally linear embedding (F). Each of the data sets consisted of 200 grayscale images,
with 120 in labelled correspondence. The reconstructions were generated by first embedding the data onto 15-dimensional subspaces
and 3-dimensional manifolds as described in the text.

of images in labelled correspondence is very small relative
to the number of parameters that must be estimated, these
models severely overfit the data and lead to extremely poor
generalization.

What makes this correspondence problem tractable? Often,
the variability within a high dimensional data set, such as
the image variability of objects from different viewpoints,
is characterized by a low dimensional manifold (Hinton
et al., 1997; Seung & Lee, 2000). In the remainder of
this paper, we generalize three methods in unsupervised
learning—principal components analysis, factor analysis,
and locally linear embedding (Roweis & Saul, 2000; Saul
& Roweis, 2003)—to discover subspaces and manifolds
that provide common low dimensional representations of
different high dimensional data sets. We then show how
to use these shared representations to put high dimensional
examples from different data sets into correspondence. As
shown in Figure 1, this approach leads to much better re-
constructions of corresponding images from other data sets.

2. Mathematical formulation

We consider two data sets; the first set
�������

consists of��� vectors of dimensionality � � so that
���	�������� for���! �"$#%#&#%" ��� . The second set

�����'�
consists of �)( vectors

of dimensionality � ( . Among the vectors in the two sets,
we are given a small number ��*,+-��� " �)( of pairs in one-
to-one correspondence. Without loss of generality, we as-
sume the corresponding pairs are given by

�.�	 
 ���	 for���! �"$#%#&#%" � * .

The data in the two sets can be summarized by forming the
matrix: / �10 ���	 ���
 2���	 2 ����43 # (1)/

is a 56� ��7 � (98;: 5 � �<7 � (>= � *?8 matrix, where the
top rows consists of elements from the first data set and
the bottom rows consists of elements from the second data
set. The first � * columns of matrix

/
consist of the aug-

mented vectors from the two sets which are in correspon-
dence. The other columns consist of vectors with unknown
correspondence: @ �A for B � 5 �C* 7  8 "9#&#%#&" ��� and @ ( D forE � 5 �C* 7  8 "$#%#&#%" �)( . We can also write matrix

/
in block

matrix form:/ �GF / * /IHKJ �10 / �* / �H / �L/ (* / (L / (H 3 # (2)

The submatrix

/ * denotes the leftmost ��* columns of

/
which contain corresponding vectors from the two data sets
and are fully known. The columns of

/ H
contain vectors

from only a single data set, and thus contain the unknown
portions

/ �L and

/ (L that need to be reconstructed.

The problem for a learning algorithm is to fill in the un-
known parts of matrix

/
. A traditional supervised learning

approach would be to take the known matrix

/ * as training
data, then to use the columns of

/ �H
or

/ (H
as input to obtain

the predicted outputs

/ �L and

/ (L . However, if the number
of known correspondences ��* is small, this approach may
not generalize properly as seen from the examples in Fig-
ure 1. On the other hand, an alternative approach is to treat
this data matrix as an unsupervised learning problem with



missing data that need to be reconstructed. In the following
sections, we describe three different techniques that can be
used for solving this problem.

3. Linear subspaces

One popular approach in unsupervised learning is to model
the data as lying on a linear subspace embedded in a high
dimensional space. The projections of the data along the
bases of the linear subspace then constitutes a low dimen-
sional representation of the data. In the context of the cor-
respondence problem, this low dimensional representation
should be consistent between the two different data sets.
By treating the correspondence problem as a large missing
data problem, it is possible to simultaneously learn a con-
sistent low dimensional representation as well as fill in the
unknown high dimensional missing values. In order to han-
dle this missing data problem, we consider these algorithms
within a generative model framework.

3.1. Principal components analysis

Principal components analysis (PCA) is a standard method
in statistical analysis (Jolliffe, 1986). As a generative
model, it can be considered as the limiting case of a prob-
abilistic generative model mediated by a small number �NM
of latent variables O :

� �QP O 74R , where
P

is a �NS by��M weight matrix, and R is a Gaussian random noise term
whose variance goes to 0.

Given a data matrix

/
, learning involves estimating the op-

timal model parameters
P

as well as inferring the hidden
variables O . In the case of learning correspondences with
PCA, we treat the data in

/
as examples of dimensionality� S � � ��7 � ( , where all the entries in

/ * are fully known,
and all the examples in

/TH
contain missing entries. Be-

cause of these missing entries, the model parameters cannot
be estimated by diagonalizing the covariance matrix as is
usually the case with PCA. In order to properly fill in these
missing entries and simultaneously learn the appropriate
model parameters, we use the Expectation-Maximization
(EM) (Dempster et al., 1977) algorithm. As described in
(Saul & Rahim, 1999; Roweis, 1998; Tipping & Bishop,
1999), the EM algorithm iteratively estimates the posterior
distributions of the hidden and missing variables, and then
reestimates the model parameters based upon the estimated
posterior distributions. With each iteration, the likelihood
of the data under the model distribution increases mono-
tonically until convergence is achieved.

We applied the EM algorithm for PCA on images of the
teapot and action figure in Figure 1. The algorithm finds
a �UM �V �W

dimensional linear subspace which best fits the
variability in the pixel values of both sets of images simul-
taneously. Given the image of one object with unknown

correspondence, the algorithm first projects this image onto
this low dimensional subspace to determine the appropri-
ate values of the hidden variables X that best describes the
known image. These components are then projected back
into the high dimensional space of the second image object
to reconstruct the unknown image with the corresponding
view. Although this reconstruction corresponds to a linear
mapping between the two data sets, the use of the low di-
mensional subspace leads to better reconstructions than the
purely supervised learning techniques.

3.2. Factor analysis

Factor analysis (FA) is a more general linear latent variable
model, described by the generative equation:� �ZY 7 P O 7[R # (3)

In this case,
Y

is a vector of dimensionality � S giving the
mean of the distribution,

P
is known as the factor loading

matrix, O describes the low dimensional latent variables,
and R is uncorrelated Gaussian random noise with diagonal
covariance \ �^] R�R`_`a .
Learning a factor analysis model involves estimating the
model parameters

Y
,
P

, and \ from the data and re-
quires inferring the posterior distributions of the hidden
variables X . If the data

/
has missing values, estimating

these parameters also involves inferring the distributions
over these missing variables as well. In this regard, the
EM algorithm is convenient for simultaneously filling in
these missing values as well as learning the model parame-
ters. The derivation of the EM algorithm for factor analysis
is straightforward, although more complicated than that for
PCA. The details of the derivation and the expressions used
for the E-step and M-step are provided in the appendix.

The algorithm was used to determine the optimal parame-
ters of a 15-dimensional factor analysis model for the im-
ages in Figure 1. Given an image with unknown corre-
spondence, the factor analysis model first projects the im-
age onto the low dimensional subspace described by the
basis in the factor loading matrix. However, in contrast to
PCA which assumes that the pixel noise covariance \cb�d ,
the factor analysis model weights the different pixel values
according to the noise estimates in determining the opti-
mal low dimensional representation. This representation is
then used to project back into the high dimensional space
of the second image object to construct the appropriate re-
constructions.

A quantitative comparison of the errors from these algo-
rithms in reconstructing the corresponding images is plot-
ted in Figure 2. In general, the linear manifold represen-
tations lead to better reconstruction error than the purely
supervised techniques, with the factor analysis model out-
performing PCA. However, neither of these techniques ap-
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Figure 2. Normalized reconstruction error for the teapot images
(A) and the action figure images (B) for four of the algorithms
shown in Figure 1. Errors from the perceptron algorithm were too
large to be plotted on the same scale.

proach the performance of an algorithm that uses a non-
linear low dimensional representation as described in the
following section.

4. Nonlinear manifolds

There is no reason to assume that the high dimensional ex-
amples would lie on a purely low dimensional linear sub-
space as assumed by PCA and FA. In order to model the
nonlinear low dimensional structure of this data, we gener-
alize a recently-developed algorithm known as locally lin-
ear embedding (LLE) (Saul & Roweis, 2003) to handle cor-
respondences.

The basic LLE algorithm is to model the data nonparamet-
rically as consisting of locally linear patches lying on a low
dimensional manifold embedded in the high dimensional
space. For each vector from a data set

/ � ��� 	 � , the al-
gorithm computes the following:

1. Finds nearest neighbors
� 
 of

� 	 based on the Eu-
clidean distance e � 	 = � 
 e ( .

2. Computes weights
Pgf A such that e � 	 =ih A Pjf A � 
 e (

is minimized, subject to the constraint h A Pjf A �^ .
Once the local reconstruction weights

P
are determined,

LLE constructs a low dimensional representation of the
data by finding low dimensional vectors k � ��l 	 � which
minimize: m f e l 	 = m A Pgf A l 
 e ( (4)

subject to the constraint
] l 	 l 	 _na �Go

. A nice feature of
LLE is that this minimization can be efficiently performed
by computing the eigenvectors of p � 5 o = P 8 5 o = P 8?_
with the smallest eigenvalues. The low dimensional repre-
sentation k can then be formed by taking a small number
of these eigenvectors as the rows of k .

Given two data sets

/ �
and

/ (
, LLE can be performed

separately on the two sets by computing the nearest neigh-
bors and local weights

P �
and

P (
. Then, two separate

low dimensional representations k � and k ( can be calcu-
lated by diagonalizing p � � 5 o = P � 8 5 o = P � 8q_ andp ( � 5 o = P ( 8 5 o = P ( 8q_ respectively. This is equiva-
lent to minimizing the combined cost:r;s&t uwv 56k � = P � k � 8 56k � = P � k � 8q_K7 (5)u?v 5xk ( = P ( k ( 8 56k ( = P ( k ( 8q_ # (6)

However, in order to account for correspondences between
the two data sets, the two representations should be equiv-
alent for those examples that are in correspondence. If the
matrices k � and k ( are partitioned into k � �yF k �* k �H J
and k ( � F k (* k (H J , then the shared correspondence im-
plies the constraint k �* � k (* . The minimization of Equa-
tion 6 with this constraint can be efficiently computed by
first partitioning p � and p ( as:p � � 0 p �*z* p �* Hp �H * p �HqH 3 (7)p ( � 0 p (*z* p (* Hp (H * p (HqH 3 # (8)

and then finding the eigenvectors with the smallest eigen-
values of:

p!{ �}|~ p �*z* 7 p (*z* p �* H p (* Hp �H * p �HqH �p (H * � p (HqHK�� # (9)

This optimization gives rise to low dimensional representa-
tions of the two data sets where the points in correspon-
dence are constrained to be equivalent. Intuitively, this
causes the two different manifold structures to align with
each other to bring these common points into correspon-
dence. This is illustrated on some simulated data in Fig-
ure 3 where two different manifolds were sampled to gen-
erate the data sets

/ �
and

/ (
. Due to the low sampling

density, LLE applied separately to the data sets gives rise to
a nonfaithful representation. However, constraining equiv-
alent points in the two data sets to have the same underlying
two-dimensional representation causes the underlying uni-
form manifold structure to become apparent.

We also applied the constrained LLE algorithm to generate
the corresponding views of the objects in Figure 1. In order
to reconstruct the unknown correspondence of an example
in data set

/ �
, the low dimensional representation in k �

is first computed. Then by finding the nearest points in k (
to this representation, the corresponding image is recon-
structed by interpolating the appropriate examples in

/ (
.

As shown in Figure 2, this technique gives rise to the best
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Figure 3. 400 points are each sampled randomly from the S-curve
(A) and the Swiss roll (D). Low dimensional coordinates from
LLE when applied separately to the S-curve (B) and Swiss roll
(E) are not very uniform due to the low sampling density. With
the same number of samples and 240 pairs of points in correspon-
dence, the combined LLE representations for the S-curve (C) and
Swiss roll (F) use the correspondence between the points to yield
a smoother, more uniform representation.

A CB

Figure 4. LLE applied to data from 600 points sampled from the
Swiss roll in (A). Applying LLE directly on a single data set with
all 600 points results in the representation in (B). Splitting the 600
points into two data sets with 480 points each, with 360 points
in correspondence and applying the constrained LLE algorithm
results in the representation shown in (C).

reconstruction error among all the algorithms that we stud-
ied, using a manifold of considerably lower dimensionality
( � �Z� ) than the subspaces ( � �� �W ) modeled by PCA and
FA.

5. Self-correspondence

A convenient way to form correspondences from a single
data set is to select overlapping subsets from that data set.
Given data

/
with � examples, we can first choose � *

examples and form

/ * . We split the remaining � = � *
examples into two sets

/ �H
and

/ (H
. Then we can treat/ � � F / * / �H J and

/ ( � F / * / (H J as two separate data
sets with the first ��* examples in direct correspondence.

The advantage of splitting the data set in this manner is il-
lustrated in Figure 4. When conventional LLE is applied
to the single data set, the small sampling of points results
in a distorted representation. However, with the same data
points split into two data sets, the correspondences places
constraints on the low dimensional representation that re-
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Figure 5. Correspondences used to map related words in encyclo-
pedia articles according to their occurrence in the documents. One
set of 968 words and another of 969 words were used with 90
in correspondence. The resulting low dimensional represention
maps related words between the two data sets onto each other.

sults in a smoother, more uniform representation.

We also performed constrained LLE on a set of documents
by splitting the words that occurred in the documents into
two data sets. Each word was represented by a feature vec-
tor that described the count of that word over the set of the
documents. Using only a few common words between the
two data sets, the algorithm was able to successfully match
related words from the different data sets as illustrated in
Figure 5.

6. Discussion

When considering high dimensional examples from dis-
parate data sets, it is valuable to model them as low di-
mensional manifolds in order to map correspondences be-
tween them. PCA and factor analysis can be easily ex-
tended to handle corresponding data sets by using the EM
algorithm to handle the missing data examples. It should be
noted that the PCA model is similar to an earlier algorithm
(Tenenbaum & Freeman, 2000) that used a bilinear model
to separate style (viewpoint in our image example) from
content (identity of object), but the optimization algorithm
used was not the same as the EM algorithm.

In order to model manifolds, we see that LLE can be eas-
ily extended to handle constraints introduced by correspon-
dences. In our tests, the low dimensional nonlinear struc-
ture discovered by contrained LLE gave the best perfor-
mance in reconstructing the unknown corresponding views



of an object. This approach to mapping correspondences
differs from graph matching algorithms that use combi-
natorial optimization techniques (Barrow & Popplestone,
1971; Gold & Rangarajan, 1996). For certain problems, a
combinatorial approach may be appropriate, but it is not
clear how combinatorial algorithms would perform with
large amounts of missing data or sparsely sampled data.

We also note that high dimensional correspondences can
be used to better learn the underlying low dimensional
structure of data. This is illustrated by using self-
correspondences from a single data set to estimate more
faithful representations. Choosing overlapping subsets and
using the correspondence information to obtain better esti-
mates is complementary to “bootstrapping” and other tech-
niques for parameter estimation where multiple subsets of
a small data set are chosen and assumed to be indepen-
dent (Efron & Tibshirani, 1993; Niyogi et al., 1998). Also,
the algorithm can easily be generalized from two subsets
to multiple partitions of a data set. The optimal number
of partitions to use for the best representation is currently
under investigation.

This work shows that a little supervised knowledge about
correspondences can go a long way towards improving
the performance of traditional unsupervised learning al-
gorithms. We are currently investigating how these cor-
respondences may possibly be learned as well. We be-
lieve that problems with partially labelled correspondences
present many new opportunities for research in machine
learning.
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A. Factor analysis with missing data

A.1. Latent variable model

The data model has the form of
� ��Y 7 P O 7-R , where

Y
is a size �NS mean vector,

P
is a �NS by ��M factor loading

matrix, O a size � M hidden vector, and R is a size � M noise vector. The random vectors
�

, O and R are assumed to have the
following distributions:� 5�O 8 �  56��� 8 ����� (�������� =  � O _ O`� " (10)� 5 ��� O 8 �  56��� 8 ���9� ( � \ � � � ( �����;� =  �;� � = P O = Y�� _ \�� � � � = P O = Y�� � "`� t�� (11)� 5 R`8 �  56��� 8 ����� ( � \ � � � ( ����� � =  � R _ \�� � R � " (12)

where \ is a diagonal matrix ����� 5¢¡ 8 . To perform factor analysis with missing data, we introduce new random vector
l

of
dimension �'£ � ��S 7 �UM : l �¥¤ � O�¦
which has the distribution � 5 l 8 � � 5 � " O 8 � � §�� � � (56��� 8 ��¨$� (��$���;� =  �;� l =i© � _ § � l =i© � � " (13)

where the parameters A and b are§ �ª0 \ � � = \ � � P= P _ \ � � o ��� 7 P _ \ � � P 3 "�� t�� © �«¤ Y � ¦ # (14)

Let v and h be sets of indices for visible and hidden variables, i.e., � � �  U" � "$¬9¬$¬�" � S � and ­ � � � S 7  �"$¬$¬9¬�" � £ � . Also
let u (for unobservable) be a set of indices in

�  �" � "9¬$¬9¬�" � £ � for elements of
l

which are either hidden or missing, and o
(for observable) be the other indices for observed variables. Note ­g®Z¯ . Using this notation,

§±°³²
is a sub-matrix whose5 ��" B 8 th entry is

§´°�µ6²·¶
, where ¯ f and � A is the ith and the jth element of u and o, respectively.

Let’s partition
l

, © , and A as: l �«¤ l¹¸l º ¦ " © �¥¤ © ¸© º ¦ "«� t»� § ��0 § ²w² § ²?°§ °³² § °�° 3 # (15)

The conditional probability of unobserved variables in
l

given observed variables in
l

is, as a function of
l º

and the
deviations ¼ l º � l º = l º : � 5 l º�� l¹¸ 8 � �$�N� � =  � � l º = l º � _ ¼ l º ¼ l º _ � � � l º = l º � � " (16)

where the overline
¬

means conditional expectation ½ l º � ¬ � l ¸ � . After algebraic manipulations, we get the mean
l º

and

the covariance matrix ¼ l º ¼ l º _l¾º � § � �°�° � § °�° © º = § °�² 5 l¹¸ =¿© ¸ 8 �'"K� t�� ¼ l º ¼ l º _ � § � �°�° # (17)

These results represent the expected values of the unknown variables in the probabilistic factor analysis model.



A.2. EM algorithm

The EM algorithm consists of two steps. The E-step uses the expected values derived in the previous section, and the
M-step involves maximizing the auxiliary function À :Á�ÂYÃ" ÂPÄ" Â\ÆÅ � � v?Ç�r � � À (18)� � v?Ç�r � ��È =  � � l = ÂY�� _ Â§ � l = ÂY�� =  �CÉ v Á Â§ ¼ l º ¼ l º _ Å 7  �,Ê&Ë Ç � Â§Ì�&Í (19)� � v?Ç�r � ��� =  � É v�Î Â§´ÏjÐ 7  � Ê%Ë Ç � Â§�� � " (20)

where
Ï

,
l

, and
ÂY

are defined asÏ �ÄÑ � l = ÂY�� � l = ÂY�� _ 7 ¼ l º ¼ l º _�Ò " l �«¤ l¹¸l¾º ¦ � t�� ÂYÓ�«¤ ÂY�Ô� ¦ (21)

by the assumption that hidden variables O are zero-mean. The bracket
]q¬ a stands for the average over examples. From the

Schur complement one can easily verifyÕÕÕ Â§ ÕÕÕ � ÕÕÕÕ 0 Â\ � � = Â\ � � ÂP= ÂP _ Â\ � � o ��� 7 ÂP _ Â\ � � ÂP 3 ÕÕÕÕ � ÕÕÕ Â\�� � ÕÕÕ # (22)

To further simplify the calculation let Ö be defined asÖ ��] l l _ 7 ¼ l ¼ l _ a×= ] l a ] l a _ " (23)

with ¼ l � ¤ l ¸ = l ¸l º = l º ¦ � ¤ �¼ l º ¦ # (24)

Then, the maximum value of À is achieved by simultaneously solvingØ ÀØ ÂP � Ø ÀØ Â\ � Ø ÀØ ÂY � � #
(25)

Using Ö defined above, the solution toØ ÀØ ÂP � ØØ ÂP =  � É vnÙ = Â\ � � ÂP ÖÃÚ�Û = ÂP _ Â\ � � ÖÃÛ�Ú 7 5 o 7 ÂP _ Â\ � � ÂP 8 ÖÃÚ�Ú Ü � � s%Ý (26)ÂPÞ� ÖÃÛ�Ú�56ÖÃÚ�Ú 8 � � " (27)

and the solution to Ø ÀØ \ � � � =  �¹É v Î Ö´Û�Û = Ö´Û�Ú ÂP _ = ÂP ÖÃÚ�Û 7 ÂP _ ÖÃÚ�Ú ÂP = \ Ð � �Ìß s � Ê �àÝ (28)Â\ f&fn� Á�á o = ÂP â Ö á o = ÂP â _ Å f%f # (29)

Finally, setting ã�äãCåY�æ � � gives ÂYÓ� ¤ o = ÂP� � ¦ ] l a # (30)

These equations determine the closed form expressions for updating parameters
ÂY

,
ÂP

, and
Â\ which are guaranteed to

monotonically increase the likelihood.


