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Modeling Environment
What does it mean to understand/model your environment?

Ability to predict

Two approaches to modeling environment of words and text
Latent Semantic Analysis (LSA)

Topic Model



LSA
The set up

D documents
W distinct words
F = WxD coocurrence matrix
fwd = frequence of word w in document d

Transforming the coocurrence matrix

where fwd/fw is probability that randomly chosen instance of w in corpus 
comes from document d

Hw = value in 0-1 where 
0=word appears in only 1 doc; 
1=word spread across all documents

(1-Hw) = specificity:
0 = word tells you nothing about the document;
1= word tells you a lot about the document



G = WxD normalized coocurrence matrix
log transform common for word freq analysis
+1 ensures no log(0)
weighted by specificity

Representation of word i
row i of G

problem: this is high dimensional

problem: doesn’t capture similarity structure of documents

Dimensionality reduction via SVD
G = A D B

[WxD] = [WxR] [RxR] [RxD]

if R = min(W,D) reconstruction is perfect

if R < min(W,D) least squares reconstruction, i.e., capture whatever structure 
there is in matrix with a reduced number of parameters

Reduced representation of word i: row i of (AD)

Can used reduced representation to determine semantic relationships



Topic Model (Hoffmann, 1999)
Probabilistic model of the way language is produced

Generative model
Select a document with probability P(D)

Select a (latent) topic with probability P(Z|D)

Generate a word with probability P(W|Z)

Produce pair <di, wi> on draw i

P(D, W, Z) = P(D) P(Z|D) P(W|Z)

P(D, W) = sumz P(D) P(z|D) P(W|z)

Learning
Minimize cross entropy (difference between distribution) of data and model

– sumx Q(x) log P(x)

= sumw,d n(d,w) P(d,w)
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Topic Model (Griffiths & Steyvers): Notation

P(wi) is the same as P(W=wi | D=di)

P(zi=j) is same as P(Z=j | D=di) is the same as 

P(wi | zi=j) is same as P(W=wi | Z=j) is the same as 

Thus, equation means
P(W|D) = sumj P(W|D, Z=j) P(Z=j|D) = sumj P(W|Z=j) P(Z=j|D)
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φwi
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Topic Model (Griffiths & Steyvers)
Doing the Bayesian Thing

The two conditional distributions aare over discrete 
alternatives.

P(Z=j | D=di) or 

P(W=wi | Z=j) or 

If n alternatives, distribution can be represented by n–1 
parameters.

But suppose you don’t represent the distribution directly but 
rather you do the Bayesian thing of representing a whole 
bunch of models—a distribution of distributions...

θj
di
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Intuitive Example

Coin with unknown bias, ρ = probability of heads

Sequence of observations: H T T H T T T H

Maximum likelihood approach

ρ = 3 / 8

Bayesian approach

set of models , where probability associated with  is 

e.g., 

M mρ{ }= mρ ρ

M m0.0 m0.1 m0.2 … m1.0, , , ,{ }=



Bayesian Model Updates

Bayes rule

Likelihood model

Priors

p m D( ) p D m( )p m( )
p D( )

----------------------------------=

posterior likelihood prior

p head mρ( ) ρ=

p tail mρ( ) 1 ρ–=

p mρ( ) 1
11
------=



Coin Flip Sequence: H T T H T T T
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Infinite Model Spaces

This all sounds great if you have just a few models, but what 
if you have infinite models?

e.g., ρ continuous in [0, 1]

If you limit the form of the probability distributions, you can 
often do so efficiently.

e.g., beta distribution to represent priors and posterior in coin flip example

Requires only two parameters to update, one representing count of heads, 
one representing count of tails.
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Effect of Prior Knowledge

0 0.5 1
0

0.5

1

1.5

2

2.5

3
priors

model
0 0.5 1

0

0.5

1

1.5

2

2.5

3
trial 1: H

model
0 0.5 1

0

0.5

1

1.5

2

2.5

3
trial 2: T

model
0 0.5 1

0

0.5

1

1.5

2

2.5

3
trial 3: T

model

0 0.5 1
0

0.5

1

1.5

2

2.5

3
trial 4: H

model
0 0.5 1

0

0.5

1

1.5

2

2.5

3
trial 5: T

model
0 0.5 1

0

0.5

1

1.5

2

2.5

3
trial 6: T

model
0 0.5 1

0

0.5

1

1.5

2

2.5

3
trial 7: T

model

0 0.5 1
0

0.5

1

1.5

2

2.5

3
priors

model
0 0.5 1

0

0.5

1

1.5

2

2.5

3
trial 1: H

model
0 0.5 1

0

0.5

1

1.5

2

2.5

3
trial 2: T

model
0 0.5 1

0

0.5

1

1.5

2

2.5

3
trial 3: T

model

0 0.5 1
0

0.5

1

1.5

2

2.5

3
trial 4: H

model
0 0.5 1

0

0.5

1

1.5

2

2.5

3
trial 5: T

model
0 0.5 1

0

0.5

1

1.5

2

2.5

3
trial 6: T

model
0 0.5 1

0

0.5

1

1.5

2

2.5

3
trial 7: T

model

low head-probability bias high head-probability bias



Dirichlet Distribution
Dirichlet distribution is a generalization of beta distribution. 

Beta distribution is a conjugate prior for a binomial RV;
Dirichlet is a conjugate prior for a multinomial RV

Rather than representing uncertainty in the probabilities 
over two alternatives, a Dirichlet represents uncertainty in 
the probabilities over n alternatives.

You can think of the uncertainty space over n probabilities constrained such 
that P(x) = 0 if (sumi xi) != 1 or if xi < 0...

...or the representational space over n–1 probabilities constrained such that 
P(x)=0 if (sumi xi) > 1 or if xi < 0.

Dirichlet for multinomial RV with n alternatives has n 
parameters (beta has 2).

Each parameter is a count of the number of occurrences.



Back to the Topic Model (Griffiths & Steyvers)
To learn P(Z|D) and P(W|Z), we need to estimate latent var. Z

Computing P(Z|D,W)
P(D, W, Z) = P(D) P(Z|D) P(W|Z)

P(D, W) = sumz P(D) P(z|D) P(W|z)

P(Z|D,W) = P(D, W, Z) / P(D, W)

= P(Z|D) P(W|Z) / [sumz P(z|D) P(W|z)]

Doing the Bayesian thing
Treat the θ and φ as random variables with a Dirichlet distribution.

i.e., numerator P(Z|D)P(W|D) = integralθ,φ P(Z|D,θ) P(W|D,φ) P(θ) P(φ)
and similarly for denominator

So you don’t need to represent θ and φ explicitly, but instead just the 
parameters of the Dirichlet

These parameters are counts of occurrence.
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Equation 3

Ignore α and β for the moment
First term: proportion of topic j draws in which wi picked

Second term: proportion of words in document di assigned to topic j

This formula integrates out the Dirichlet uncertainty over the multinomial 
probabilities!

What are α and β?
Uniform (“symmetric”) prior over multinomial alternatives

Larger value of α and β means to trust the prior more

“...how heavily the distributions are smoothed”



Procedure
MCMC: procedure for obtaining samples from a complicated 
distribution, e.g., from P(Z|D,W)

1. Randomly assign each <di, wi> pair a zi value.

2. For each i resample according to Equation 3 (one iteration)

3. Repeat for a 1000 iteration “burn in”

4. Use current z’s as “sample”: assignment of each <di, wi> pair to topic zi 

5. Run for another 100 iterations

6. Repeat steps 4 and 5 for a total of 10 times

7. Repeat steps 1-6 for a total of 10 times.

-> 100 samples of the z’s

Use the 100 x 5628867 assignments to determine the “n”s in equation 4



Results
• Table 1

• Predicting word association norms

“the” -> ?

“dog” -> ?

Figure 1: median rank of k’th associate

• Combining syntax and semantics in a more complex 
generative model

HMM to generate tokens from different syntactic categories

One category produces words from topic model

Table 2

• Details of work

Found optimal dimensionality for LSA; used same dim. for Topic Model
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