Topic Model

Modeling Environment

What does it mean to understand/model your environment?
Ability to predict
Two approaches to modeling environment of words and text
Latent Semantic Analysis (LSA)
Topic Model

LSA

The set up

D documents
W distinct words
$\mathrm{F}=\mathrm{WxD}$ coocurrence matrix
$f_{w d}=$ frequence of word w in document d

Transforming the coocurrence matrix

$g_{w d}=\log \left\{f_{w d}+1\right\}\left(1-H_{w}\right) \quad H_{w}=-\frac{\sum_{d=1}^{D} \frac{f_{w d}}{f_{w}} \log \left\{\frac{f_{w d}}{f_{w}}\right\}}{\log D}$
where $f_{w d} / f_{w}$ is probability that randomly chosen instance of w in corpus comes from document d
H_{w} = value in 0-1 where
$0=$ word appears in only 1 doc;
1=word spread across all documents
$\left(1-H_{w}\right)=$ specificity:
0 = word tells you nothing about the document;
1= word tells you a lot about the document
$\mathrm{G}=\mathrm{WxD}$ normalized coocurrence matrix
log transform common for word freq analysis
+1 ensures no log(0)
weighted by specificity

Representation of word \mathbf{i}

row i of G
problem: this is high dimensional
problem: doesn't capture similarity structure of documents

Dimensionality reduction via SVD

$$
G=A D B
$$

[WxD] = [WxR] [RxR] [RxD]
if $R=\min (W, D)$ reconstruction is perfect
if $R<\min (W, D)$ least squares reconstruction, i.e., capture whatever structure there is in matrix with a reduced number of parameters

Reduced representation of word i: row i of (AD)
Can used reduced representation to determine semantic relationships

Topic Model (Hoffmann, 1999)

Probabilistic model of the way language is produced

Generative model

Select a document with probability $P(D)$
Select a (latent) topic with probability P(Z|D)
Generate a word with probability $\mathrm{P}(\mathrm{W} \mid \mathrm{Z})$
Produce pair $<\mathrm{d}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}>$ on draw i
$P(D, W, Z)=P(D) P(Z \mid D) P(W \mid Z)$
$P(D, W)=\operatorname{sum}_{z} P(D) P(z \mid D) P(W \mid z)$

Learning

Minimize cross entropy (difference between distribution) of data and model
$-\operatorname{sum}_{x} Q(x) \log P(x)$
$=\operatorname{sum}_{w, d} n(d, w) P(d, w)$

Topic Model (Griffiths \& Steyvers): Notation

$$
P\left(w_{i}\right)=\sum_{j=1}^{T} P\left(w_{i} \mid z_{i}=j\right) P\left(z_{i}=j\right)
$$

$P\left(w_{i}\right)$ is the same as $P\left(W=w_{i} \mid D=d_{i}\right)$
$P\left(z_{i}=j\right)$ is same as $P\left(Z=j \mid D=d_{i}\right)$ is the same as $\theta_{j}^{d_{i}}$
$P\left(w_{i} \mid z_{i}=j\right)$ is same as $P\left(W=w_{i} \mid Z=j\right)$ is the same as $\phi_{w_{i}}^{j}$
Thus, equation means

$$
P(W \mid D)=\operatorname{sum}_{j} P(W \mid D, Z=j) P(Z=j \mid D)=\operatorname{sum}_{j} P(W \mid Z=j) P(Z=j \mid D)
$$

Topic Model (Griffiths \& Steyvers) Doing the Bayesian Thing

The two conditional distributions aare over discrete alternatives.

$$
\begin{aligned}
& P\left(Z=j \mid D=d_{i}\right) \text { or } \theta_{j}^{d_{i}} \\
& P\left(W=w_{i} \mid Z=j\right) \text { or } \phi_{W_{i}}^{j}
\end{aligned}
$$

If \boldsymbol{n} alternatives, distribution can be represented by $\boldsymbol{n} \mathbf{- 1}$ parameters.

But suppose you don't represent the distribution directly but rather you do the Bayesian thing of representing a whole bunch of models-a distribution of distributions...

Intuitive Example

Coin with unknown bias, $\rho=$ probability of heads
Sequence of observations: H T T H T T H
Maximum likelihood approach
$\rho=3 / 8$
Bayesian approach
set of models $M=\left\{m_{\rho}\right\}$, where probability associated with m_{ρ} is ρ
e.g., $M=\left\{m_{0.0}, m_{0.1}, m_{0.2}, \ldots, m_{1.0}\right\}$

Bayesian Model Updates

Bayes rule

Likelihood model

$$
\begin{gathered}
\mathrm{p}\left(\text { head } \mid \mathrm{m}_{\rho}\right)=\rho \\
\mathrm{p}\left(\text { tail } \mid \mathrm{m}_{\rho}\right)=1-\rho
\end{gathered}
$$

Priors

$$
p\left(m_{\rho}\right)=\frac{1}{11}
$$

Coin Flip Sequence: H T T H T T T

priors

trial 4: H

Infinite Model Spaces

This all sounds great if you have just a few models, but what if you have infinite models?
e.g., ρ continuous in $[0,1]$

If you limit the form of the probability distributions, you can often do so efficiently.
e.g., beta distribution to represent priors and posterior in coin flip example

Requires only two parameters to update, one representing count of heads, one representing count of tails.

Coin Flip Sequence: H T T H T T T

Effect of Prior Knowledge

Iow head-probability bias

high head-probability bias

Dirichlet Distribution

Dirichlet distribution is a generalization of beta distribution.
Beta distribution is a conjugate prior for a binomial RV; Dirichlet is a conjugate prior for a multinomial RV

Rather than representing uncertainty in the probabilities over two alternatives, a Dirichlet represents uncertainty in the probabilities over n alternatives.

You can think of the uncertainty space over n probabilities constrained such that $P(x)=0$ if $\left(\operatorname{sum}_{i} x_{i}\right)!=1$ or if $x_{i}<0 \ldots$
\ldots...or the representational space over $n-1$ probabilities constrained such that $P(x)=0$ if $\left(\operatorname{sum}_{i} x_{i}\right)>1$ or if $x_{i}<0$.

Dirichlet for multinomial RV with n alternatives has n parameters (beta has 2).

Each parameter is a count of the number of occurrences.

Back to the Topic Model (Griffiths \& Steyvers)

To learn $P(Z \mid D)$ and $P(W \mid Z)$, we need to estimate latent var. Z
Computing $\mathrm{P}(\mathrm{Z} \mid \mathrm{D}, \mathrm{W})$

$$
\begin{aligned}
P(D, W, Z) & =P(D) P(Z \mid D) P(W \mid Z) \\
P(D, W) & =\operatorname{sum}_{z} P(D) P(z \mid D) P(W \mid z) \\
P(Z \mid D, W) & =P(D, W, Z) / P(D, W) \\
& =P(Z \mid D) P(W \mid Z) /\left[\operatorname{sum}_{z} P(z \mid D) P(W \mid z)\right]
\end{aligned}
$$

Doing the Bayesian thing

Treat the θ and ϕ as random variables with a Dirichlet distribution.
i.e., numerator $P(Z \mid D) P(W \mid D)=$ integral $_{\theta, \phi} P(Z \mid D, \theta) P(W \mid D, \phi) P(\theta) P(\phi)$ and similarly for denominator

So you don't need to represent θ and ϕ explicitly, but instead just the parameters of the Dirichlet

These parameters are counts of occurrence.

Equation 3

$$
P\left(z_{i}=j \mid \mathbf{z}_{-i}, \mathbf{w}\right) \propto \frac{n_{-i, j}^{\left(w_{i}\right)}+\beta}{n_{-i, j}^{(\cdot)}+W \beta} \frac{n_{-i, j}^{\left(d_{i}\right)}+\alpha}{n_{-i, \cdot}^{\left(d_{i}\right)}+T \alpha}
$$

Ignore α and β for the moment

First term: proportion of topic j draws in which w_{i} picked
Second term: proportion of words in document d_{i} assigned to topic j
This formula integrates out the Dirichlet uncertainty over the multinomial probabilities!

What are α and β ?

Uniform ("symmetric") prior over multinomial alternatives
Larger value of α and β means to trust the prior more
"...how heavily the distributions are smoothed"

Procedure

MCMC: procedure for obtaining samples from a complicated distribution, e.g., from P(Z|D,W)

1. Randomly assign each $\left.<d_{i}, w_{i}\right\rangle$ pair a z_{i} value.
2. For each i resample according to Equation 3 (one iteration)
3. Repeat for a 1000 iteration "burn in"
4. Use current z's as "sample": assignment of each $\left\langle d_{i}, w_{i}\right\rangle$ pair to topic z_{i}
5. Run for another 100 iterations
6. Repeat steps 4 and 5 for a total of 10 times
7. Repeat steps 1-6 for a total of 10 times.
-> 100 samples of the z's
Use the 100×5628867 assignments to determine the " n " s in equation 4

$$
P(w \mid z=j, \mathbf{z}, \mathbf{w})=\int P\left(w \mid z=j, \phi^{(j)}\right) P\left(\phi^{(j)} \mid \mathbf{z}, \mathbf{w}\right) d \phi^{(j)}=\frac{n_{j}^{(w)}+\beta}{n_{j}^{(\cdot)}+W \beta}
$$

Results

- Table 1
- Predicting word association norms

$$
\begin{aligned}
& \text { "the" -> ? } \\
& \text { "dog" -> ? }
\end{aligned}
$$

Figure 1: median rank of k 'th associate

- Combining syntax and semantics in a more complex generative model

HMM to generate tokens from different syntactic categories
One category produces words from topic model
Table 2

- Details of work

Found optimal dimensionality for LSA; used same dim. for Topic Model

