Simulating Brain Damage

Adults with brain damage make some bizarre errors when reading
words. If a network of simulated neurons is trained to read
and then is damaged, it produces strikingly similar behavior

by Geoffrey E. Hinton, David C. Plaut and Tim Shallice

bullet wound to the head. He sur-
vived the war with a strange disabil-
ity: although he could read and compre-
hend some words with ease, many oth-
ers gave him trouble, He read the word
antigue as “vase” and uncle as "nephew.”
The injury was devastating to the pa-
tient, G.R., but it provided invaluable
information to researchers investigat-
ing the mechanisms by which the brain
comprehends written language., A prop-
erly functioning system for convert-
ing letters on a page to spoken sounds
reveals little of its inner structure, but
when that system s disrupted, the pecu-
liar pattern of the resulting dysfunction
may offer essential clues to the original,
undamaged architecture,

IH 1944 a young soldier suffered a

BRAIN IMAGES show damage to the language-processing areas
of patients with acquired dyslexia, which can now be mod-
eled by artificial neural networks. (These positron-emission

During the past few years, computer
simulations of brain function have ad-
vanced to the point where they can be
used to model information-processing
pathways, We have found that deliberate
damage to artificial systems can mimic
the symptoms displayed by people who
have sustained brain injury. Indeed,
building a model that makes the same
errors as brain-<injured people do gives
us confidence that we are on the right
track in trying to understand how the
brain works.

We have yet to make computer mod-
els that exhibit even a tiny fraction of
the capabilities of the human brain, Nev-
ertheless, our results so far have pro-
duced unexpected insights into the way
the brain transforms a string of let-
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ter shapes into the meaning of a word.,
wWhen John C. Marshall and Freda
Neweombe of the University of Oxford
analyzed G.R.'s residual problems in
1966, they found a highly idiosyncratic
pattern of reading deficits. In addition
to his many semantic errors, G.R. made
visual ones, reading stock as "shock”
and crowd as “crown.” Many of his mis-
readings resembled the correct word in
both form and meaning; for example,
he saw wise and said "wisdom.”
Detailed testing showed that G.R.
could read concrete words, such as ta-
ble, much more easily than abstract
words, such as truth. He was fair at read-
ing nouns (46 percent correct), worse
at adjectives (16 percent), still worse
at verbs (6 percent) and worst of all at

tomography scans, made by Cathy . Price and her colleagues
at the MRC Cyclotron Unit in London, measure activity of the
brain in successive horizontal slices, starting at the top. Low



function words, such as of (2 percent).
Finally, he found it impossible to read
wordlike nonsense letter strings, such
is mave or nust,

Since then, clinicians have studied
more than 50 other patients who make
semantic errors in reading aloud, and
virtually all of them show the same
strange combination of symptoms. In
1973 Marshall and Newcombe described
two contrasting types of acquired dys-
lexia. So-called surface dyslexics mis-
read words that are pronounced in an
unusual way, often giving the more reg-
ular pronunciation; a surface dyslexic
might read yacht as "yatched.” In con-
trast, a “deep” dyslexic patient like G.R,
might read yacht as "boat.”

To explain the existence of these
two types of dyslexia, Marshall and
Newcombe proposed that the informa-
tion processed in normal reading trav-
els along two distinct, complementary
routes. Surface dyslexics retain the pho-
nological route, which relies on com-
mon spelling-to-sound correspondenc-
es. Deep dyslexics, meanwhile, retain
the semantic route, which allows the
meaning of a word to be derived direct
Iy from its visual form (when it can be
derived at all). A person reading words
aloud via the semantic route derives
pronunciation entirely from meaning,

According to Marshall and Newcombe,
the errors produced by deep dyslexics

levels of activity appear in blue and high levels in white.)
One patient (fop row) has lost almost all function in the left
hemisphere of the cerebral cortex, except for the most poste:

reflect how the semantic route oper-
ates in isolation. Later empirical find-
ings suggest that this account is over-
simplified, but the notion of a semantic
route is still generally accepted. It now
seems likely that deep dyslexics not only
lose their phonological route but have
damage somewhere along the semantic
one as well.

he hypothesis that reading de-
T pends on multiple routes that can

be separately damaged has proved
fruitful in classifying patients but less
useful in understanding the precise na-
ture of their injuries, Max Coltheart of
Macquarie University in Australia and
Eleanor M, Saffran of Temple University
have both proposed, for example, that
the reading of deep dyslexics may bear
a strong resemblance to that of patents
who have only the right hemisphere of
their brain functioning,

This explanation, however, provides
little insight into the highly characteris-
tic pattern of errors that typically oc-
curs in acquired dyslexia, Any detailed
explanation of how errors arise and
why they form consistent patterns re-
quires a model of how that information
is processed in each route—and of how
this processing goes wrong when the
neural circuitry 1s damaged. Psycholo-
gists often use abstract, algovithmic de-
scriptions of the way that the brain han-
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dles information. These descriptions ob-
viously cannot be subjected to the kinds
of injuries that brain cells may incur.
As a result, we have turned to neural
networks—idealized computer simula-
tions of ensembles of neurons. We have
developed networks that perform the
role of the semantic route, and then we
have selectively removed connections
between neurons to see how their be-

rior regions. The other has sustained damage to the parietal
and temporal lobes of the left hemisphere, regions generally
believed to be crucial for processing language.
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TWO PATHWAYS in the brain are responsible for the mental processing and
pronunciation of written words, One (the phonological route) derives pronuncia-
tion from spelling, the other (the semantic route) from meaning. Deep dyslexics
have lost the phonological route completely and have suffered damage to the se-

mantic route as well,

havior changes. A lew years ago we de-
signed a simple network to mimic the
semantic route and found that damag-
ing any part of it could reproduce sev-
eral of the symptoms of deep dyslexia.
We have since made more detailed mod-
els to learn which aspects of neural-
network architectures were responsible
for this behavior, We have also extend-
ed the approach to account for addi-
tional symptoms of deep dyslexia,

Our models of the semantic route con-
sist of interconnected units representing
neurons. Fach neuron unit has an activi-
ty level (between 0 and 1) that depends
on the Inputs it receives from other neu-
rons. Connectlons between units have
an adjustable weight that specifies the
extent to which the output of one unit
will be reflected in the activity of the
unit it is feeding, These weights, along

with the pattern of connections among
neurons, determine the computation
that the network performs.

The first version of our network con-
slsted of three sets of units: “graph-
eme” units, each of which represented
a particular letter in a specific position
within the word; "sememe” units that
represented the meanings of words;
and a layer of intermediate units that
make it possible to learn complex asso-
clations. A completely general network
would require 26 grapheme units for
each position within a word, but we
used a simplified vocabulary that per-
mitted a smaller number. The graph-
eme units in the first position were all
consonants, for instance, and those in
the second, all vowels,

The sememe units do not correspond
directly to individual word meanings
but rather to semantic features that de-
scribe the thing in question. The word
cat activates such units as “mammal,”
“has legs," “soft" and “fierce.” Units
representing such semantic features as

Mtransparent,” "tastes strong,” *part of

limb" or *made of wood” remain qui-
escent, Our network has 68 sememe
units representing both physical and
functional attributes of a word's defini-
tion. Each word that we chose was rep-
resented by a different combination of
active and inactive sememe units,

To make our neural network produce

IDEALIZED NEURON is the basis for
artificial neural networks. It sums the
weighted inputs that it receives from oth-
er neurons (bottom) and generates an
activation level between 0 and 1. It then
passes this activation (through weight-
ed connections) to other neurons, The
get of weights and connections in a neu-
ral network determines its behavior,
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the correct pattern of semantic features
for each word, we had to set the weight
on each connection to the appropri-
ate value. These welghts are set not
by hand but rather through a learning
procedure—an algorithm for program-
ming neural networks. To teach a net-
work a task, one starts with random
weights and then presents the network
repeatedly with a “training set” of input
patterns (in this case, letters in specified
positions). The algorithm adjusts the
welghts after each training run to reduce
the difference between the network’s
output and the “correct” response.

cural-net workers have known
Nsince the 19508 how to adjust

welghts in simple, two-layer net-
works, but training networks with a
greater number of layers is more diffi-
cult. In particular, it is not immediately
obvious how to set the weights on the
connections from the input units to the
intermediate units because there is no
way 1o determine, a priori, which inter-
mediate units should be active for any
given input and output.

During the 1980s, however, neural-
net researchers developed a number of
different methods for training multi-
layer networks. These methods appor-
tion changes to the connection weights
of each layer according to their con-
tribution to the ertor. Over the course
of many training cycles, the resulting
welghts converge 1o vield a network that
produces the correct results, Depending
on the initial random weights, learning
may result In any of a number of sets
of weights, each of which leads the net-
work to produce correct answers for
its training inputs. (For further details
of the learning procedure, see “How
Neural Networks Learn from Experl-
ence," by Geoffrey E. Hinton; SCIENTIF-
IC AMERICAN, September 1992))

In theory, these learning procedures
can get stuck in so-called local min-
ima—configurations of weights that
are incorrect but for which any small
change would only make the network's
errors worse, In practice, however, a
network almost always learns nearly
optimal solutions, In addition, some of
the learning procedures are more bio-
logically plausible than others, but our
results do not seem to depend on which
method we use. We suspect that even if
the brain uses a quite different learning
procedure, the resulting neural circuit-
ry will still resemble the structure that
our network develops, Thus, our expla-
nation of what happens when the net-
work is damaged may be correct even
if its learning procecdures are not.

Although our initial network, with
one intermediate layer, could learn to



map word-forms to their semantic fea-
tures, it was not really satisfactory. It
had a strong tendency to map very sim-
ilar inputs (such as cat and cot) to sim-
ilar outputs unless subjected to exces
sively long training, We addressed this
problem by adding another layer of
“cleanup” neurons. If the original set of
connections produces a sloppy answer,
the new units will change it to produce
exactly the correct semantics. The num-
ber of word meanings is limited, so the
pathway from the input need only get
the activities of the sememe units clos-
er to the correct meaning than to any
other. The same learning techniques
that succeed on networks with a single

CLEANUP

NEURAL NETWORK FOR READING contains four lavers, The
first responds to the letters In each word. Connections be-
tween input and intermediate units and between intermedi-
ate and "sememe” units convert the word-form to a represen-

intermediate layer can direct the learn-
ing of nets containing multiple inter-
mediate layers or even networks whose
units are connected in cyclical fashion,

The most natural way to implement
this cleanup mechanism is with a feed-
back loop. The output of the sememe
units goes to the cleanup units, and
their output goes to the inputs of the
sememe units, Fach time activity flows
around the loop, the influence of the
cleanup units on the sememe units
(and vice versa) will vield a pattern of
semantic features that is closer to the
correct one.

The feedback loop introduces a new
characteristic into the behavior of our

GRAPHEME
UNITS

neural network. The original network
was static—any given input would cause
the network to produce a corresponding
output pattern, and that pattern did not
change as long as the input stayed con-
stant. The output of the new network,
however, is dynamic; it settles gradual-
ly into a stable pattern,

Consequently, we have found it useful
to think of the network's output not just
as a list of active semantic features but
rather as motion through a multidimen-
sional "semantic space,”" whose coordi-
nates are defined by all the semantic
features that the network can represent.
Every point in the space corresponds to
a specific pattern of activity among the

SEMEME

L UNITS

INTERMEDIATE
UNITS

tation in terms of semantic features, such as size, edibility or
aliveness. “Cleanup” units are connected to sememe units in
a feedback loop that adjusts the sememe output to match the
meanings of words precisely.
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ACTIVATION LEVELS of neurons in the network change with time as the net pro-
cesses the word bed. At first, many of the sememe units are activated to varying
degrees, but interaction with the cleanup units strengthens the activation of some
and weakens that of others until the output converges,

gememe units, but only a few of those
patterns correspond to valid meanings,
The correct meanings of words are
points in semantic space.

he first three layers of the net-
work, seen according to this per-
spective, take a word-form and
convert it to a position somewhere in
semantic space. Activity in the cleanup
layer then draws the output of the net-
work to the point corresponding to the
closest meaning. The region around
each word is what physicists and math-
ematicians know as a point attractor—
whenever the network's initial output
appears within a certain region, the net-
work's state will Inexorably be drawn
to one position within the region,
This notion of a semantic space dot-
ted with attractors representing the
meanings of words has proved valu-

able for understanding how our net-
work operates and how it can make the
same semantic errors that dyslexics do.
If we damage the network by randomly
changing the weights in the cleanup
mechanism, for example, the boundar-
ies of the attractor for each word will
change, As a result, if the network is in
4 reglon in semantic space where it was
previously drawn to one word, it may
now he drawn to a semantically relat-
ed one instead. Alternatively, if we dis-
rupt the pathway coming from the in-
put, the network’s initial output may be
closer to the meaning of a semantical-
ly related word than to the meaning of
the word originally presented.

This result clears up one of the first
puzzles presented by deep dyslexia:
why damage to any part of the brain's
semantic route produces an essentially
similar pattern of misreadings. Neurol-
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ogists and others had wondered how
damage near the input—the visual part
of the reading system--could cause se-
mantic errors. According to our mod-
¢lg, these errors arise naturally as the
cleanup neurons use semantic informa-
tion to try to make sense of the output
of the damaged earlier stages.

The notion of attractors helps to ex-
plain another anomaly in the data as
well, Almost all patients who make se-
mantic errors also make some visual er-
rors—they confuse a word like car with
a visually similar word like cot. They do
not, however, make the sounding-out
errors of surface dyslexics ("loave” for
fove or “deet” for deaf). This invari-
able connection between semantic er-
rors and visual errors is odd, Some pa-
tients must have damage solely to the
later stages of their processing systems,
and one would intuitively expect them
to make only semantic errors.

After Implementing our neural-net-
work model, we discovered to our great
surprise that damage to the semantic
cleanup circuit sometimes caused visu-
al errors, Retrospectively, we can under-
stand why: the earlier layers of an un-
damaged network can afford to produce
somewhat similar semantic outputs for
the words cat and cof because the clean-
up circuit will steer each to its proper
meaning, But when the cleanup clircult
is damaged and the shapes of each at-
tractor change, the output of the se-
meme units may fall into the attractor
for a visually similar but semantically
unrelated word,

This explanation did not initially oc-
cur to us because it relies on the idea
that the boundary of the attractor for
cat can come very close to the one for
cot even though the two words are se-
mantically dissimilar, One would expect
the attractors for many other meanings
to come between those for cat and cot.
In a two-dimensional space this intul-
tion is correct: if we choose 40 points
at random to represent word meanings
and construct fairly compact attractors
around each point, the attractors for
dissimilar meanings will not come any-
where near one another,

It is very dangerous, however, to as:
sume that the same s true in spaces
that have many dimensions, Our net-
work represents 68 semantic features
in its sememe units, and so the attrac-
tors for each of its 40 words reside in a
68-dimensional space. It turns out that
in 68 dimensions, the midpoint between
any two randomly chosen points 1s al-
most certainly closer to each of those
points than it is to any of 38 other ran-
dom points. Consequently, the attrac-
tors for cat and cot can have a common
border without any other attractors get-



ting in the way, Avoiding obstacles is
easy in 68-dimensional space.

lthough our network was able to
!f ! mimic both the correct and dys-
functional mapping of word-
forms to meanings, that does not mean
its architecture is the only possible one
for the brain’s semantic processing route.
To determine the range of possible al-
ternatives, we investigated the effects
of damage on several different archi-
tectures, each designed to evaluate one
aspect of the original network design.

We programmed versions of the neu-
ral network that contained connections
among the sememe units and ones that
lacked such connections; we also pro-
grammed some networks so that each
neuron in one layer was connected to
every neuron in the succeeding layer
and others whose connections were
gparse, In addition, we moved the clean-
up units so that they performed their
work ahead of the sememe units, and
we combined the cleanup units with the
intermediate layer. We even changed
the arrangement of neurons in the in-
pul layer to alter the way that words
were represented and added an out-
put network that converted meanings
to strings of phonemes, so that the sys-
tem actually spoke.

Most of the architectural detatls are
irrelevant. The specific way the visual
input is represented is not important
as long as words that resemble each
other visually produce similar patterns
of activity in the input layer. The only
crucial ingredient is the existence of at-
tractors—if there are no cleanup units
“downstream” of the damage, the net-
work does not exhibit the pattern of

SEMANTIC SPACE has many dimensions,
corresponding to the semantic features
(only a three-dimensional approximation
is drawn here). The meanings of particu-
lar words are points in semantic space.
When the authors' neural network reads
a word, interaction between sememe
and cleanup units causes any word-form
that is mapped into a region of semantic
space near the meaning of a word (col-
ored regions) to converge on that mean-
ing (dots). If the network is damaged so
that the boundaries of these so-called at-
tractors shift, a word can be misread as
a semantically similar one—"cot” for bed,
for example (a). Semantic errors may
also occur if damage causes a word-form
to be mapped to a slightly dilferent point
in semantic space (k). Such a network
can make visual errors because visual-
ly similar words will initially be mapped
to nearby points in semantic space, even
if the stable points of the attractors they
fall into are quite distant (c).

errors characteristic of deep dyslexia,

Interestingly enough, our network
not only reproduces the obvious visual
and semantic errors of deep dyslexia, it
also mimics some of the subtler char-
acteristics of the disorder, For instance,
patients occasionally make “visual then
semantic” errors, in which a semantic
confusion seems to follow a visual one,
G.R. would read sympathy as "orches-
tra" (presumably via symphony), Our
networks also produce these errors—
sometimes reading cat as "bed,” via cot,

When severely damaged, our network
also exhibits a strange effect that occurs
when patients have a lesion so large
that their semantic representations are
distorted beyvond recognition and they
cannot find a word at all, Such patients
are unable to identify the word they are
lrying to read, but they can often still
decide which category it falls into, say,
“animal” versus “food." Under similar
circumstances, our network no longer
stabilizes at the attractor corresponding
to a particular word—indeed, the attrac-
tors for several words may have merged.
Nevertheless, the network's output does
stabilize within a larger volume of se-
mantic space wherein the correct word
and its relatives once resided. Conse-

quently, the word's category can still be
determined,

ne symptom of deep dyslexia

that our models did not initial-

ly address is the way in which
patients have more trouble reading ab-
stract words than concrete ones, This
phenomenon appears to be an integral
part of the syndrome because abstract-
ness—a semantic property—increases
the probability of visual errors. Further-
more, when patients make such mis-
readings, the responses they come up
with tend to be more concrete than the
original word presented.

We based our approach to simulat-
ing this effect on the proposal, made
by Gregory V. Jones of the University
of Warwick in England and others, that
concrete words are easier for deep dys-
lexic patients because they evoke a
maore consistent and detailed meaning,
In terms of our network, a concrete
word has more semantic features than
does an abstract one, For example, post
has 16 features ranging from “size be-
tween one foot and two yards” to "used
for games or recreation.” In contrast,
past has only two features: “has dura-
tion" and “refers to a previous time." We

SEMANTIC SPACE
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SPEAKING NETWORK adds another set of three layers to the original reading neu-
ral net, It converts sequences of letter shapes to semantic representations and
maps those In turn to sequences of phonemes that can be fed to a speech synthe-
sizer, This network is particularly useful because it does not require researchers to
make potentially biased judgments about what word (if any) corresponds to a per-
turbed pattern of semantic features, as may be generated when the network is

damaged to simulate dyslexia,

designed a new vocabulary containing
20 pairs of four-letter words dilfering
by a single letter, one conerete and the
other abstract, On average, the concrete
words had about four times as many se-
mantic features as did the abstract ones.

After the network had been trained
to pronounce the words, we found that
lesions to any part of the network “up-
stream” of the cleanup units reproduced
the effects of abstractness, The concrete
words cause lewer errors because there

B2

is more redundancy in thelr semantic
activity patterns, Hence, there is more
structure that the cleanup units can use
to make the network converge on the
proper meaning. The abstract words,
which have less redundancy in their se-
mantic patterns, must rely more heavi-
ly on the feed-forward pathway, where
visual influences are the strongest.
Because correct recognition of con-
crete words relies more on the cleanup
circuit, severe damage there leads to a
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surprising reversal: the damaged net-
work reads concrete words less well and
produces more visual errors than with
abstract words: This type of lesion and
pattern of performance are consistent
with what is known about the single,
enigmatic patient with "concrete-word
dyslexia,” studied by Elizabeth K. War-
rington at National Hospital in London,
Mot only did he have much more trouble
reading concrete words than abstract
ones, he also did better matching spo-
ken abstract words with pictures, This
consistency suggests that his problem
lay at the level of the semantic system.

Our account of the error pattern of
deep dyslexia relies on the propertics
of a neural network that transforms
ane representation (a visual word-formy)
into another, arbitrarily related repre-
sentation (a set of semantic features),
One would expect similar error patterns
to result from damage to other cogni-
tive processes that involve an arbitrary
transformation to or from a semantic
space. Moreover, neuropsychologists
have already described somewhat simi-
lar error patterns in deep dysgraphia, a
disorder of writing, and deep dyspha-
sia, a disorder of word repetition.

This additional evidence suggests thal
our model may have a wider validity
than we originally supposed. More im-
portant, however, It tarks the success-
ful use of a new technique for under-
standing how the brain works, Our work
differs from other explanations for deep
dyslexia (and, with few exceptions, oth-
er explanations for neuropsychological
phenomena in general) in the kinds of
hypotheses that we frame. Instead of
verbally characterizing each component
in a complex neural mechanism and re-
lying on intuition to tell us how damage
will affect its behavior, we simulate that
mechanism, damage it and watch to
see what happens. We have found that
many of our hunches were wrong. This
discovery suggests that detailed com-
puter simulations will play a crucial role
in furthering understanding of how the
brain normally processes information
about language and of how that func-
tion is disrupted by injury or disease,
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