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The Soft Constraints Hypothesis: A Rational Analysis Approach to
Resource Allocation for Interactive Behavior
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Soft constraints hypothesis (SCH) is a rational analysis approach that holds that the mixture of
perceptual-motor and cognitive resources allocated for interactive behavior is adjusted based on temporal
cost-benefit tradeoffs. Alternative approaches maintain that cognitive resources are in some sense
protected or conserved in that greater amounts of perceptual-motor effort will be expended to conserve
lesser amounts of cognitive effort. One alternative, the minimum memory hypothesis (MMH), holds that
people favor strategies that minimize the use of memory. SCH is compared with MMH across 3
experiments and with predictions of &teal Performer Modethat uses ACT-R’s memory system in a
reinforcement learning approach that maximizes expected utility by minimizing time. Model and data
support the SCH view of resource allocation; at the under 1000-ms level of analysis, mixtures of
cognitive and perceptual-motor resources are adjusted based on their cost-benefit tradeoffs for interactive
behavior.

Keywords:reinforcement learning, rational analysis, embodied cognition, resource allocation, interactive
behavior

The night before the birthday party you open the box andperceptual, and motor operations (e.g., Gray & Boehm-Dauvis,
separate the assembly instructions from the parts for the child’2000). Although all three types of operations are required for
new toy. Do you memorize all of the instructions, put them aside,any interactive behavior, as in the example of the assembly
and then assemble the toy from memory? Or, do you read the firghstructions for the new toy, frequent accesses of knowledge
line, put the instructions down, do the first step, pick up thein-the-world (Norman, 1989, 1993) will be characterized as
instructions, read the next line, put the instructions down, do thenore interaction-intensive, whereas greater reliance on knowl-
next step, and so on until the toy is complete? Whatever you doedge in-the-head will be characterized as more memory
you are making tradeoffs between strategies that minimize the us@tensive.
of memory by making repeated interactions with the task environ- Few people would be surprised by the observation that some-
ment versus strategies that minimize interactions by increasingimes they take notes and sometimes they memorize things, or that
their demands on the memory system. they sometimes look at their notes and sometimes simply remem-

At a second-by-second level of analysis, interactive behaviober what they have written. However, although such interactions
can be analyzed as a complex mixture of elementary cognitiveare commonplace, until recently the interleaving of cognition,
perception, and action has been little noted and less studied by the
cognitive community.

An important spur to the status quo came when researchers
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Initially, researchers were content to demonstrate that the tasior. As we will show in the model results section, the Ideal
environment in which interactive behavior takes places couldPerformer Model provides a close fit to the human data. The last
influence the higher-level strategies that people adopt for decisiosection summarizes the results and concludes that the human
making (Lohse & Johnson, 1996), problem solving (O’'Hara & control system is not biased to conserve cognitive resources at the
Payne, 1998, 1999), or game playing (Kirsh & Maglio, 1994). expense of other resources, but rather that the selection of inter-
Recently, attention has turned to studies that have shown systermactive behaviors is driven by cost-benefit considerations. When the
atic effects of the design of the task environment on the methodsxpected utility (i.e., the cost-benefit tradeoff) of alternative inter-
that people adopt for routine tasks such as simple mental arithactive behaviors can be quantified in terms of time, those that
metic (Neth & Payne, 2001; Stevenson & Carlson, 2003). Al-minimize milliseconds are selected over those that minimize cog-
though each of these studies implies a general sensitivity of theitive resources.
human control system to perceptual-motor costs, what is lacking is
a fur_u_:tional mechanism that adjusts the mixture of low-level Soft Constraints, Minimum Memory, and the Ideal
cognitive, perceptual, and motor resources to produce the observed Performer
higher-level changes in behavior.

Gray and Boehm-Davis (2000) noted that the procedural steps The essence of soft constraints is a hypothesis about the func-
that implement low-level goals are selected as if millisecondstional basis for selecting one low-level interactive routine over
matter. Although other researchers tend to agree that the selectadiother. Interactive routines are envisioned as dependency net-
routines conserve milliseconds, they do not agree that temporalorks of low-level cognitive, perceptual, and motor operators that
costs are the causal basis of selection as opposed to a correlatesine together at a time span of about 1/3 to 3 seconds in the
measure. In a series of studies, Carlson and associates (Carlsons&rvice of low-level interactive behavior (Gray & Boehm-Davis,
Sohn, 2000; Cary & Carlson, 1999; Sohn & Carlson, 1998, 20032000)? Interactive behavior proceeds by selecting one interactive
Stevenson & Carlson, 2003) have shown that people adapt theiputine after another or by selecting a stable sequence of interac-
interactive behavior to the tools they have available. Indeed, if leftive routines (i.e., a method) to accomplish a unit task (Card et al.,
to their own devices, people spontaneously adopt methods for983). Adopting Ballard’s (Ballard, Hayhoe, Pook, & Rao, 1997)
doing simple arithmetic that shave 200 ms off of alternativeanalysis of embodiment, we see these interactive routines as the
routines. However, rather than basing selection on time per sehasic elements of embodied cognition.

Cary and Carlson (1999, p. 1067) concluded that, “Participants
wi_thout memory aids tended to choose solution paths that mini- The Soft Constraints Hypothesis
mized working memory demands.”

Similarly, when the cost of accessing needed information was The rational analysis perspective (Anderson, 1990, 1991; Oaks-
increased by milliseconds from an eye movement to a head movderd & Chater, 1998) has shown that it is important to step back
ment, Ballard, Hayhoe, and Pelz (1995; Pelz, 1996) noted a smaftom the study of mechanisms to ask about the environments in
decrease in gaze frequency to an external display. However, likeshich these mechanisms are applied (Gray, Neth, & Schoelles, in
Carlson and associates, rather than concluding that the selection pfess). If we assume that the mechanisms responsible for goal-
interactive behaviors minimizes effort defined by time, they con-directed human behavior are adapted to the structure of their task
cluded that, “Observers prefer to acquire information just as it isenvironment, then finding an appropriate description of the envi-
needed, rather than holding an item in memory” (Hayhoe, 2000, pronment may yield important constraints on the nature and behav-
50). As elaborated later, thiminimum memory hypothesippears ior of functional mechanisms. Anderson and Schooler’s classic
related to views that cognitive limitations (in this case, working work on the structure of the environment for human memory
memory) bias the control system to offload work onto the (Anderson & Schooler, 1991) is a prime example of this approach,
perceptual-motor system (Wilson, 2002). The minimum memoryas is the more recent work on the statistical properties of the
hypothesis is thus one candidate explanation for the functionaperceptual environment (Geisler & Diehl, 2003; Purves, Lotto, &
mechanism that adjusts the mixture of low-level cognitive, per-Nundy, 2002).
ceptual, and motor resources. Interactive behavior is usually in the service of higher-level

Throughout this paper the implications of the soft constraintsgoals. Anything that increases its performance helps us achieve
hypothesis for resource allocation will be contrasted with those othese goals faster. In the nonlaboratory world, besides decreasing
the minimum memory hypothesis. The next section introduces theosts in terms of time (and presumably, resources), efficient inter-
soft constraints hypothesis as an alternative functional mechanismctive behavior may make the difference between the success or
to the minimum memory hypothesis. The distinction between soft
constraints and minimum memory hypotheses is elaborated, and———
the concept of an ideal performer analysis as a tool to study the * N Gray and Boehm-Davis (2000) we used the term “basic activity” to
implications of constraints on cognition is introduced. The Exper_descrlb(ithese gomblne}tloyrj; of low level operators. Our curr'ent use of the
iments section is an overview of three experiments that provid hrase “interactive routine” is, in part, a homage to Hayhoe’s (2000) and

. inal . id in f soft traints. O liman’s (1984) use of the term “visual routines.” However, in larger part,
Increasingly persuasive evidence in tfavor or soit constraints. u[interactive routine” better reflects the notion that certain combinations of

Ideal Performer Modelbased on our ideal performer analysis, is |o.jevel cognitive, perceptual, and action operations can be regarded as
presented next. This model serves as an explicit test of the suffipyilding blocks of interactive behavior as well as the notion that at this
ciency of the soft constraints hypothesis as an explanation for thgwvel of description all behavior is composed of cognitive, perceptual, and
functional mechanism underlying the control of interactive behav-motor operations.
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failure of higher-level tasks. Hence, in situations as diverse asnemory strategies (Ballard et al., 1997). An attraction of the
playing computer games, tuning a radio while driving in busy minimum memory hypothesis is that it offers a simple heuristic for
traffic, searching for information amid the near-infinite space governing behavior, and unlike the soft constraints hypothesis,
defined by the World Wide Web, and assembling a child’s toy, thedoes not require an accounting of costs sensitive at the level of
time required for interactive behavior may be a cost, whereafundreds of milliseconds.
achieving the goals of the behavior may be a benefit. The minimum memory hypothesis seems to embrace a limited
Simply stated, the soft constraints hypothesis maintains that atapacity view of memory in which capacity is defined either by the
the 1/3 to 3 sec level of analysis, the control system selectumber of slots available in a short-term or working memory
sequences of interactive routines that tend to minimize perforpuffer (Miller, 1956) or a limit on the amount of activation
mance costs measured in time while achieving expected benefitgyailable to that buffer (Just & Carpenter, 1992; Just, Carpenter, &
Cost-benefit considerations provide a soft constraint on selectioge|ler, 1996). (For more detailed and more recent discussions of
as they may be overridden by factors such as training or byimited capacity see, e.g., Cowan, 1997, 1999; Engle, Tuholski,
deliberately adopted top-down strategies. Laughlin, & Conway, 1999.) If there is only “so much” memory
Negotiating cost-benefit tradeoffs in the selection of interactiveayailable for use, then it is reasonable that this precious resource is
routines does not guarantee optimal performance in a task; that igonserved whenever possible either to avoid overloading the sys-
locally optimal interactive routines may not lead to globally opti- tem or to have reserves available if needed for more important
mal performance. Rather, the soft constraints hypothesis prediciggys.
optimal performance only in tasks where maximizing the expected 5 memory theories of which we are aware hold that encoding
gains and minimizing the expected costs of interactive routine$emg into memory requires time and that once items enter memory
(i-e., over 1/3 to 3 sec) is congruent with an optimal strategy at thg, e, may be forgotten. The soft constraints hypothesis implies that

global task level. In environments that violate this property, the,, ihe memory side of the tradeoff between interaction-intensive
soft constraint hypothesis predicts persistently suboptimal perfor‘;jmd memory-intensive strategies, the only factors that matter are

mance (Fu & Gray,. 2004, in press). Thls_focus_c_)n local OpUMIZa-yp, ¢ fime required to encode, the time required to retrieve an item
tion is consistent with the rational analysis position that

. . . ; Spe?'f_y'from memory, and the probability that an encoded item can be
ing the computational constraints essentially amounts to def'n'ngetrieved (i.e., is not forgotten) when needed. An item that is

the locality over which the optimization is defined” (Anderson, . . L . .
. " forgotten represents time wasted in the original encoding, time
1990, p. 247). The extent to which human goals can be achieve . . . . .

. . . . . wasted in the attempted retrieval, and additional time required to
by optimizing at the level of interactive routines is the extent to

. : ; ) recode and reretrieve the item. Hence, the soft constraints view on
which the soft constraints hypothesis represents a rational adapta- . . )
. . use of memory as a resource is that only milliseconds matter; there
tion to the environment.

In summary, the soft constraints hypothesis applies the ration P o partl_cular premium on conserving memory and no inherent
. . Z1J|as favoring perceptual-motor effort.
analysis (Anderson, 1990, 1991) approach to the allocation o . .
In a search of the literature we have found no tests that directly

cognitive, perceptual, and motor resources for interactive behavior. . ;  the mini hvoothesi inst ¢
These resources are encapsulated in interactive routines that a ar\]ny o;tm otthe mlnlmhum mhemor{' YPOINESIS allgalns any O(QT“
described at the 1/3 to 3 sec level of analysis. To the extent that th@g' the soft constraints hypothesis. However, at least wo studies

elements going into the calculation of expected utility are variable@ve indirectly examined tradeoffs between memory utilization

unstable, or overridden by deliberately adopted policy, then cost2d Perceptual-motor effort, one by Ballard (Ballard et al., 1995)

benefit calculations provide a soft, not hard, constraint on the2nd one by Gray and Fu (2004).

selection of interactive behavior. However, the soft constraints Ballard, Hayhoe, and Pelz (1995) used a Blocks World task (for
hypothesis assumes that the selection of interactive routines mif?U" version of the Blocks World task see Figure 1) to study
imizes performance costs measured in the currency of time. ThBalterns of information access. The participant's task was to re-
objective of minimizing time is a soft constraint, and it is the Produce the pattern of blocks presented in the Target Window in
deviations from this policy that must be explained. In this paper wethe Workspace Window using blocks obtained from the Resource
seek to strengthen the soft constraints hypothesis by showing thi¥indow. In Ballard’s study (and unlike ours) all windows were
its predictions are supported by empirical data and that an Idedfeely visible at all times. Information access required only an eye

Performer Model, which enforces a strict temporal cost-benefitnovement.
accounting, fits the empirical results. Ballard and colleagues report that participants preferred an
interaction-intensive strategy in which they would look at the
. . . Target Window first to encode a block’s color, get a block of that
Soft Constraints Versus the Minimum Memory HypOtheSIScolor from the Resource Window, look again at the Target Win-
In contrast to the soft constraints hypothesis, alternative viewslow to encode the block’s location, then move to the Workspace
of embodied cognition suggest that cognitive resources are corWindow to place the block. They report that the interaction-
served by biases that favor the use of perceptual-motor resourcésensive strategy of looking twice t&@® s toexecute, whereas the
(Wilson, 2002). The minimum memory hypothesis provides amore memory-intensive strategy of encoding color and location at
specific instance of this view of embodiment which suggests thathe same glance took 1.5 s to execute. They comment that “It is
the control system is biased toward reducing memory costs evesurprising that participants choose minimal memory strategies in
when the costs of information access (as measured by time) foriew of their temporal cost” (Ballard, Hayhoe, & Pelz, 1995, p.
perceptual-motor strategies are much greater than the costs f@32).
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Target Window Workspace Window

Resource Window

Stop-Trial

Figure 1. The Blocks World task. The figure shows a random arrangement of eight colored blocks in the Target
Window (top left), eight colored blocks plus an eraser in the Resource Window (bottom left), and one block
(correctly placed) in the Workspace Window (upper right). In the actual task all windows are covered by gray
boxes, and at any time only one window can be uncovered. (Note that the window labels do not appear in the

actual task.)

Although this dramatic bias toward perceptual-motor access In a study involving programming a simulated VCR, Gray and
costs seems to support the minimum memory hypothesis, the studyu (2004) showed a progressive increase in errors and in trials-to-
that Ballard and colleagues report contains a potential confounctriterion as the cost of information access increased. We manipu-
Participants used the interaction-intensive (i.e., mostly perceptualated the cost of accessing the information required to program
motor) strategy at the beginning of the task and used the memonshows. For all groups, show information was located in a window
intensive strategy “only at the end of the construction” (Ballard, 5 in. below the VCR window. For the Free-Access group, the show
Hayhoe, & Pelz, 1995, p. 732) of the 8-block trial. The differential information was clearly visible at all times. For the Gray-Box and
use of the two strategies at different phases of construction raisedemory-Test groups, field labels (such as Channel, Start Time,
the question of whether the cost of encoding required by theEnd Time, and Day-of-Week) were clearly visible, but the values
memory-intensive strategy was paid at the end of the trial, a®f these fields (such as 32, 11:30, 12:30, and Sat) were covered by
Ballard seems to assume, or whether it was amortized over thgray boxes. To access, for example, the current value of the
entire trial. If memory for the pattern of blocks was strengthenedChannel field, participants were required to move the mouse to and
throughout the trial (e.g., Chun & Nakayama, 2000; Ehret, 2002)click on the gray box. Prior to programming a show, the Memory-
by the time the last few blocks were placed, their color andTest group was required to memorize the show information (thus
position information could be retrieved from memory with little the term, Memory-Test).
additional encoding. Hence, if encoding time is amortized over For each group, Gray and Fu estimated the costs of accessing
both early and late block placements, then end of trial events dinformation in-the-head versus in-the-world. The retrieval latency
not provide clean estimates of the time costs for encoding block$or well-learned information was estimated as between 100 and

in memory. 300 ms (Memory-Test group); whereas the latency for less well-
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learned information (the Free-Access and Gray-Box groups) wasime required to retrieve items from memory, and the probability
estimated as between 500 and 1,000 ms. Contrariwise, the cost of retrieving an encoded item over time.
shifting visual attention and the eyes to freely accessible informa-
tion in-the-world was estimated as 500 ms (Free-Access group),
whereas the cost of moving the mouse, visual attention, and
clicking on a gray box was estimated as 1,000-1,500 ms (Gray- Both the minimum memory hypothesis and soft constraints
Box and Memory-Test groups). hypothesis present theories for the functional mechanism underly-
By informal standards it would seem that the Free-Access anihg the selection of low-level, interactive routines. Although be-
Gray-Box groups (i.e., the two groups that were not forced tohavioral data will be extremely important in establishing the plau-
memorize show information) had easy access to perfect knowledgsbility of the soft constraints account of resource allocation over
in-the-world; such access could easily compensate for their lesthat of the minimum memory hypothesis, it is not clear to us that
than perfect knowledge in-the-head. Hence, it was somewhat subehavioral data by themselves can be decisive. The minimum
prising that the Memory-Test group made fewer errors and reacheshemory hypothesis does not deny that effort is an important factor
criterion in fewer trials than either of these groups. Indeed, forin deciding the mix of resources brought to bear on interactive
these two groups, performance was inversely correlated with theehavior. It merely asserts that, all else equal, the control system
cost of external information access. The Free-Access group, whicls biased to expend perceptual-motor resources to conserve mem-
could obtain show information at any time by shifting their point- ory resources. Unfortunately, it is difficult for an empirical ap-
of-gaze by 5 in., performed better than the Gray-Box group, whichproach to determine when “all else” is equal.
had to move their mouse cursor 5 in. and click the mouse to A stringent test of the two hypotheses requires behavioral data
uncover an information field. plus a modeling approach that combines two key components. In
These findings were interpreted as suggesting a race betweqmedicting human performance, Simon told us that it is vital to nail
the time costs for memory retrieval versus the time costs requiredown the “side conditions” such as “visual acuity, strength, short-
either to move, click, and perceive, or to saccade and perceivderm memory, reaction times, and speed and limits of computation
Rather than obtaining perfect information from in-the-world asand reasoning” (Simon, 1992). Hence, the first component is a
they needed it, both the Free-Access and Gray-Box groups predetailed and accurate estimate of the constraints or “side condi-
ferred to rely on knowledge in-the-head. Unfortunately, thistions” that bounded rationality places on human performance
knowledge was obtained in the course of programming a showSimon, 1996). In the Blocks World task, these side conditions
and, as the data suggest, was not as well learned as that obtainedlude the time spent encoding an item; the time spent retrieving
by the Memory-Test group. Surprisingly, this increased reliance oran item from memory; and the probability that retrieval will be
imperfect knowledge in-the-head over perfect knowledge in-thesuccessful given the amount of initial encoding and the retention
world was obtained even though it produced more errors and kephterval. The second component is a computational or mathemat-
participants in the experiment longer. This surprise is consistenical approach that is formally guaranteed to optimize temporal
with our earlier observation that soft constraints work locally to costs as opposed to any other metric. To conjoin these two key
select least-effort interactive routines. However, locally optimalcomponents (as well as several other necessary components) we
interactive routines may not lead to globally optimal performancecombine elements of the ideal observer analysis approach from
(Fu & Gray, 2004, in press). signal-detection theorists (Geisler, 2003; Macmillan & Creelman,
Unfortunately, neither Ballard’s study nor ours directly com- 2004) with rational analysis (Anderson, 1990, 1991) to present an
pared minimal memory with the soft constraints hypothesis. Nei-ldeal Performer Model
ther study attempted to rule out attempts to conserve memory or to In our case, the Ideal Performer Model will use a machine
demonstrate a bias favoring perceptual-motor effort. In the workearning approach, reinforcement learning (Sutton & Barto, 1998),
presented here, we attempt to show that differences of seversd optimize the tradeoff between time costs of the human
hundreds of milliseconds are enough to shift the allocation of theperceptual-motor system and the time costs of the human memory
resources used for interactive behavior from more interactiorsystem across the six conditions of our third Blocks World exper-
intensive to more memory intensive. iment. As discussed in a later section, the time of each interactive
To summarize, although tradeoffs between interaction-intensiveoutine is derived from empirical or theoretical accounts of human
and memory-intensive strategies have been documented, it is lesggnition. Obtaining the optimal sequence of these interactive
clear what the nature of these tradeoffs are. Gray and Fu arguadutines for each of the experimental conditions is left to a type of
(2004) that, when alternative means of performing a task existreinforcement learning that is formally guaranteed (Watkins &
costs-benefit tradeoffs act as soft constraints in choosing one set @fayan, 1992) to converge on the sequence of model components
interactive routines (i.e., one pattern of cognitive, perceptual, andhat minimizes time for each of our six conditions. Following other
action operations) over another. Hence, in contrast to the minimuruses of reinforcement learning (e.g., Berthier, 1996), we make no
memory hypothesis, soft constraints posits that the control systerolaim that the process followed by the algorithm mimics any
is indifferent to the source of the resources it uses and is sensitiverocess followed by human cognition. We do claim, however, that
only to their expected utility as measured in time. Likewise, whilethe outcome of this approach approximates what would be ex-
the minimum memory hypothesis implies a bias to conserve gected if human cognition calculated costs as if milliseconds
limited resource, soft constraints implies that the operative factomattered. Hence, a good fit of the model to the data will be taken
is not a limit in the number of slots or amount of activation as support for the soft constraints hypothesis and as evidence
available, but rather the time needed to encode items in memonggainst the minimum memory hypothesis.

Ideal Performer Analysis



466 GRAY, SIMS, FU, AND SCHOELLES

The Experiments Experiment 1. Three levels of access cost were varied. In the low-cost
condition (el-low) the Target Window opened and stayed open when the
Three experiments were conducted using the Blocks World taskontrol key on the keyboard was pressed and remained open for as long as
shown in Figure 1. As in Ballard’s studies (e.g., Ballard et al.,the control key was held down or until the mouse cursor entered another
1995, 1997) there are three windows: a Target Window containingvindow. In the medium-cost condition (el-med) the Target window
a pattern of colored blocks, a Workspace Window where theopened as soon as the cursor entered (same method and cost as to open the
participant must reproduce the pattern, and a Resource or par%esource and Workspace windows). In the high-cost condition (e1-high),
Window containing blocks that may be picked up, carried to, anda_l-s lockout was |mpose_d between the time the cursor entered the Target
placed in the Workspace Window. window and before the window opened.

. ) . . Experiment 2. To open the Target Window, all participants in Experiment
Unlike Ballard's studies, a gray window covered each of theZ moved the cursor to a button located at the center of the Target window and

three task windows. The Resource and Workspace Windows WeTgicked. In this experiment, the cost of accessing information was manipulated
uncovered as soon as the participant moved the cursor into one f; changing the size of the button in the Target Window. For e2-low the button
the gray windows; however, the method and cost of uncovering th@as as big as the window, 260260 pixels. For e2-med the button was60
Target Window varied across the three studies. Experiment 50 pixels. For e2-high the button was88 pixels.

combined an intuitive estimate of low versus medium perceptual- Changing the button size manipulated perceptual-motor effort along
motor cost with a time consuming (but presumably low perceptualWwith time by changing the mean Fitts Index of Difficulty (MacKenzie,
motor effort) manipulation for medium versus high cost. Experi- 1992) for moving to the button from either the Resgurce or Workspace
ment 2 manipulated the perceptual-motor effort along with time byVindow from 1.7 (e2-low) to 2.8 (e2-med) to 6.2 (e2-high). The Fitts Index
varying the Fitts Index of Difficulty (MacKenzie, 1992) (discussed of Difficulty (ID) is & continuous scale defined as,

in the following section). As the results from both of these studies D

suggested that the tradeoffs we observed were sensitive to time per ID = '092<W + 1>,

se, and not perceptual-motor effort, Experiment 3 increased the

range of access costs studied by varying lockout time of the targé’t’here D _is the distance tQ the target and W is the width of the ta_trget. Fitts’
window across six between-subjects conditions from 0 to 3,20¢2W predicts movement time (MT) aMT =a + b X ID, wherea is the

milliseconds. As the three studies were very similar, we presen tercgpt’and) IS the slope (these_parameters are not used in computing the
. ). Fitts’ law is an approximation that has held up for over 50 years.
and discuss them together.

Hence, although the reasons for why this equation usually works and an
Method explanation of deviations from it continue to be researched (Meyer, Smith,
Kornblum, Abrams, & Wright, 1990), the Index of Difficulty can be
Participants considered a standard and generally accepted measure of the type of
information access costs varied in this study.

Across each of the three studies a minimum of 16 and a maximum of 18 Experiment 3. For the third study, the buttons inside the Target Win-
participants were assigned to each condition. For each study undergraddew were removed and the Blocks World display was restored to the look
ates participated in the study for course credit and were randomly assignetihad in Experiment 1 (see Figure 1). Six between-subjects conditions
to experimental conditions. varied lockout time from 0 to 200 to 400 to 800 to 1,600 to 3,200 ms. Due

to software errors, data from four participants were lost, one each from
Equipment and Software lockout Conditions 0, 200, 1,600, and 3,200.

The experiments were conducted on Macintosh computers running versiorlgrocedure
8.6 (Experiments 1 and 2) or 9 (Experiment 3) of the operating system. All
experiments used a mouse for input and a 17-inch monitor set at4058 To select a block, participants moved the mouse cursor to the Resource
resolution. Blocks World was written in Macintosh Common Lisp (MCL). All window and clicked on a colored block. The mouse cursor then changed
window events (e.g., mouseEnter and mouselLeave) and key presses wetea small version (16< 16 pixels) of the colored block. To place a block

recorded and saved to a log file with 16.67 ms accuracy. in the workspace, the cursor was moved into that window (which opened
as soon as the cursor entered it), moved to the desired position, and the
Design mouse clicked.

When the participants believed that the model pattern had been copied to
For each 8-block pattern, each of the (4818 pixel) blocks was chosen the Workspace Window, they pressed the “Stop-Trial” button. The pro-
randomly with the constraint that no color be used more than twice. Thegram notified the participants if the patterns differed and required them to
blocks were placed at random in the Target Window's nonvisible 4 revise or complete the pattern before they could move on to the next trial.
grid. The Workspace Window was the same size as the Target Window and Misplaced blocks could be corrected at any time during the trial (i.e.,
contained the same A& 4 grid (see Figure 1). before or after the Stop-Trial button was pressed). Wrong color placements
Across all conditions of all experiments the Target, Resource, andtould be corrected by selecting the correct color block from the Resource
Workspace windows were covered by gray boxes. Only one window wadNindow and placing it on top of the wrong color block. Wrong location
visible at any one time. In all three experiments, the Resource or Workplacements could be corrected by selecting a white “erase” block from the
space windows opened as soon as the mouse cursor entered the winddwesource Window and placing this on top of the wrong location block.
Except for the low-access cost condition of Experiment 1 (el-low, dis- Foreach experiment, all participants received instruction by being led by
cussed below), all windows in all conditions stayed open for as long as th¢he experimenter through a PowerPoint™ demonstration. Within each
cursor remained inside of them and closed as soon as the cursor left. Acrosgperiment, the same slides with the same prerecorded narration were
the three studies, the only difference in procedure was in the method anprovided to each group. After this demonstration, the participants com-
cost of opening the Target window. For all experiments, all manipulationspleted one practice trial while the experimenter watched and answered any
were between subjects. questions the participant might have. As the participant typically had no
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problems with this practice trial, the experimenter typically said nothing. AfterTable 2

the practice trial the experimenter left the room and the participants completeiflean Results for Experiment 1 Over Trials 11-40
the remaining 39 trials in Experiment 1 and 47 trials in Experiments 2 and

3 by themselves. All experiments lasted approximately 45 minutes. Information access condition
(keypress) (0-lock) (1000-lock)
Results Low Medium High
For each experiment, we provide one general measure of thﬁumber of target window accesses 6.8 6.4 a1
differences between conditions and then focus on two specifigyyration of first look (ms) 1179 1241 2334
measures. The general measure is a count of the mean numbermécks correctly placed (first look) 1.7 1.9 29

times during a trial that the Target Window was uncovered. The
two specific measures look at events surrounding the first uncov-

ering of the Target Window: median duration of the first uncov- Number of Target Window Accesses

ering and mean number of correct placements following the first

uncovering. There are two rationales for focusing on events sur- Each study showed a main effect of access cost condition on the
rounding the first uncovering. First, for each trial, at the time of theMean number of times the target window was accessed (see the top
first uncovering of the Target Window, there were eight not-yet-third of Table 1). For Experiment 1 (see Table 2), a series of three
placed blocks. For all subsequent uncoverings, the mean numb@f@nned comparisons showed that accesses for el-low and e1-med
of not-yet-placed blocks varied between conditions. ComparingF"d not differ, but that each made more accesses than el-high (low
across conditions is easiest when the number not-yet-placed ¥- high,p = .0008; med vs. highp = .0039). For Experiment 2
equal for each condition. Second, focusing on events prior to thésee Table 3), a series of three planned comparisons revealed
second and subsequent uncoverings avoids any potential confoufg-1ow> €2-med ¢ = .016) and e2-low> e2-high (p < .0001),

with any cumulative memory trace for the block pattern. ThisPut that e2-med did not significantly differ from e2-high. For
ensures that the measures of duration and correct placements cgiPeriment 3 (see Table 4), the slope of the linear trend across
be attributed to events surrounding the first uncovering and are ndionditions significantly p < .0001) differed from zero and ac-
influenced by a cumulative memory trace for the block pattern. counted for 98% of the variance for condition. The linear trend

As we are interested in the strategies that participants use after th&jlows that the changes across the six conditions are all in the same
adapt to the access costs in their condition, the first 10 trials wer&Iréction.
eliminated, and for each participant on each measure either the mean
or median score (depending on the measure) across Trials 11-4Quration of First Look
(Experiment 1) or 11-48 (Experiments 2 and 3) was used.

For each of the three experiments, an independent analysis %fu
variance (ANOVA) was performed on each dependent variable. A(s
summary of all ANOVAs performed on each dependent variable is
provided in Table 1. The mean or median scores for Experimentg
1-3 are reported in Tables 2-4, respectively.

Each study showed a main effect for condition on the median
ration that the Target Window stayed open on its first access
ee the middle rows of Table 1). For Experiment 1 (see Table 2),
lanned comparisons showed significant differenges  .001)
etween el-high and each of the other two conditions. There were
no differences between el-low and el-med. For Experiment 2 (see
Table 3), a series of three planned comparisons revealed e2-low
e2-med p = .035), e2-low< e2-high (p = .0012), but that
e2-med did not significantly differ from e2-high. For Experiment

3 (see Table 4), the linear trend across conditions was significant
(p < .0001) and accounted for 87% of the variance for condition.

Table 1
Analysis of Variance Table for All Dependent Measures for
Each of the Three Experiments

Degrees of Mean-square Significance ) .
Experiment  freedom F-value error level (p) Blocks Correctly Placed Following the First Look
Number of target window accesses This measure examined the mean number of blocks placed after
1 (2 45) 753 34.50 0015 the first look that correctly matched the color and location of a
= (2: 51) 927 10.83 0004 block in the Target Window. Across all three studies the differ-
E-3 (5, 104) 11.60 16.99 .0001
Duration of first look Table 3 . )
Mean Results for Experiment 2 Over Trials 11-48

E-1 (2, 45) 9.16 6,756,009 .0005

E-2 (2,51) 6.01 8,055,996 .0045 Information access condition

E-3 (5, 104) 13.18 26,924,234 .0001

Low-ID Med-ID High-ID

Blocks correctly placed following the first look

Index of difficulty 1.7 2.8 6.2
E-1 (2, 45) 9.84 6.56 .0003 Number of target window accesses 5.1 4.2 3.5
E-2 (2,51) 8.85 3.72 .0005 Duration of first look (ms) 1345 2182 2669

E-3 (5, 104) 17.39 5.85 .0001 Blocks correctly placed (first look) 2.22 2.69 3.13
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Table 4
Mean Results for Experiment 3 Over Trials 11-48

Information access condition (lockout duration in ms)

0 200 400 800 1600 3200
Number of target window accesses 5.6 4.8 4.5 3.7 3.5 29
Duration of first look (ms) 1603 1702 1929 2392 3614 4634
Blocks correctly placed (first look) 2.00 2.39 2.49 2.94 3.11 3.58

ences across conditions were significant (see bottom third of Tabléue to the 1,000 ms lockout for el-high), and 1,046 ms between
1). For Experiment 1 (see Table 2), a series of three plannedl-low and el-high.

comparisons revealed a significant difference between el-high and If access costs are measured in time, then the Experiment 1
each of the other two conditions (see Tablep2= .0015). For  results are very regular. As access time increased, participants
Experiment 2 (see Table 3), planned comparisons revealed egpened the Target Window less often, but the duration of the look
low < e2-med< e2-high (e2-low vs. e2-me@,= .034; e2-low vs.  increased, as did the number of correct and incorrect retrievals
e2-high,p = .0001; e2-med vs. e2-higlp, = .048). For Experi-  from memory. Although the el-low versus el-med difference in

ment 3 (see Table 4), the linear trend across conditions Wagccess time of 46 ms was not enough to produce significant
significant (p < .0001) and accounted for 97% of the variance for differences, it was enough to produce the expected pattern across

condition. the three measures. All three measures found a significant differ-

ence between el-high and each of the other two conditions.
Discussion of the Experimental Data Experiment 2 replicated the results of Experiment 1 using a

manipulation that covaried difficulty of perceptual-motor activit
Each of the three studies found a progressive switch from mor P yorp P Y

. o ) ) ) . . ith time. The Experiment 1 and 2 results suggested that, for the
interaction-intensive to more memory-intensive strategies as inforx

. . . BJocks World task, time is the operative factor and it does not
mation access costs increased. The number of times the Targe . ) . - .

i . . . matter whether time for information access is manipulated by
Window was opened decreased, while the duration that it was

opened increased. Presumably, the increased duration that t@rying Fhe _F'tts Indgx of DIffICU|t¥ or b_y lockout. We testeq this
Target Window was opened reflects increased time spent encodirﬁ}'ggesnon n Exper!ment 3 by using six Ievelg of _lOCkOUt t_lme as
its contents. This interpretation is supported by the increase in th@U" independent variable. The use of lockout time in Experiment 3
number of blocks placed following the first look. As access costs!SC €nabled us to more precisely control access time while also

increase, people minimize time per trial by accessing the TargeRroducing a wider range of access costs. Hence, Experiment 3
Window less and using memory more. provides our best empirical test of the notion that access costs can

be measured by access time.
Across three studies, the empirical data support the view that as
access costs increased participants switched from more

Across the three studies we varied the method of accessing tHgteraction-intensive to more memory-intensive strategies. This
Target Window. For Experiment 1 we were disappointed to find nostrategic switch was signaled by the decreasing number of open-
significant differences between the el-low and el-med conditionégs of the Target Window across conditions as well as by the
on any of our three measures. Our intuitive notions of effort seenmincreasing duration that the Target Window was open. We argue
not to have produced the expected difference. Could these resultsat the increase in the duration that the Target Window is open
be better understood by using access time to characterize theflects the greater amount of time that participants spent encoding
differences between conditions in access costs? the contents of the Target Window. This explanation is supported

Unfortunately, access time for the Experiment 1 conditions ishy the increase across conditions in the number of correct block

hard to compare since for el-low the log file only collected the pjacements following the initial uncovering of the Target Window.

time at which the control key was pressed and for el-med and

el-high the log file only reported the time at which the cursor

entered the Target Window. However, in prior research (Gray &

Boehm-Davis, 2000), we measured key down time as 100 ms. For

the Blocks World paradigm, we estimated the time to move the# ive b ist § imating time diff in th

cursor into the Target Window as 146 ms. This estimate is the Alternative bases exist for estimating time difference in these two
e . . conditions. An alternative we tried was based on CPM-GOMS (Gray &

average of the Fitts’ law (MacKenzie, 1992) time to move the

) Boehm-Davis, 2000; Gray et al., 1993). As the difference predicted by
cursor to the Target Window from the Workspace and Resourcg,ose models is 51 ms, we have elected to report and explain the simpler

Window. Hence, by these estimates the difference in expected timgiference between keydown time and movement time (46 ms), rather than

between el-low and el-med is 46 r(ge., 146 ms for el-med providing the level of detail required to understand the CPM-GOMS
minus 100 ms for el-low), 1,000 ms between el-med and el-highodels.

Differences Between Methods of Information Access
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Limits of the Experimental Data as to minimize total time. Each of these aspects of the Ideal

o ) Performer Model is discussed in the sections that follow.
The empirical data demonstrate that as access costs increase

people adjust their strategies to be less interaction intensive and

more memory intensive. However, although we view the steady = Hard Constraints: Defining the Task Environment
increase in tradeoffs as persuasive evidence in support of the soft

constraints hypothesis, the empirical data do not rule out weaker The goals of the human performer combined with the physical
forms of the minimum memory hypothesis. For example, the sofforoperties of the task environment act as hard constraints on how
constraints hypothesis argues that as information access codRe task is performed. Given the task environment shown in
increase, the use of interaction-intensive versus memory-intensiveigure 1 and the goal to reproduce the pattern of Target Window
strategies is driven by their expected utility (i.e., cost-benefitblocks in the Workspace Window, then the task analysis breaks the
tradeoff) as measured by time. The empirical data show a shift i{@sSk into a series of ENCODE-k strategies where k is the number
strategies but, by themselves, do not relate the shift to expecte®f blocks (1-8) encoded on each round. Each ENCODE-k strategy
utility. To make this argument, in the next section, we turn to aconsists of two unit tasks, an Encode Blocks unit task and a Get &
machine-learning algorithm, reinforcement learning, that is for-Place unit task. As shown in the pseudocode provided as Table 5,
mally guaranteed to maximize expected utility (using time as itsthe first unit task encodes some number of blocks from the Target
metric) if provided with sufficient training and adequate explora- Window pattern (lines 1-9) and the second gets blocks from the
tion of the problem space (Sutton & Barto, 1998). In fitting the Resource Window and places them into the Workspace Window
model, the six between-subjects conditions of Experiment 3 will(lines 10-25).

provide data on multiple measures against which to compare the This top level of description is completely objective in that it is
predictions of the soft constraints hypothesis against the implicab@sed on the goals of the task and the task environment available
tions of the minimum memory one. As discussed in the nextfor achieving these goals. For guidance on how to flesh out the
section, conformity to the reinforcement learning solution would interactive routines required by each unit task we turned to an
support the soft constraints hypothesis. In contrast, deviations froffCT-R model that performed the task using the same experimen-

the reinforcement learning solution would support the minimumtal software as the human participants in Experiment 3 (Gray,
memory hypothesis. Schoelles, & Sims, 2005). Although that model lacked a mecha-

nism for optimizing time, it did provide a detailed cognitive task

. . analysis that allows us to break each unit task down further. Each

Ideal Performer Analysis: Ideal Observer Analysis Meets jine ith an entry in the cost column of Table 5 represents an
Rational Analysi$ interactive routine. If we further fleshed out the model, each

Our ideal performer analysis combines elements of an idea||nteract|ve routine would be composed of an activity network of

observer analysis (Geisler, 2003; Macmillan & Creelman, 2004)cpgn|t|ve, perceptual, and moto_r operations (as illustrated and
- . . . plscussed in Gray & Boehm-Davis, 2000).

with those of rational analysis (Anderson, 1990, 1991). The idea For the Encode Block it task th forme t shift visual

observer analysis (Geisler, 2003; Macmillan & Creelman, 2004) isatten;'oneto ::;d mo zcthseunTo 236 'ntc? t?g?g:‘ ertr\T/]\;J'idz ' (lyr']Ziaz

used to “determine the optimal performance in a task, given th%md 3|) Between c;/nditions Lrl1ardI constraintg b iItI intowthtla task

physical properties of the environment and stimuli” (Geisler, vir r;m nt determine h WI’ na th Hform rmu t wait until th

2003). The ideal observer may be degraded in asystematicfashioen onment dete € how'ong the performer must wait u €

by including side conditions, “for example, hypothesized sourceswmdow opens (line 4). Once the Target Window is open, the

of internal noise (Barlow, 1977), inefficiencies in central decision performer encodes one or more blocks (lines 5-9). The number of

processes (Barlow, 1977; Green & Swets, 1966; Pelli, 1990), oPIOClt(S endcgded mldmelmporyfls not i;l)ngtrlatlged Ey.the t?Sk elgwror;-
known anatomical or physiological factors that would limit per- ment, and In our geal Ferformer Viodel the choice of number o

; " . : , blocks to encode corresponds to the selection of a particular
formance (Geisler, 1989)" (Geisler, 2003). In Simon’s term . ;
(1992), the ideal performer analysis allows us to determine optima NCODE-k strategy. (The issue of selecting ENCODE-k strate-

performance given “side conditions” that represent the knOWngies is discussed in the next section.) Functionally, the process of
limits of the performer encoding a block in our model corresponds to creating a new

Rational analysis “involves three kinds of assumptions: assum declarative memory element (see Appendix A) and rehearsing the

tions about the goals of a certain aspect of human cognitione:gg(ent by performing two retrievals before moving on to the next
assumptions about the structure of the environment relevant t8 Thé second unit task is Get & Place. In this unit task the
achieving these goals, and assumptions about costs. Optimal be- :

. . . . .Performer must move visual attention and the mouse cursor into
havior can be predicted by assuming that the system maximizes It?l R Wind i 11-12). which th Th ]
goals while it minimizes its costs” (Anderson, 1990, p. 244). e Resource Window (lines 11-12), which then opens. The per

Conjoining the ideal observer analysis with rational amalysisforme'r must then remember the color of an encoded, but not-yet-

yields four components of our ideal performer analysis: a descrip-placed block, move to a block of that color, and click on the color.

tion of the task environment; the systematic degradation of the

ideal obseryer by gddlng n known human limits; defln.lng 'S€- 3 An annotated Common Lisp file of the model is available at the APA
quences of interactive routines that allow us to characterize interarchive site forPsychological Reviewnd is posted on our website http://
active behavior as more interaction intensive or memory intensivewww.rpi.edu/~grayw/pubs/papers/GSFS06_PsycRvW/GSFS06_PsycRvw
and the optimal (ideal) sequencing of these interactive routines sitm.
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Table 5
Pseudo-code for the Ideal Performer Model
Line # Cost (in ms) Operation
00 Select strategy: ENCODE{wherek = # of blocks to be encoded this round)
01 Unit Task: Encode Blocks
02 185 Shift visual attention to Target Window
03 217 Move mouse to Target Window
04 0-3200 Wait for lockout duration [Between-group independent variable]
[System Event: Target Window opens]
05 Do Encode Blocks
06 185 Shift visual attention to a new block
07 50 Encode a new declarative memory element (DME)
08 Eqgn. A-2 Rehearse the encoded DME (perform 2 retrievals)
09 Until k blocks have been encoded
10 Unit Task: Get & Place Encoded Blocks
11 185 Shift visual attention to Resource Window
12 249 Move mouse to Resource Window
[System Event: Target Window closes and Resource Window opens]*
13 Do
14 Eqgn. A-2 Attempt to retrieve the DME of an encoded, but not placed block
15 If a DME was retrieved
16 150 Move mouse to the block color (in the Resource Window)
17 150 Click on the block color
[System Event: Cursor changes to<88 colored square]
18 185 Shift visual attention to Workspace Window
19 216 Move mouse to Workspace Window
[System Event: Resource Window closes and Workspace Window opens]*
20 150 Move mouse to the block position in Workspace Window
21 150 Click on the position
[System Event: Cursor changes to default arrow cursor]
22 185 Shift visual attention to Resource Window
23 249 Move mouse from Workspace Window to Resource Window
[System Event: Workspace Window closes and Resource Window opens]*
24 End if
25 Until all encoded blocks are placed or a retrieval failure occurs
26 Until Workspace Window pattern matches the Target Window pattern

Apply Q-learning update rule using total time from the Encadé&et & Place unit tasks as penalty

Note. Successful performance requires selecting a continual series of ENCODE-k strategies until the pattern
in the Workspace Window matches that in the Target Window.
* Each window closes as soon as the cursor leaves it and before the cursor enters another window.

(At this point the cursor changes to a ¥616 pixel block the same (a = 0.05; b = 0.10). These parameters are based on those
color as the block that was selected.) The performer then movesstablished by Card, English, and Burr (1978) and have been
the mouse and visual attention to the Workspace Window (whichlshown to provide a good fit to moving a mouse cursor around a
then opens), locates and moves the cursor to the position of theomputer screen. Times to click on a block or position (lines 17,
block, and clicks. (The cursor then changes back to the system1) are based on times from Gray and Boehm-Davis (2000) and

default arrow cursor.) The performer then moves back to thgncludes an estimate of 50 ms to initiate the action and 100 ms to
Resource Window (which again opens) and attempts to retrieveyecute the click.

another encoded, but not-yet-placed, block. A key source of constraints imposed on the ideal performer is
) _ N the memory limitations resulting from a fallible human memory
Adding Side Conditions to the Ideal Performer (lines 8, 14 of Table 5). The estimates of retrieval times and

Within the cognitive task analysis defined by the pseudocode oProPability of retrieval were based on the theory of memory
Table 5, the column “cost (in ms)” defines known human limits, or incorporated into ACT-R (Anderson & Lebiere, 1998; Lovett,
side conditions, to each step. The time to shift visual attention, 18#%€der, & Lebiere, 1999). According to Anderson’s rational anal-
ms (lines 2, 6, 11, 18, 22), is taken from the estimate used bysis of memory (Anderson, 1990; Anderson & Schooler, 1991),
ACT-R (Anderson & Lebiere, 1998, pp. 150—151) for human out of the multitude of memories that have been formed over a
attention to move to an object at a known location. All movementlifetime, any given memory should be made available to the
times (lines 3, 12, 16, 19, 20, 23) are based on the Fitts’ law timegperformer according to the probability of its being needed as
(MacKenzie, 1992) to move a given distance to an object of adetermined by its prior history of retrieval and relevance to the
given size. We used the default ACT-R parameters for Fitts’ lawcurrent environmental context. Implications of this approach have
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been validated across a wide range of tasks and task environmergpecify a penalty for exceeding a specified capacity limitation
(Altmann, in press; Altmann & Gray, 2002; Lovett et al., 1999; (e.g., by encoding more than 4 blocks at a time), or specify a bias
Schooler & Hertwig, 2005; Todd & Schooler, in press). The toward interaction-intensive strategies in terms of a weight param-
functional consequence of this memory limitation is that if the eter. Unfortunately, as far as we know, there is no version of the
model tries to encode, say, 5 blocks, it will have some probabilityminimum memory hypothesis specific enough to implement as a
of recalling and placing 5, 4, 3, 2, 1, or 0 blocks. (See Appendixcomputational model.
A for a discussion of ACT-R’s treatment of declarative memory). In contrast, the soft constraints hypothesis makes a clear pre-
Encoding (line 7) and rehearsing (line 8) takes time as do attemptdiction regarding the objective function that should be maximized.
at retrieval (lines 8, 14). An item that is encoded but not retrievedlf, as the soft constraints hypothesis assumes, the cognitive system
adds cost but no benefit to task performance. is indifferent to the type of internal resources it exploits as well as
to the location of the information it accesses (in-the-world vs.

Defining Sequences of Interactive Routines: Generating in-the-head) then it should simply maximize expected utility ac-

Interaction-Intensive Versus Memory-Intensive Behavior cording to a cost-benefit tradeoff between competing interactive
routines. The cost estimates defined in Table 5 can be used to

In the model of the Blocks World task, there are a maximum ofmaximize performance by selecting ENCODE-k strategies that
eight possible ENCODE-k strategies. Each ENCODE-k strategyminimize the total expected time to complete each trial for each of
corresponds to encodirigblocks in memory, and then attempting the six between-subjects conditions of Experiment 3.
to place those blocks in the Workspace Window. At the beginning Unfortunately, while specifying a suitable objective function is
of each trial eight strategies are available to the performerstraightforward, maximizing achievement of the objective function
ENCODE-1 through ENCODE-8, which correspond to actionsto determine optimal performance is not an easy task. For example,
available to the reinforcement learning agent. Along with the eightf there remain 5 blocks to be placed, is the fastest strategy to
possible actions, there are eight possible states of the task. TheE§ICODE-5? Or, would the sequence ENCODE-3 and
states correspond to the number of blocks remaining to be placecNCODE-2 be faster, due to greater probability of successfully
into the Workspace Window. For example, if there are only 2retrieving every block that was encoded? Further, how does the
blocks left to place in the current trial, then only actions expected utility of each ENCODE-k strategy change across exper-
ENCODE-1 and ENCODE-2 are available to the performer.imental conditions? Whatever the best solution, it is clear that
Across all task states there aret87 + 6 + 5+ 4+ 3+ 2+ 1 given the probabilistic nature of memory, applying the soft con-
or 36 possible state-action pairs. It is the sequence of state-actigtraints hypothesis to define the optimal strategy is not a simple
pairs that the performer chooses that enables us to characteripeatter.
performance as more interaction-intensive or memory-intensive— To some degree, humans have some metacognitive sense re-
consistently choosing the ENCODE-1 strategy corresponds to agarding how likely they are to remember something, given how
extreme interaction-intensive strategy, while consistently choosingnuch effort they are willing to spend memorizing it, and given the
ENCODE-8 corresponds to an extreme memory-intensive strategyength of time they need to remember it. For example, when

looking up a telephone number in a directory, the time spent

Defining an Objective Function to Optimize Sequencing c_omr_nitting the numb_er to memory reflect_s atradepff between the
of Interactive Routines time it must _bt_a _held in memory and th_e time required to relocate

the number if it is forgotten while walking across the room to the

Unfortunately, we cannot predict the sequence of state-actiotelephone. In general, there seem to be many life events when
pairs used across the six conditions of Experiment 3 simply frominformation is temporarily needed and we make a tradeoff between
knowing the task structure and human performance limits. Inencoding effort, retention interval, and the cost of reacquiring
addition to these constraints, a numeriobjective functiormust  information if we forget it. Our ability to negotiate this tradeoff
be specified for an ideal performer to maximize its achievementvith our own memory limitations comes through experience re-
according to this function. Although the constraints on humanmembering and forgetting things amortized over a lifetime of
performance discussed above were based on hard constraints jpractice. However, given the varied nature of demands on mem-
herent in the task environment, previous research, or wellory, it does not seem likely that this metacognitive tuning would
established theory, the selection of an objective function thayield an immediate, optimal solution to each new memory chal-
would determine the sequence of state-action pairs is not so clearlgnge. In the case of the Blocks World task, we found that partic-
defined. ipants required on the order of 10 trials to fine tune their strategies

One objective function might be provided by the minimum to match the demands of the experimental condition.
memory hypothesis. A strict, literal interpretation of this hypoth-
esis suggests only that the ideal performer seeks to minimize the A Reinforcement Learning Solution to the Objective
burden on its memory system. A direct way to maximize this Function
objective function would be by choosing the ENCODE-1 strategy
on each round, regardless of lockout cost. Although this extreme The final component of the ideal performer analysis is a formal
interaction-intensive strategy trivially fails to account for human mechanism for maximizing performance according to the objec-
performance in the Blocks World task, it is also a rather severdive function while simultaneously satisfying the constraints im-
oversimplification of the minimum memory hypothesis. Other posed by the human performer as well as the task itself. In our
interpretations of the minimum memory hypothesis might onlymodel we employed a reinforcement learning algorithm,
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Q-learning, that is formally guaranteed to converge on the optimahnd the task environment. We fleshed out the model with a
solution to this tradeoff if provided with sufficient training and cognitive task analysis that was based on an ACT-R model that
adequate exploration of the problem space (Sutton & Barto, 1998yerformed the task using the same experimental software as the
Watkins & Dayan, 1992). Reinforcement learning is a family of human participants in Experiment 3. The time required to perform
machine learning techniques in which agents learn directly fromeach step in the model (see Table 5) was based on the known limits
the outcomes of their actions. Reinforcement learning entails aof the human performer. Most of the times for cognitive, percep-
unsupervised, trial-and-error exploration of the task environmenttual, and motor operations reflected accepted estimates for perfor-
in which rewards can be defined in terms of minimizing solution mance. In our case, we took these times from the estimates used by
time. ACT-R; however, the ACT-R estimate for these times is generally

In recent years researchers in the neurocognitive communitgonsistent with that of EPIC (Kieras & Meyer, 1997) as well as the
have examined reinforcement learning as a plausible model of hownuch older Model Human Processor (Card et al., 1983; Newell,
humans learn from their mistakes (Dayan & Abbott, 2001; Hol- 1990). The most notable limit we discussed was the time required
royd & Coles, 2002). The technique has also recently attracted th® encode an item into memory, the time required to later retrieve
attention of the greater cognitive modeling community (Fu & that item, and the probability that retrieval would be successful.
Anderson, 2004, 2006; Nason & Laird, 2004; Phillips & Noelle, Our estimate of these times and probabilities are directly derived
2004; Wu & Liu, 2004). However, for the purpose of this researchfrom Anderson’s rational analysis model of memory (Anderson,
we are interested in reinforcement learning not as a theory 01990; Anderson & Schooler, 1991).
human cognitive functioning, but rather as a tool for determining Performing the Blocks World task was defined as a series of
optimal performance by maximizing expected utility under a set ofchoices among ENCODE-k strategies for each state of a Blocks
explicit constraints. Reinforcement learning has similarly beenWorld trial. Optimizing this series of choices by an objective
used to approximate optimal motor control in reaching tasks and afunction that minimizes total time (according to the soft constraints
a model of motor learning (Berthier, 1996; Berthier, Rosenstein, &hypothesis) is a hard problem in large part due to the probabilistic
Barto, 2005). nature of human memory. As we lack a cognitively valid formal

As discussed earlier, the Blocks World task has 36 state-actiomechanism for maximizing achievement of this objective function,
pairs defined by the number of states (i.e., not-yet-placed blocksve turned to a reinforcement learning technique, Q-learning, that
can range from 1 to 8) and number of ENCODE-k strategies thaits formally guaranteed to find an optimal solution if certain as-
can be applied to each state. The value function computed bgumptions are met. The training, testing, and performance of this
reinforcement learning)(s,a) (see Appendix B), ranges over these Ideal Performer Model are reported in the next section.

36 state-action pairs. Each time the model completes an
ENCODE-k strategy, it is penalized using the Q-learning update
rule by the total time required to complete the strategy (the total
duration for the Encode Blocks and Get & Place Encoded Blocks In this section, we first walk through the training procedure as
unit tasks, see Table 5). Over time, the value function learned byvell as the utility estimates and memory estimates derived from
the Ideal Performer Model corresponds to its estimate of how longhe training phase. Next we compare model performance with
it will take to complete the entire trial given that a particular action human performance on each of the three dependent variables
is chosen in a particular state. discussed in the experimental section: blocks correctly placed

In introducing the soft constraints hypothesis, we wrote offollowing the first look, duration of first look, and the per-trial
maximizing expected utility in terms of a cost-benefit tradeoff. In number of target window accesses. From the measure of blocks
implementing the soft constraints hypothesis in a reinforcementplaced following first look, we derive a fourth measure: the prob-
learning approach, the outcomes of actions are defined only imbility across lockout conditions that participants will place 0 to 8
terms of their local cost. Benefit in the model is implicitly defined blocks. This measure is also compared with model performance.
as minimizing global costs—that is, the time required to complete
an entire trial. Hence, a strategy that encoded 8 blocks, forgot 5,
and placed 3 would not be as beneficial as a strategy that encoded
and placed 3 blocks. The former strategy has wasted time encoding For each of the six lockout conditions, the model was first
5 blocks that it did not place. These 5 blocks require at least onérained for 100,000 trials. Although the model only had to explore
other round of ENCODE-k strategy. Hence, in the reinforcement-36 state-action pairs, in the Blocks World task completing a single
learning model, just as costs are defined by time, benefits arérial requires a sequence of actions (i.e., multiple rounds of
defined as minimizing time. Optimizing benefits entails minimiz- ENCODE-k strategies where each round is represented by the
ing costs. pseudocode in Table 5), and the outcomes of each action are
probabilistic. If the model encodes 4 blocks (the ENCODE-4
strategy), there is some probability that it will actually place 4, 3,
2, 1, or O blocks.

The ideal performer analysis combined elements of a traditional For the case in which each ENCODE-k strategy results in the
ideal observer analysis (Geisler, 2003; Macmillan & Creelman,deterministic placement of a single block, there would be 8! or
2004) with a rational analysis (Anderson, 1990, 1991) to producet0,320 different action sequences. As each action can result in as
our Ideal Performer Model. At the top level of description, the few as zero placements and one can result in as many as eight, the
requirements of the model were defined by the goals of the taskotential number of action sequences is very great. However, for

Predictions From the Ideal Performer Model

Training the Ideal Performer Model

Summary of the Ideal Performer Analysis
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Table 6
The Utility Estimates Learned by Q-learning for the Initial State (8 to-be-placed blocks) of the
Blocks World Task

ENCODE-k strategy utilities (seconds)

Lockout
(ms) 1 2 3 4 5 6 7 8

0 —26.503 —26.42f -26.551 —26.766 —26.994 —27.219 —27.574 -—27.879*
200 —27.624 —27.439 -27.488 —27.642 —27.814 —28.057 —28.301 —28.596*
400 —28.478 —28.27F -28.275 —28.366 —28.529 —28.738 —28.943 —29.243*
800 —30.409 —30.047 —29.93% —29.937 —30.020 —30.129 —30.291 —30.560*

1600 —33.629* —33.052 —32.845 —32.726 —32.627 —32.689 —32.769 —32.926
3200 —39.748* -—38.899 —38.379 —38.043 —37.786 —37.662 —37.609 —37.607

Note. For each lockout condition # indicates the best Encode-k strategy and * indicates the worst.

the ACT-R memory equations (see Appendix A) and the memory From these two sets of information, the utility table (see Table
parameters used in the study (see Appendix C) placements at tl&@ and memory performance (see Figure 2), it is possible to make
extremes (e.g., 0 or 8) will be very rare. Given these considerationa number of predictions for human performance in the Blocks
and our experiences with Q-learning in the Blocks World para-World task. Although the utility table defines the optimal strategy
digm, 100,000 training trials seem reasonable though somewhdor the first visit to the target window (deterministically choose the
conservative. strategy with the highest utility), we have theorized that time is a

The challenge for the reinforcement-learning model is to extrapsoft, as opposed to hard, constraint in the task. Consequently, we
olate from local rewards following each ENCODE-k strategy to anexpect that participants will not always select the optimal strategy,
estimate of the time required to complete an entire trial for eactbut rather will approximate the optimal policy to the extent that
action and in each state. During the training, the model exploredheir behavior is influenced by time as a soft constraint. To
actions at randorfi.This ensured that it gained extensive experi- transform a utility estimate into a selection probability, we used
ence with each combination of ENCODE-k strategy at every phas@&CT-R’s strategy selection equation, the “softmax” rule, which
of a Blocks World trial. has also been widely used in other reinforcement learning models

The output of the Ideal Performer Model consists of two sets of(Sutton & Barto, 1998). The probability of selecting strategy
information. The first is the table of utility estimates for each ENCODE-k at the start of a trial is related to its utility, las well
state-action pair. During training, the model was penalized by thes to the utility of all competing strategies:

negative time required for each ENCODE-k strategy. Under this Ukt

approach, maximizing rewards corresponds to minimizing total p(k) =

time. Following training, the utility estimates correspond to the 8 .

estimated minimum time required to complete the entire trial given Ee "
j=1

that a specific action is chosen in the current state. Table 6 shows

the utility estimates for the eight strategies available at the initial | this equationt is a noise parameter controlling the probability
state (i.e., 8 to-be-placed blocks) of the trial. As the table showsihat the model chooses a suboptimal strategyt Asproaches 0,
choosing a suboptimal action in the Blocks World task involvesthe model will deterministically select the optimal strategy. Be-
relatively little penalty—for each lockout condition, the difference cayse of this property, the noise parameter reflects an estimate of
between the best and worst ENCODE-k strategy for the first visitthe “softness” of time as a constraint on behavior.

to the target window is on the order of 1 to 2 seconds. Given the Gijven the probability of selecting each ENCODE-k strategy,
small range of expected utilities, it is not obvious that participantsy(k), and the probability of placing a numberblocks given that

in the task should be sensitive to these differences. As such, thgrategyk has been selectegy(nk), it is possible to directly
ability of the Ideal Performer Model to fit the human data provides

a strong test of the claim that time cost acts as a soft constraintin——

the Blocks World task. 41t might be objected that by exploring actions at random the model will
The second piece of information produced by the Ideal Peronly learn the utility of the random behavior policy. However, as

former Model is the number of blocks successfully recalled and?-léaming is an off-policy learning algorithm (Sutton & Barto, 1998), it is

placed as a function of the number encoded in memory. Thétill able to learn the optimal policy through random exploration, and this

model's memory performance is jointly determined by the ACT-R approach produces the fastest learning by maximizing exploration of the
h 7 . full .
memory equations and the retention interval imposed by theu5State S?ace . - -
The noise parameteéris related to the standard deviation of a logistic

BIO(?kS Wor_ld task. The memory equa_tlons |nvolve three parar’nefjistribution according to = (60/77. Since utility in our model is defined
ters: a retm_eval threshold, an actlvatlon noise pgramet_er, and &rictly in terms of time, this allows us to determine the probability that our
latency scaling parameter, (see Appendix C). During training, the,qqe| will discriminate between two strategies with a given difference in
model's memory performance was recorded for each ENCODE-lgxpected time cost. Using the value tofit to our data { = 0.491, see

strategy, producing the distribution of blocks placed that is showmppendix C), for a time difference of 1 second between competing strat-
in Figure 2. egies, the model will select the faster strategy on 88.5% of its choices.
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Figure 2. Probability of retrieving and placingblocks given thak blocks have been encodex{n|k), for each
ENCODE-k strategy.

calculate the distribution of blocks placed following the first visit tions were determined using a grid search using a range of values
to the target window. I is a random variable representing the based on previously published ACT-R models or established de-
number of blocks placed, then its distribution is given by: fault values’ The noise parameter for the strategy selection equa-
tion was determined using least square error minimization. The
s best-fitting values for all the parameters, as well as estimates of
p(x = 1) = 2p(nK)p(K). perceptual-motor times used in the model are reported in Appendix
=t C. The same parameter settings were used to produce all of the
Likewise, the mean number of blocks placed is calculated as th&odel predictions.
expected value ok: For the key measure of number of blocks placed following the
first uncovering of the target window, the model has an RMSE of
8 0.092 and? to the human data of 0.969 (see FigujeSithough
x=E[X = >p(x=n)-n. the standard error for the human data is quite low, the difference
n=1 between the model’s prediction and human performance is within

The ideal performer analysis also makes predictions about twd Standard error for five of the six lockout conditions (for the
other empirical measures reported for the human participants. Th@00-LOCK condition the model is within 1.15 standard errors).
mean duration of the first look to the target window is jointly ~ Figure 4 compares the distribution of blocks placed following
determined by the estimated costs from the task analysis in Tablée first visit to the target window. The model showed an excellent
5 and the probability of selecting each ENCODE-k strategy. Fi-fit to the human data, with an overall RMSE of 0.034, afid=
nally, the expected number of visits to the target window can be
determined using Monte Carlo simulation of the Ideal Performere— . ) o
Model® The next section presents the comparison of the model In theory, it may be possible to produce closed-form predictions for the

redictions to human performance for each of these measures number of visits rather than relying on Monte Carlo simulation. However,
p P " the number of visits is determined by the conditional probabilities of

] selecting each strategy on each visit, as well as the probabilistic outcome
Testing the Ideal Performer Model of each strategy, resulting in computations that quickly become unwieldy.

5 . . .
The predictions of the Ideal Performer Model are dependent on Specifically, the latency parameter F was examined in the range

. .9-1.2 in increments of 0.1 units; the retrieval threshold was examined in
four parameters (three parameters for the memory equations anfe range 0.25-0.35 in increments of 0.025; and activation noise was

one noise parameter for the strategy selection equation). Thgamined in the range 0.28-0.32 in increments of 0.02. A grid search over
values for each parameter were fit to the human data on the key relatively small parameter space was necessary as changing any of the
measure of number of blocks placed following the first look to the memory parameters requires re-training and runningthearning model,
target window. The best-fitting parameters for the memory equagpreventing more efficient gradient-based parameter fitting methods.
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Figure 3. Number of blocks placed following first uncovering for human participants (Experiment 3+with
1 standard error bars) and the Ideal Performer Model.

[0.892, 0.887, 0.947, 0.902, 0.958, 0.953] for the 0-LOCK throughsystem adapts to the costs of information access in its task
3200-LOCK conditions respectively. environment by making rational, cost-benefit tradeoffs among
For the mean duration of the first look at the target window, thesets of more interaction-intensive and more memory-intensive
Ideal Performer Model also closely predicts the human data. Thetrategies. The Ideal Performer Model is not biased to favor
model prediction has an RMSE of 0.431 arfdof 0.980 to the  perceptual-motor effort over memory effort. Rather, it is sen-
human data, shown in Figure 5. sitive only to costs and benefits defined by time. The noise

Finally, the model’s prediction for the number of visits to the parameter used to fit the human data suggests that humans in
target window also closely matches human performance in théhe Blocks World task adopt a close approximation to optimal
task, with an RMSE of 0.397 and = 0.970 (see Figure)6 behavior, and provides an estimate on the extent to which
It is worth repeating that the model’s predictions were fit to just onehuman performance in the task is driven by the soft constraint
of the empirical measures (number of blocks placed, Figure 3), whilef time. Hence, the results support the soft constraint perspec-
the three remaining predictions—distribution of blocks placed (sedive on embodied cognition that views memory and perceptual-

Figure 4), number of visits to the target window (see Figure 6), andnotor resources as allocated by a control system that attempts
duration of first uncovering (see Figure 5)—all closely matchedto optimize performance time. It seems improbable that a com-
human performance using the same parameter settings. putational model employing the minimum memory hypothesis
would be able to account for the same broad range of results.

Discussion of the Ideal Performer Model

As shown by the low RMSE and higfs, the Ideal Performer
Model predicts a number of blocks placed that is within the The soft constraints hypothesis maintains that at the 1/3 to 3
range of the standard error of the human data. Interestingecond level of interactive routines, that is, the embodiment level
enough, it does so by incorporating a rational analysis-basegBallard et al., 1997), tradeoffs among the use of cognitive, per-
theory of forgetting that has accumulated a broad base ofeptual, and motor resources are made as if time is a resource that
support across many diverse laboratory (Altmann & Gray,is to be preserved. In this paper we presented three experiments
2002; Anderson & Lebiere, 1998; Anderson & Milson, 1989; and an Ideal Performer Model that compared the predictions of the
Lovett et al., 1999) and real-world tasks (Anderson & Schooler,soft constraints hypothesis with that of the minimum memory
1991; Schooler & Hertwig, 2005). hypothesis in a Blocks World task.

The results of the Ideal Performer Model across four empir-
ical measures suggest that human performance on the Blocks
World task reflects a cost-benefit tradeoff between perceptual-
motor and memory costs defined by time. Within the constraints In all conditions, across each experiment, once the Target
of memory and perceptual-motor limits, the human controlWindow was uncovered the task environment was exactly the

Summary and Conclusions

Human Performance
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Figure 4. Comparison of the distribution of blocks placed following the first visit to the target window for
humans (top) and the Ideal Performer Model (bottom).

same. The Target Window stayed open for as long as the mouse The Ideal Performer Model

cursor remained inside it (in E1-low—for as long as the control

key was held down). The Resource Window and Workspace Although the experimental studies documented a tradeoff
Window worked exactly the same across all studies and condibetween access costs and the use of more interaction-intensive
tions; both opened as soon as the mouse cursor entered ami more memory-intensive strategies, the studies did not suffice
stayed open until the mouse cursor left. Another way of sayingo determine the nature of that tradeoff. To precisely predict
this is that once the Target Window opened, the task wasvhat an optimal tradeoff would be between perceptual-motor
exactly the same across all conditions and all studies, and nand memory costs, we created an Ideal Performer Model that
hard constraints existed that would account for why the taskmaximized performance in the Blocks World task by selecting
was not performed exactly the same. However, for the currenENCODE-k strategies that minimized the total expected time to
studies, even when the comparisons between two conditionsomplete each trial for each of the six between-subjects condi-
were not significant (e.g., as for el-low vs. el-med) an increasd¢ions of Experiment 3.

in the range of 50 ms to uncover the Target Window resulted in The Ideal Performer Model used realistic assumptions regarding
small, but consistent, increases in the duration for which thethe time required to execute each interactive routine. For memory
Target Window was uncovered and small, but consistent, in-operations it used a memory model, based on rational analysis, that
creases in the number of blocks placed. yielded assumptions about encoding duration, retrieval latency,
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Figure 5. Duration of the first uncovering of the target window for the human participants (Experiment 3 with
+/— 1 standard error bars) and Ideal Performer Model.

and the forgetting that would occur in the retention interval be-raise the activation of an item so that it can be retrieved over the
tween encoding and placement. For the six conditions of Experitime period for which the item is needed. Second, is the time
ment 3, the performance of the model was nearly indistinguishableequired to retrieve an item from memory. Third, is the probability
from human performance. We conclude that, subject to the limithat an encoded item will be retrieved due to decay and noise in the
tations of the memory system, human performance is nearly identem'’s activation.
tical to what would be expected if the allocation of cognitive, Additionally, the close fit of the human data to the predictions
perceptual, and motor resources was based on their temporal cost6the Ideal Performer Model suggests that people have implicit
and if overall benefit was defined by minimizing these costs.knowledge or metacognition of these three memory factors, and,
Cost-benefit tradeoffs among lockout time, perceptual-motor acwith relatively little experience with a new task (within 10 trials in
tivity, and fallible memory act as soft constraints that select theour studies), are able to near-optimally adapt their interactive
interactive behaviors that are best adapted to the task environmertehaviors to meet the demands of the task environment. (In a
sense, it is this metacognitive knowledge that took the Ideal
Implications for Views of Memory and Metacognition ~ Performer Model 100,000 training trials to acqLijeAlthough
S ) this extrapolation goes beyond the current study and model, imag-
The success of the model has implication for theories of meMyning that human performance is adapted to experienced limits in
ory. First, it shows that a model based on a rational analysis of theognition, perception, and action is congruent with recent results
demands the environment makes on memory can be successfulyat show that human motor performance is exquisitely adapted to

applied as a constraint on a rational analysis of interactive behavsompensate for the effect of noise in the motor system (Maloney,
ior. Given the vast differences between the nature of the memony,ommerskaser, & Landy, in press; Trommerakser, Maloney

tasks on which the model was derived (Anderson & Schooler.g Landy, 2003).

1991) and the much more interaction intensive tasks required for

performance in the Blocks World task, this success of the memory . . . . .
theory presents both a validation and important generalization of EMPodied Cognition, Bounded Rationality, Rational
the theory. Analysis, and the Ideal Performer Model

Second, regardless of the ultimate validity of Anderson’s model
of memory, its use in the Ideal Performer Model provides a strongCI
suggestion for the form in which theories of memory must take if
they are to be usefully applied to interactive behavior. Rather than
simply focusing on the number of slots or amount of activation, the  &e thank Professor Ruth Maki (Texas Tech University) for pointing
Ideal Performer Model suggests that theories of memory muséut that the training trails achieved in the model meta-cognitive knowledge
encompass three additional factors. First, is the time needed t@garding the limits of its memory system.

The soft constraints hypothesis is broadly compatible with many
aims made for embodied cognition (Clark, 2003; Wilson, 2002)
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Figure 6. Mean number of visits to the target window to complete each trial for human participants
(Experiment 3 with+/— 1 standard error bars) and the Ideal Performer Model.

but offers a more nuanced understanding of what these claims Conclusions
imply. For example, the soft constraints hypothesis addresses two
claims in Wilson's (2002) taxonomy of embodied cognition. First, When you sit down the night before the birthday party to
is the claim that we off-load cognitive work onto the environment. assemble the child’s toy, you could force yourself to first memo-
For this claim the soft constraints hypothesis implies that therize all of the instructions, or to memorize the first half, or to
control system is indifferent to information source; resources argnemorize every other line, or not. There are no hard constraints in
allocated to knowledge in-the-world versus in-the-head not basethe task environment that would prevent you from implementing
on source, but based on the cost of accessing the source. Secodly of these strategies. However, the work presented here suggests
is the claim that the environment is part of the cognitive systemthat you will treat time on task as a soft constraint that you will
The soft constraints hypothesis offers the same comment on thiginimize by a cost-effective mixture of perceptual-motor and
claim as to the first—that the human information processing syscognitive operations.
tem is indifferent to the source of its information. The only bias Our two sets of methods—experimental results and Ideal Per-
imposed by biology is that of finding the most cost-effective former Model—converge in their support for the soft constraints
means of using available cognitive, perceptual, and motor rehypothesis. The control system is not biased to favor perceptual-
sources to accomplish a given task in a given task environment.motor over cognitive costs. Rather, at the 1/3 to 3 sec level of
The power of the Ideal Performer Model flows directly from our eémbodiment, the allocation of cognitive, perceptual, and motor
combination of an ideal observer analysis with rational analysisresources is based on cost-benefit tradeoffs measured in time. The
Perceptual-motor side conditions were derived from a variety ofS0ft constraints view of embodiment suggests that many of the
sources outside of the current study. The equations that describettails of the cognitive system can be abstracted away and the
the side conditions for encoding time, retrieval latency, and probfunction of the integrated cognitive-perceptual-motor system can
ability of recall were themselves based on a rational analysis obe explained by expected utility measured in time. An information
human memory (Anderson, 1990, 1991; Anderson & Milson,System that truly integrates cognition with perceptual-motor oper-
1989; Anderson & Schooler, 1991). As an approach, rationaBtions integrates the use of knowledge in-the-head with knowledge
analysis is sometimes criticized for being the antithesis of thdn-the-world so as to conserve the resource of time, not cognition.
bounded rationality approach (Howes, Lewis, & Vera, in press).
The Ideal Performer Model shows that a rational analysis of one
side condition, in this case human memory, can provide an im-
portant bound that allows us to make progress on a l’ationa;l-\ltmann, E. M. (in press). Control signals and goal-directed behavior. In
analysis of another side condition, in this case, optimizing the use \v. p. Gray (Ed.),Integrated models of cognitive systerew York:
of internal resources by cost-benefit tradeoffs in the access of Oxford University Press.
knowledge in-the-world versus in-the-head. Altmann, E. M., & Gray, W. D. (2002). Forgetting to remember: The
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Appendix A: Declarative memory in ACT-R

To implement human memory limitations in the reinforcement learning ences the activation of a DME, however this component introduces addi-
model, we used the memory theory incorporated into the ACT-R cognitivetional complexity not relevant to the Blocks World model.
architecture (Anderson & Lebiere, 1998; Lovett et al., 1999). This theory Retrieval probability is governed by adding a threshold parameter to the
has been widely tested, compares well to alternative approaches (Sims faodel. If retrieval of a DME is attempted and the DME'’s base activation
Gray, 2004), and has been successful at capturing human performance @below the threshold, then a retrieval failure occurs, meaning that the item
a wide range of memory tasks. At its core, the ACT-R memory modelhas effectively been forgotten. However, as the noise component of acti-
makes quantitative predictions regarding the probability of successfullyation is dynamically generated, it is possible for a DME to be below
recalling a previously encoded declarative memory element, or DME, ashreshold on one retrieval attempt but then above threshold on a second
well as the retrieval latency for that DME. Both the probability of recall attempt.
and retrieval latency are governed by activation, which increases with The time it takes for a retrieval or a retrieval failure is governed by the
practice and successful retrieval of an item, and decays as a function cictivation of the DME such that more active DMEs are recalled faster than
time. The equation below gives the formula for computing the baseless active DMEs. The exact equation used by ACT-R is given below.
activation of a DME.

RT,=F-e? (Egn. A-2)

n
g =In _Eti ‘e (Eqn. A-1) As before, ais the activation of DME, while F is a latency scaling
=t parameter, and RTis the retrieval time in seconds for that DME. In
In this equation, ais the activation of DMH, t; is the time since it§th general, the DME with the highest level of activation is the one retrieved.

retrieval, andd is a decay parameter governing how quickly each retriev- If no DME is above the threshold at the time of retrieval, then a retrieval
al's influence on the activation decreases. The summation is over the entiffailure occurs. In this case, the retrieval threshold parameter is used in lieu
history of retrievals of the DME. The last term is a noise component thatof the DME activation (3 to compute the time taken by the failed retrieval,
is drawn from a logistic distribution and allows the activation of the DME with the consequence that retrieval failures take longer than successful
to fluctuate from moment to moment. In the complete ACT-R memory retrievals. Since retrieval time is based directly on activation, the moment-
model, environmental context and relevance to the current goal also influto-moment noise in activation also causes the retrieval time to fluctuate.

Appendix B: Q-Learning and ENCODE-k strategies

At its core, reinforcement learning is concerned with learning a valuetraining the Ideal Performer Model alpha was initially set to 1.0 and then
function Q(s,d that transforms states of the environment and actions intodecreased with increased experience according 1o ihere n is the
a numerical expected reward outcome. This value function is followed bynumber of experiences with a particular action. This scheme is equivalent
the agent according to a policy function that maps expected rewards into & taking the arithmetic average of all rewards, and in the Q-learning
particular sequence of action@-learning, the particular reinforcement gigorithm is sufficient to guarantee that the optimal policy can be learned
learning algorithm used here, has the additional property that it can learyity sufficient practice. The parameter gamma controls whether the model
an optimal behavioral policy while randomly exploring actions in the giscounts future compared to immediate rewards. In the task this parameter

environment, so long as certain reasonable assumptions are met (ff,q set to 1.0, meaning that the algorithm should strive to maximize global
instance, sufficient training and exploration of the problem space). Th erformance rather than select actions locally greedily

exactQ-learning update rule is given below, thoug_h see Sutton and Bart In the Blocks World task, optimal performance is defined as completing
(1998) for a more thorough treatment of the algorithm. . . .
the overall task as quickly as possible. Therefore, after the Q-learning
Q(s,d < Q(s, d + afr + y- maxQ(s, a)—Q(s, ] (Egn. B-1) model selects each action, it is penalized according to how long that action
a took. As discussed in the text, in the model of the Blocks World task, there
In this equation the value of a particular actiaris updated according to are a maxmum of eight posable actions and 36 possible state-action palrs.
the local reward received, as well as the future expected rewards as angr time the value fUﬂCtIQQ(S, g learned by the agent correqunds to its
consequence of reaching the successor s&teAlpha is a parameter estimate of how long it will take to complete the entire task given that a
controlling how quickly the agent learns and can range from 0.0 to 1.0. AfParticular action is chosen in a particular state. The costs used as rewards
the lower end, the model stops learning completely, while at the upper end! the model are simply the total time needed to complete a particular
each new experience obliterates all previous learning by the agent. IENCODEKX strategy.

(Appendixes continge
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Appendix C

Parameters Used by the Ideal Performer Model

Parameter Value Source

Motor parameters

Mouse-target-to-resource 249 ms Fitts’ Law
Mouse-resource-to-workspace 216 ms Fitts’ Law
Mouse-workspace-to-resource 249 ms Fitts’ Law
Mouse-workspace-to-target 217 ms Fitts’ Law
Mouse-block-to-block 150 ms Fitts’ Law

Mouse-click 150 ms (Gray & Boehm-Davis, 2000)
Shift of visual attention 185 ms ACT-R default

Memory parameters (ACT-R equivalent)

Activation decay (BLL) 0.5 ACT-R default

Activation noise (ANS) 0.28 Free parameter
Retrieval threshold (RT) 0.325 Free parameter
Latency scaling factor (F) 0.9 Free parameter

Q-learning parameters

Utility noise (t)* 0.491 Free parameter

Alpha 1h ACT-R default;n is the number of experiences with a
particular action

Gamma 1.0 Default value

* The noise parameter is also related to ACT-R’s expected gain noise parameter (EGS) according to EGS
= t/\ﬁ (Anderson & Lebiere, 1998). Specifically, in our model EGS0.347.
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