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Dissociated Overt and Covert Recognition as an Emergent Property of a
Lesioned Neural Network

Martha J. Farah, Randall C. O’Reilly, and Shaun P. Vecera

Covert recognition of faces in prosopagnosia, in which patients cannot overtly recognize faces but
nevertheless manifest recognition when tested in certain indirect ways, has been interpreted as the
functioning of an intact visual face recognition system deprived of access to other brain systems
necessary for consciousness. The authors propose an alternative hypothesis: that the visual face rec-
ognition system is damaged but not obliterated in these patients and that damaged neural networks
will manifest their residual knowledge in just the kinds of tasks used to measure covert recognition.
To test this, a simple model of face recognition is lesioned in the parts of the model corresponding
to visual processing. The model demonstrates covert recognition in 3 qualitatively different tasks.
Implications for the nature of prosopagnosia, and for other types of dissociations between conscious

and unconscious perception, are discussed.

In recent years, neuropsychology has seen what Weiskrantz
(1990) has called an “epidemic” of dissociations involving the
loss of conscious awareness in particular perceptual or cognitive
domains. Many of these dissociations involve vision. In such
cases, patients may deny being able to see or recognize visual
stimuli, and indeed perform poorly on certain direct tests of
visual perception, but may nevertheless manifest considerable
knowledge of the stimulus on certain other, generally indirect,
tests of perception. We defer discussion of most of these syn-
dromes until the General Discussion section and begin with the
primary focus of the present article, namely covert face recog-
nition in prosopagnosia.

Prosopagnosia is an impairment of face recognition following
brain damage, which can occur relatively independently of im-
pairments in object recognition and which is not caused by im-
pairments in lower level vision or memory. In at least some cases
of prosopagnosia, there is a dramatic dissociation between the
loss of face recognition ability as measured by standard tests of
face recognition, as well as patients’ own introspections, and
the apparent preservation of face recognition when tested by
certain indirect tests. Our goal is to elucidate the underlying
causes of this dissociation and its implications for both the na-
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ture of prosopagnosia and for the neural correlates of conscious
and unconscious perception.

Evidence for Covert Recognition of Faces in
Prosopagnosia

Demonstrations of covert recognition in prosopagnosia have
made use of extremely varied methodologies so that it is un-
likely that any simple methodological artifact underlies the phe-
nomenon. The relevant research includes psychophysiological
measures such as skin conductance responses (SCRs) and ev-
ent-related potentials (ERPs) as well as behavioral measures
such as reaction time (RT) and learning trials to criterion.

In the absence of theories relating psychophysiological in-
dexes to mechanistic accounts of cognition or neural informa-
tion processing, it is difficult to use the psychophysiological
findings to constrain a mechanistic model of covert recognition.
Therefore, we focus primarily on the behavioral data implicat-
ing covert recognition and provide just a brief review of some
representative psychophysiological data here.

Psychophysiological Evidence

Bauer (1984) presented a prosopagnosic patient with a series
of photographs of familiar faces. While viewing each face, the
patient heard a list of names read aloud, one of which was the
name of the person in the photograph. This test has been called
the Guilty Knowledge Test because it is based on a technique
used to assess suspects’ familiarity with the details of crimes of
which they deny knowledge. For normal subjects, the SCR is
greatest to the name belonging to the pictured person, regard-
less of whether the subject admits to knowing that person. Bauer
found that, although the prosopagnosic patient’s SCRs to
names were not as strongly correlated with the names as a nor-
mal subject’s would be, they were nevertheless significantly cor-
related. In contrast, the patient performed at chance levels when
asked to select the correct name for each face.

In a different use of the SCR measure, Tranel and Damasio
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(1985, 1988) showed that prosopagnosic patients had larger
SCRs to familiar faces than to unfamiliar faces, even though
their overt ratings of familiarity versus unfamiliarity did not
reliably discriminate between the two.

Renault, Signoret, Debruille, Breton, and Bolger (1989) re-
corded ERPs to familiar and unfamiliar faces that had been in-
termixed in different proportions within different blocks of tri-
als. In general, the P300 component of the ERP is larger to stim-
uli from a relatively infrequent category. They found that a
prosopagnosic patient showed larger P300s to whichever type of
face, familiar or unfamiliar, was less frequent in a block of trials,
even though the patient was poor at overtly discriminating fa-
miliar from unfamiliar faces.

Behavioral Evidence

The first evidence of covert recognition in prosopagnosia was
gathered by Bruyer, Laterre, Seron, Feyereisen, Strypstein, Pier-
rard, and Rectem (1983) in the context of a paired-associate,
face-name relearning task, and this task has become the most
widely applied measure of covert recognition in prosopagnosia.
Bruyer et al.’s patient was asked to learn to associate the facial
photographs of famous people with the names of famous peo-
ple. When the pairing of names and faces was correct, the pa-
tient required fewer learning trials than when it was incorrect,
suggesting that the patient did possess at least some knowledge
of the people’s facial appearance. Unfortunately, this demon-
stration of covert recognition is not as meaningful as it could
be, because Bruyer et al.’s subject was not fully prosopagnosic;
he could manifest an appreciable degree of overt recognition
on conventional tests of face recognition such as forced-choice,
face-naming tests.

Recently, several more severe prosopagnosic patients have
been tested in the face-name relearning task, and some have
shown the same pattern of faster learning of correct than incor-
rect face-name associations, despite little or no success at the
overt recognition of the same faces. For example, de Haan,
Young, and Newcombe (1987b) documented consistently faster
learning of face-name and face-occupation pairings in their
prosopagnosic subject, even when the stimulus faces were se-
lected from among those that the patient had been unable to
identify in a preexperiment stimulus screening test.

Greve and Bauer (1990) used a different form of learning as
evidence of covert recognition in prosopagnosia. They showed
a prosopagnosic patient a set of unfamiliar faces and then
showed him the same faces, each paired with another face, at
which time he was asked the following two questions about each
pair: Which of these faces have you seen before? Which of these
faces do you like better? Normal subjects tend to prefer stimuli
that they have seen previously, whether or not they explicitly
remember having seen these stimuli, and this has been attrib-
uted to a “perceptual fluency” advantage for previously seen
stimuli (Jacoby, 1984). Perceptual fluency refers to the facilita-
tion in processing a stimulus that has already been perceived,
which leads to a subjective sense of the stimulus seeming more
salient, which may in turn be attributed by the subject to the
attractiveness of the stimulus. Aithough the prosopagnosic pa-
tient was unable to discriminate previously seen from novel

faces, he did show a normal preference for the previously seen
faces.

Evidence of covert recognition has also come from RT tasks
in which the familiarity or identity of faces are found to influ-
ence processing time. In a visual identity match task (see
Posner, 1978) with simultaneously presented pairs of faces, de
Haan et al. (1987b) found that a prosopagnosic patient was
faster at matching pairs of previously familiar faces than unfa-
miliar faces, as is true of normal subjects. In contrast, he was
unable to name any of the previously familiar faces. De Haan
et al. then went on to show another similiarity between the per-
formance of the patient in this task and that of normal subjects.
If the task is administered to normal subjects with either the
external features (e.g., hair and jaw line) or the internal features
(e.g., eyes, nose, and mouth) blocked off and with instructions
to match on the visible parts of the face, normal subjects show
an effect of familiarity only for the matching of internal fea-
tures. The same result was obtained with the prosopagnosic pa-
tient.

In another RT study, de Haan et al. (19872, 1987b) found
evidence that photographs of faces could evoke covert semantic
knowledge of the depicted person, despite the inability of the
prosopagnosic patient to report such information about the per-
son when tested overtly. Their task was to categorize a printed
name as belonging to an actor or a politician as quickly as pos-
sible. On some trials, an irrelevant (i.e., to be ignored) pho-
tograph of an actor’s or polician’s face was simultaneously pre-
sented. Normal subjects are slower to categorize the names
when the faces come from a different-occupation category rela-
tive to a no-photograph baseline. Even though their prosopag-
nosic patient was severely impaired at categorizing the faces
overtly as belonging to actors or politicians, he showed the same
pattern of interference from different-category faces.

A related finding was reported by Young, Hellawell, and de
Haan (1988) in a task involving the categorization of names as
famous or nonfamous. Both normal subjects and a prosopag-
nosic patient showed faster RTs to the famous names when the
name was preceded by a picture of a semantically related face
(e.g., the name “Diana Spencer” preceded by a picture of Prince
Charles) than by an unfamiliar or an unrelated face. Further-
more, the same experiment was carried out with printed names
as the priming stimulus so that the size of the priming effect
with faces and names could be compared. The prosopagnosic
patient’s priming effect from faces was not significantly differ-
ent from the priming effect from names. However, the patient
was able to name only 2 of the 20 face prime stimuli used.

In summary, a wide variety of methods has been used to doc-
ument covert recognition of faces in prosopagnosia. Although
in some cases fairly coarse-grained discriminations are taken as
evidence of recognition (e.g., between familiar and unfamiliar
faces, de Haan et al., 1987a; Tranel & Damasio, 1985), in other
cases the patients successfully discriminate among unique indi-
viduals (e.g., Bauer, 1984; Bruyer et al., 1983; de Haan et al.,
1987a, 1987b) or classify individuals in a way that presumably
requires individual recognition (actors vs. politicians, de Haan
et al., 1987b). Although we argue that not all viable inter-
pretations of these phenomena have been considered and we
urge consideration of a new interpretation, it would seem that
the correct interpretation is very unlikely to be any kind of
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methodological artifact. The investigators in this area have been
vigorous in attempting to eliminate possible artifacts in each of
the experimental paradigms they have used. Furthermore, the
sheer diversity of such paradigms makes an artifactual explana-
tion unlikely. Finally, the absence of covert recognition in some
cases (e.g., Etcoff, Freeman, & Cave, 1991; Newcombe, Young,
& de Haan, 1989; Sergent & Villemure, 1989) suggests that it is
not a result of the experimental paradigms themselves.

Interpretations of Covert Recognition in Prosopagnosia
and Their Implications

The foregoing results would appear to indicate that, at least
in those cases of prosopagnosia that show covert recognition,
the underlying impairment is not one of visual recognition per
se but of conscious access to visual recognition. Indeed, all of
the interpretations so far offered of covert recognition in pros-
opagnosia include this assumption.

For example, Tranel and Damasio (1988) said, of their pa-
tients” SCRs, that they are “not the result of some primitive
form of perceptual process, but rather an index of the rich retro-
co-activation produced when representations of stimuli suc-
cessfully activate previously acquired, non-damaged, and obvi-
ously accessible facial records” (p. 248). Similarly, de Haan et
al. (1987a) described their subject’s prosopagnosia as involving
a “breakdown (or disconnection) in the mechanisms that allow
people to be aware of what has been recognized [rather] than a
breakdown in recognition mechanisms per se” (p. 315). In a
recent computer simulation of semantic priming effects, de-
scribed in greater detail later, this group modeled covert recog-
nition as a partial disconnection separating intact visual recog-
nition units from the rest of the system, again preserving the
assumption of intact visual recognition (Burton, Young, Bruce,
Johnston, & Ellis, 1991). Bruyer (1991) offered a similar inter-
pretation, in terms of personal (i.e., conscious agent) and sub-
personal (i.e., comprising at least the visual recognition system)
levels of description: “The conscious subject does not recognize
or identify familiar faces, while her/his ‘information processing
system’ does?” (p. 230).

Figure 1 shows a depiction of de Haan et al.’s (1992) concep-
tion of the relation between face recognition systems and other
systems needed for conscious awareness and the functional le-
sion responsible for prosopagnosia with covert recognition. Ac-
cording to their model, the face-specific visual and mnemonic
processing of a face (carried out within the face-processing
module) proceeds normally in covert recognition, but the re-
sults of this process cannot access the conscious awareness sys-
tem because of a lesion at location number 1.

A different type of explanation was put forth earlier by Bauer
(1984), who suggested that there may be two neural systems
capable of face recognition, only one of which is associated with
conscious awareness. According to Bauer, the ventral cortical
visual areas, which are damaged in prosopagnosic patients, are
the location of normal conscious face recognition. The dorsal
visual areas are hypothesized to be capable of face recognition
as well, although they do not mediate conscious recognition
but, instead, mediate affective responses to faces. Covert recog-
nition is explained as the isolated functioning of the dorsal face
system. This interpretation is similar to the others in that it hy-
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Figure 1. De Haan, Bauer, and Greve’s (1992) framework for analyz-
ing disorders of face recognition. (Covert recognition in prosopagnosia
is thought to result from a functional disconnection at [1] between nor-
mally activated stored face representations and the conscious awareness
system. FRU = face recognition units. From *“‘Behavioral and Physio-
logical Evidence for Covert Recognition in a Prosopagnosic Patient” by
E. H. F de Haan, R. M. Bauer, and K. W. Greve, 1992, Cortex, 28, p.
89. Copyright 1992 by Erminio Capitani. Reprinted by permission.)

pothesizes some form of intact visual recognition. It is distinc-
tive in that the dissociation between recognition and conscious
awareness is not a form of disconnection (functional or ana-
tomical) between the visual recognition system and other brain
systems that mediate conscious awareness brought about by
brain damage but is the normal state of affairs for the dorsal face
recognition system.

These interpretations of covert recognition have tmplications
both for the nature of prosopagnosia and, more generally, for
the neural bases of conscious awareness. With regard to pros-
opagnosia, current interpretations of covert recognition imply
that there are at least two kinds of prosopagnosia, with different
underlying causes: one in which visual recognition is intact but
unavailable to consciousness (in the case of patients with covert
recognition) and one in which visual recognition is impaired (in
the case of patients without covert recognition).

At a more general level, these interpretations have implica-
tions for the broad issue of the neural bases of consciousness, in
that they hypothesize distinct stages of processing, and corre-
sponding distinct neural substrates, for face recognition on the
one hand and awareness of face recognition on the other. The
assignment of separate brain mechanisms to information pro-
cessing and awareness of information processing has roots as far
back as Descartes’s writings on the mind-body problem (with
the pineal gland subserving awareness in that case), and in the
context of modern neuroscience this has been dubbed
“Cartesian materialism” by Dennett and Kinsbourne (1992).
Perhaps the most general and lucid expression of this idea, ap-
plied to a variety of neuropsychological syndromes including
covert recognition by prosopagnosic patients, was put forth by
Schacter, McAndrews, and Moscovitch (1988). They tentatively
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proposed that “(a) conscious or explicit experiences of perceiv-
ing, knowing and remembering all depend in some way on the
functioning of a common mechanism, (b) this mechanism nor-
mally accepts input from, and interacts with, a variety of pro-
cessors or modules that handle specific types of information,
and (c) in various cases of neuropsychological impairment, spe-
cific modules are disconnected from the conscious mechanism”
(p. 269).

An Alternative Hypothesis: Residual Functioning of an
Impaired Visual Recognition System

We argue that the available evidence on covert face recogni-
tion 1n prosopagnosics is consistent with an impairment in vi-
sual recognition per se. This interpretation has implications for
our understanding of prosopagnosia in that it dispenses with the
necessity of postulating different forms of prosopagnosia that
are due to different underlying causes. Instead, cases with covert
recognition are hypothesized to have more residual functioning
of the visual face recognition system than cases without. It also
has implications for our understanding of the neural bases of
conscious awareness in that conscious awareness of recognition
is not attributed to a distinct neural system from the one sub-
serving recognition per se. Instead, the same neural system sub-
serves both overt and covert recognition.

The primary challenge for such an account is to explain the
dissociation between overt and covert recognition given that
these two sets of phenomena are hypothesized to rely on the
same neural substrates. We argue that the difference between
them lies in the robustness to brain damage of performance of
the two kinds of tasks, in other words, the degree of preserved
neural information processing that is required in each case.
Specifically, we argue that lower quality visual information pro-
cessing is needed to support performance in tests of covert rec-
ognition (e.g., to show savings in relearning and the vartous RT
facilitation and interference effects) relative to the quality of in-
formation processing needed to support normal overt recogni-
tion performance (e.g., naming a face or sorting faces into those
of actors and politicians).

One very general way of stating this hypothesis is to say that
the covert tests of recognition are more sensitive to the residual
knowledge encoded in a damaged recognition system than are
the overt tests. Thus, very impaired performance on overt tests
might be associated with only moderately or slightly impaired
performance on the covert tests. Stating the hypothesis in this
way calls attention to two questions important for evaluating
the hypothesis: First, what are the precise levels of patient per-
formance on tests of overt and covert recognition, and are they
consistent with the hypothesis of a single damaged system being
tapped by tests of differing sensitivity? Normal-size covert rec-
ognition effects are unlikely to be due to the functioning of a
damaged system (although it would not, strictly speaking, be
impossible if the “ceiling” on covert performance was very low
relative to the ceiling on overt performance). Better than chance
performance by prosopagnosic patients on overt tests would
also be consistent with residual functioning of the visual recog-
nition system {although, by the same token, there is no logical
reason why overt performance could not have its “floor” of
chance performance above the floor of the covert tests). Second,

is there any independent reason to believe that the covert tests
would be more sensitive measures of residual recognition abil-
ity in a damaged recognition system?

Empirical Evidence Relevant to Testing the Alternative
Hypothesis

To answer the first question, it is impossible to compare di-
rectly the covert recognition performance of prosopagnosic pa-
tients and normal subjects on the basis of the evidence currently
available, so we cannot know whether their covert recognition
is normal or merely present to some degree. In some cases data
from normal subjects have either not been reported, as in the
P300 study, or would be impossible to obtain, as when familiar
faces and names are retaught with either the correct or incorrect
pairings. In other cases the problem of comparing effect sizes
on different absolute measures arises. In both the SCR and RT
paradigms, covert recognition is measured by differences be-
tween the dependent measures in two conditions (e.g., familiar
and unfamiliar faces). Unfortunately, patients’ SCRs are invari-
ably weaker than those of normal subjects (Bauer, 1986), and
their RTs are longer (de Haan et al., 1987b). It is difficult to
know how to assess the relative sizes of differences when the
base measures are different. For example, is an effect corre-
sponding to a 200-ms difference between RTs on the order of 2
s bigger than, comparable to, or smaller than an effect corre-
sponding to a 100-ms difference between RTs of less than a sec-
ond? The true scaling of RT in any given task is an empirical
issue; using proportions may be a better approximation to the
scale than linearity, but one cannot a priori know the true scale
{see Snodgrass, Corwin, & Feenan, 1990, for a discussion of
these issues).

The study that comes closest to allowing a direct comparison
of covert recognition in patients and normal subjects is the
priming experiment of Young et al. (1988). Recall that they
found equivalent effects of priming name classification for their
prosopagnosic patient with either photographs or names of se-
mantically related people. Of course, this fact alone does not
imply that the face-mediated priming was normal, as face-me-
diated priming in this task might normally be larger than name-
mediated priming. To address this problem, Young et al. cited
their earlier experiment, reported in the same article, in which
normal subjects were also found to show equivalent effects of
face-mediated and name-mediated priming. Unfortunately, the
earlier experiment differed in several ways from the latter, which
could conceivably shift the relative sizes of the face-mediated
and name-mediated priming effects: Normal subjects in the ear-
lier experiment performed only 30 trials each, whereas the pros-
opagnosic patient performed 240 trials; items were never re-
peated in the earlier experiment, whereas they were in the later
one; the type of prime was varied between subjects in the earlier
experiment, whereas the prosopagnosic patient received both
types; different faces and names were used in the two experi-
ments; and the primes were presented for about half as long in
the earlier experiment as in the later one. Ideally, to answer the
question of whether this prosopagnosic patient shows normal
priming from faces, a group of normal control subjects should
be run through the same experiment as the patient.

Turning now to the question of whether the prosopagnosic
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patients who show covert recognition also show some degree of
overt recognition, consistent with a damaged but not obliter-
ated visual recognition system, the evidence is similarly difficult
to evaluate. For example, some patients’ chance performance
on overt tasks is consistent with the use of extreme response
biases, which would mask any degree of remaining sensitivity.
Among the three prosopagnosic patients studied by Tranel and
Damasio (1988), two rated almost all faces as unfamiliar, and
the one who used a larger portion of the rating scale narrowly
missed the .05 significance level in discriminating familiar from
unfamiliar faces.

Statistical naivete concerning the concept of chance perfor-
mance has also led to confusion. In some cases, the term
“chance performance” has been used synonymously with poor
performance. For example, de Haan et al. (1987a) presented the
results of an overt politician-nonpolitician face judgment task
with their patient and described the score of 30/48 in a two-
alternative, forced-choice task as being at chance. In fact, there
is only a .06 probability of achieving such a high score by guess-
ing alone. In other cases, performance is truly not statistically
different from chance (e.g., in Young & de Haan, 1988, 12/30
in a three-alternative, forced-choice familiarity task), but the
small number of trials makes this a relatively weak test for
purposes of obtaining confidence in the null hypothesis. In ad-
dition, the ability of this patient and others to occasionally iden-
tify a face by name, a task whose “chance level” is difficult to
estimate but is certainly close to 0% correct, also indicates that
visual recognition has not been entirely obliterated. For exam-
ple, this same patient was able to identify 2 out of 20 of the faces
used in the semantic-priming study of Young et al. (1988).

One way in which investigators have attempted to control
overt recognition performance and measure covert recognition
in the absence of overt recognition is by testing patients only on
faces that were not successfully identified in a screening test. For
example, de Haan et al. (1987b) used only the faces that their
prosopagnosic patient had failed to recognize in their face-
name relearning task. This procedure is certainly a more con-
servative way of testing for a dissociation between overt and co-
vert recognition than simply pooling the data from all faces.
However, there could still be some measurement error in the
overt task, which could in principle lead some overtly recogniz-
able faces to remain in the covert test. Perhaps more likely, overt
identification could be a less sensitive test of recognition than
savings in relearning. That these considerations are not purely
academic was demonstrated by Wallace and Farah (1992), who
followed the same screening procedure of eliminating success-
fully identified faces with normal subjects on faces that had
been learned 6 months before the experiment and nevertheless
found savings in relearning the original face-name associations,
relative to new pairings.

Computational Rationale for the Alternative Hypothesis

The empirical data reviewed so far fail to distinguish between
the original hypothesis of intact face recognition deprived of
access to consciousness and the alternative hypothesis that face
recognition is impaired and that covert tasks are more sensitive
than overt tasks to detecting residual functioning. Our reason
for prefering the alternative hypothesis is based on a consider-

ation of the relative computational demands of the overt and
covert tests. To explain how these differ, we first provide a very
brief overview of computation in recurrent neural networks.
More extensive background can be found in Rumelhart and
McClelland’s (1986) book on paraliel distributed processing
models of cognition.

In parallel distributed processing models, representations
consist of a pattern of activation over a set of highly intercon-
nected neuronlike units. The extent to which the activation of
one unit causes an increase or decrease in the activation of a
neighboring unit depends on the “weight” of the connection
between them; positive weights cause units to excite each other,
and negative weights cause units to inhibit each other. For the
network to learn that a certain face representation goes with a
certain name representation, the weights among units in the
network are adjusted so that presentation of either the face pat-
tern in the face units or the name pattern in the name units
causes the corresponding other pattern to become activated. On
presentation of the input pattern to the input units, all of the
units connected with those input units will begin to change their
activation in accordance with the activation value of the units
to which they are connected and the weights on the connections.
These units might in turn connect to others and influence their
activation levels in the same way. In recurrent, or attractor, net-
works, the units downstream will also begin to influence the
activation levels of the earlier units. Eventually, these shifting
activation levels across the units of the network settle into a sta-
ble pattern, or attractor state. The attractor state into which a
network settles is determined jointly by the input pattern (stim-
ulus) and the weights of the network (stored knowledge).

Accordingly, much of the behavior of the network depends on
the pattern of weights. For example, the weights determine not
only which pattern becomes activated in association to an input
pattern but they also determine how quickly this pattern be-
comes stable and how quickly a given unit or set of units reaches
some predetermined threshold of activation. Not surprisingly,
the current pattern of weights will also determine how many
training cycles are needed to teach the network a new associa-
tion. In ways that we elaborate on shortly, these aspects of net-
work behavior seem closely related to the behavioral measures
of covert recognition reviewed earlier: speed of perception {cor-
responding to settling time), speed of classifying actors and pol-
iticians (corresponding to how quickly actor or politician repre-
sentations reach threshold), and, of course, paired-associate
learning (a direct correspondence).

When a network is damaged by eliminating units, it will be
less effective at associating the patterns that it knew previously.
This can be understood in terms of the idea that knowledge is
stored in the weights by viewing unit damage as the permanent
zeroing of all weights going into and out of the eliminated units.
As more units are eliminated, the ability of the network to cor-
rectly associate previously known patterns will steadily decline
until it reaches chance levels.

The impetus for our project comes from the following key
idea, first set out by Hinton and Sejnowski (1986; see also Hin-
ton & Plaut, 1987): The set of the weights in a network that
cannot correctly associate patterns because it has never been
trained (or has been trained on a different set of patterns) is
different in an important way from the set of weights in a net-
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work that cannot correctly associate patterns because it has
been trained on those patterns and then damaged. The first set
of weights is random with respect to the associations in ques-
tion, whereas the second is a subset of the necessary weights.
Even if it is an inadequate subset for performing the association,
it is not random; it has, “embedded” in it, some degree of
knowledge of the associations.

Consideration of the kinds of tests used to measure covert
recognition suggest that the covert measures might be sensitive
to this embedded knowledge. The most obvious example is that
a damaged network would be expected to relearn associations
that it originally knew faster than novel associations because of
the nonrandom starting weights. Less obvious, but nevertheless
plausible for reasons to be elaborated on later, the network
might settle faster when given previously learned inputs than
novel inputs, even though the pattern into which it settles is not
correct, because the restdual weights come from a set designed
to create a stable pattern from that input. Finally, to the extent
that the weights continue to activate partial and subthreshold
patterns over the nondamaged units in association with the in-
put, these resultant patterns could prime (i.e., contribute acti-
vation toward) the activation of patterns by intact routes. We
later discuss these mechanisms in greater detail in the context
of the individual simulations. For present purposes, the general
implication of these ideas is that as a neural network is increas-
ingly damaged, there might be a window of damage in which
overt associations between patterns (e.g., faces and names)
would be extremely poor, whereas the kinds of performance
measures tapped by the covert tasks might remain at high levels.
Note that if this is true, it does more than just undermine the
prevailing hypothesis of intact face recognition systems in those
prosopagnosic patients who manifest covert recognition. It
offers a specific, mechanistic hypothesis explaining the overt-
covert dissociations in terms of general principles of computa-
tion in neural networks.

To test this hypothesis, we developed a very simple model of
face recognition, and explored the effects of damage to visual
input units on network performance of three different types of
tasks, corresponding to the savings in relearning paradigm, the
physical matching paradigm, and the priming paradigm. Before
presenting the model and simulations themselves, we explain
the concepts of activation space and weight space, which are
helpful for understanding the behavior of the model.

Spatial Analogies for Understanding the Behavior of
Attractor Networks

Spatial analogies are useful for visualizing certain aspects of
network dynamics, including the way in which the network’s
patterns of activation change under the influence of an input
and the way in which the ensemble of weights changes during
learning. These analogies are also useful in understanding the
behavior of the present network under damage.

The activation state of the network at any point in time can
be represented as a point in a high-dimensional space called
activation space. The dimensions of this space represent the
level of activation of each unit in the network, assuming a fixed
set of weights. In addition to the dimensions representing the
activation levels of the units, there is one additional dimension,

representing the overall fit between the current activation pat-
tern and the weights.

When units that are both active have a large positive weight
between them, so that they reinforce each other’s activation,
this is an example of a good fit. If one unit is positively activated,
another is negatively activated, and the weight connecting them
is positive or if both units are positive and there is a negative
(i.e., inhibitory) weight between them, the fit would be poor.
This measure of fit is called energy, with low energy representing
a better fit. The energy value associated with each pattern of
activation defines a surface in activation space.

When an input pattern is presented to the network, the cor-
responding initial position in activation space is defined by the
activation levels on the input units, along with resting level val-
ues for the dimensions representing the other units in the net-
work. The weights in the rest of the network will not fit well with
uniform resting level activation values over their portion of the
network (assuming that they have been trained to associate a
pattern with the input). Thus, the initial point in activation
space will be in a region of high energy. As activation propagates
through the network, the pattern of activation changes, and the
point representing this pattern moves along the energy surface
in activation space. The movement will generally be downward
as the network lowers its energy, much as a ball rolls down a hill
to lower its potential energy. To see why this would happen in
terms of network dynamics, rather than by analogy with rolling
balls, consider the examples given earlier of high- and low-en-
ergy activation states. For example, active units connected by
negative weights (a poor fit, high-energy pattern) will tend to
change their activations until one is active and the other is not
(a good fit, low-energy pattern).

The energy minima toward which the network tends are the
attractors mentioned earlier in this article. Attractors are useful
in network computation not only for associating patterns and
completing partial patterns but also for their ability to “clean
up” a noisy input, by transforming a pattern similar to a known
pattern into that known pattern (i.e., a pattern just uphill from
an attractor will roll down into the attractor).

How quickly the network settles when presented with an in-
put pattern depends on how quickly it can traverse the distance
between its starting point in activation space and the attractor
into which it “rolls.” This in turn depends on the shape of the
energy “landscape” because the network’s activation pattern
will travel more directly (and therefore quickly) down a steep,
smooth incline than along more bumpy, winding terrain. The
shape of the energy landscape is determined by the network’s
weights. In an untrained network, the landscape will be gener-
ally flat with random dips. When the network has learned a cer-
tain association, its weights will create an energy landscape in
activation space in which the point corresponding to the input
pattern and the attractor point corresponding to the complete
associated pattern are connected by a smoothly and steeply
sloping path that causes the one state to roll directly down into
the other. Because some patterns will have the same value on
some dimensions (i.e., they will have units activated in com-
mon), the network will need barriers to prevent confusion
among trajectories for different patterns. Paths bounded by
these barriers can be thought of as ravines.

The weights that underlie the attractor structure of activation
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space can themselves be used to define a space, and this space is
useful for visualizing the process of learning. In weight space,
each of the weights in a network corresponds to one dimension
of a space so that we can represent the sum total of the net-
work’s knowledge as a point in this high-dimensional space. If
one additional dimension is now added to the space, represent-
ing the performance of the network at associating names and
faces, then there will be a surface defined by each combination
of weights and their associated performance. The energy of the
point in activation space to which the network settles with a
given set of weights is a measure of performance, with low en-
ergy (that is, good fit between the weights and the resultant acti-
vation pattern) being better performance. If, when we present
the input, we also fix the activation values for the units for the
associated pattern (“clamping”), then the desired weights will
be those that create an energy minimum (with respect to activi-
ties) at this pattern. Learning consists of moving along this en-
ergy surface in weight space, changing weight values, until a
sufficiently low point has been reached.

The Model

The present model is intended to iilustrate some very general,
qualitative aspects of the behavior of damaged neural networks
in the kinds of tasks used with prosopagnosic patients. It is ac-
cordingly very simple. Figure 2 shows the architecture of the
model. There are five pools of units. The face input units sub-
serve the initial visual representation of faces, the semantics
units subserve representation of the semantic knowledge of peo-
ple that can be evoked by either the person’s face or name, and
the name units subserve the representation of names. In a
meodel of this kind, hidden units are helpful to learn the associ-
ations among patterns of activity in each of these three layers.
These are located between the face and semantic units, (called
the face hidden units) and between the name and the semantic
units (called the name hidden units). Thus, there are two pools
of units that make up the visual face recognition system in our

Semantic Units
{Includes Occupation Units)

Occupation
Units
VA A ATAA,
VAAY VA A ATAY AN,
Name Hidden Units / Face Hidden Units

Name Units Face Input Units

Figure 2. Model of face recognition.

model in that they represent visual information about faces: the
face input units and the face hidden units.

The connectivity among the different pools of units was based
on the assumption that to name a face, or to visualize a named
person, one must access semantic knowledge of that person
(Young, Hay, & Ellis, 1985). Thus, face and name units are not
directly connected, but rather they send activation to one an-
other through hidden and semantic units. The arrows in Figure
2 show the bidirectional connectivity between layers and the
within-layer connectivity. Furthermore, each unit had a bias
weight that learned the average activation level of that unit (a
technique for improving the ability of the network to learn).

Units in this model have a threshold of zero. Thus, when the
activation value of a unit is positive, it will activate those units
to which it is connected by positive weights and inhibit those
units to which it is connected by negative weights, and when its
activation value is negative, it will have the opposite effects.

Faces and names are represented by random patterns of 5
active units out of the total of 16 in each pool. Semantic knowl-
edge is represented by 6 active units out of the total of 18 in
the semantic pool. The model makes no committment to any
particular form of representation, beyond supposing that the
representations are distributed; that is, each face, semantic rep-
resentation, or name is represented by multiple units, and each
unit represents multiple faces, semantic representations, or
names. The information encoded by a given unit will be some
“microfeature” (Hinton, McClelland, & Rumelhart, 1986) that
may or may not correspond to an easily labeled feature (such as
eye color in the case of faces). The only units for which we have
assigned an interpretation are the “occupation units” within
the semantic pool. One of them represents the semantic micro-
feature ‘“‘actor” and the other represents the semantic micro-
feature “politician.”

We created 40 distinct individuals, each consisting of a ran-
dom name, face, and semantic pattern (over the 16 unlabeled
semantics units). Ten individuals were actors (i.e., their seman-
tic pattern had the actor unit active in addition to the other five
active semantics units), 10 were politicians, and the remaining
20 were not assigned either of these two occupations. These 20
individuals were not tested in the simulations to be reported but
were included in training to simulate the fact that subjects know
many more people than are ever tested in a given experiment.
Of the 10 actors and 10 politicians, 5 of each were not used in
training so that we could compare the effects of familiarity on
network performance in Simulation 2, resulting in a training set
of 30 patterns.

The network was trained to be able to associate an individu-
al’s face, semantics, and name whenever one of these was pre-
sented, using the contrastive Hebbian learning (CHL) algo-
rithm (Hinton & Sejnowski, 1986; Movellan, 1990; Peterson
& Anderson, 1987). The CHL function can be used to train
stochastic (e.g., Boltzman machine, Hinton & Sejnowski, 1986)
and deterministic (e.g., mean field networks, Peterson & Ander-
son, 1987) recurrent networks. It stipulates that the weight
change is proportional to the difference between the product of
the activations of the two units on either side of the weight in the -
positive and negative phases, where the positive phase has both
input and desired output patterns presented and the negative
phase has just the input presented. In this way, the difference
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between the desired activation state and the one that results
from the input is minimized. The specific formulation used
here follows Movellan (1990) in the use of the interactive acti-
vation and competition (IAC) activation function (McClelland
& Rumelhart, 1981), with a step size of .01, maximum of 1,
minimum of —1, rest of 0, and decay of 2.

For each training epoch we presented one of the three repre-
sentations for each individual (face, semantics, or name) and
trained the network to reproduce the other two, The learning
rate was .01. The network was trained for 320 epochs on the
complete set of 30 individuals and for an additional 5 epochs on
the set of the 10 individuals to be tested later to ensure 100%
accuracy for these individuals in the undamaged network.

Simulation 1: Savings in Relearning Face-Name
Associations

The primary goal of this simulation was to examine the
effects of different degrees of damage to the visual units (face
input and face hidden units) on both overt identification of face
patterns and on the difference in the number of cycles needed
to relearn previously known name—-face associations, relative to
the number needed to learn to associate the same names and
faces paired differently. Hinton and Sejnowski (1986) demon-
strated savings in relearning after a variety of types of damage to
a recurrent network, including unit ablation. Hinton and Plaut
(1987) presented similar findings obtained with a feedforward
network. If there is some degree of damage to the face units that
can result in poor overt performance while preserving signifi-
cant savings in relearning, then the savings in relearning ob-
served in prosopagnosic patients need not imply that visual rec-
ognition per se has been spared.

Method. The network was lesioned in two different ways: by elimi-
nating randomly chosen units from the face input pool and from the
face hidden unit pool. These are the two pools of units in the model that
correspond to visual face recognition. Seven different levels of damage
were used, corresponding to removal of 2, 4, 8, 10, 12, and 14 units
from the pools of 16 units, corresponding to 12.5%, 25%, 37.5%, 50%,
62.5%, 75%, and 87.5% damage.

The basic measure of overt recognition, used for comparison with
covert performance in all of the simulations to be reported, was the
percentage of correct name identifications of faces in a 10-alternative,
forced-choice task among the 10 test patterns. A face was considered
correctly identified if the resultant name pattern matched the correct
name pattern more closely than any of the other 9 test patterns. Degree
of match was quantified by the number of units having the same sign
(positive or negative). This is a more lenient method of scoring overt
recognition than requiring a perfect match, or even a match to within
one bit.

In the first simulation, the names and faces for the 10 familiar actors
and politicians were paired correctly. In the second simulation, they
were paired incorrectly, although never across occupation categories,
because this would confound the correct-incorrect distinction with the
compatability of the occupation unit pattern. To expedite learning, each
network was required to learn only five name—face pairs at a time. These
were presented to the network after damage for retraining in separate
simulations. To simulate the training procedure used with patients in
which they are asked to name the face on each trial rather than select
from a multiple-choice set of names, we used the pattern that resulted
in the name units of the network following presentation of the face as

the simulation’s response. This was scored as correct if it matched the
target pattern to within 2 units.

To measure savings in relearning for correctly paired names and
faces, the damaged network was retrained for 10 epochs, and its perfor-
mance on overt identification was assessed. This procedure was re-
peated 10 times with different sets of random lesions to assess the reli-
ability of the results.

Results and discussion. Table 1 and Figure 3 show the overt
identification performance of the network in the 10-alternative,
forced-choice task after different amounts of damage to the two
pools of visual units. By 50% damage to either pool of units, the
network is correct for only about 1 in 4 faces. With higher levels
of damage, performance drops further. At 62.5% and 75% dam-
age to face input units, only about 1 in 6 faces are correctly
identified. At these same levels of damage to face hidden units,
performance is not significantly different from 1 in 10, or
chance performance.

Despite the network’s poor performance in the overt tasks
under damage, it manifests covert knowledge of the faces by
relearning correct name-face pairings more quickly than incor-
rect ones. Table 2 shows the average percentage correct naming,
to within a 2-unit matching criterion of the correct name, for
each degree of damage to the face input and hidden units after
0 and 10 epochs of learning for correctly and incorrectly paired
faces and names. Figure 4 shows the learning curves for the net-
work after 50%, 62.5%, and 75% damage to the face input and
face hidden units for the same pairings. Although not all levels
of damage lead to equivalent performance for correct and in-
correct pairings at the outset of training, the learning curve is
steeper, that is, learning is faster for the correct pairings in all
cases. The chance probability of six out of six cases showing the
predicted form of interaction is (.5)%, or .016. Furthermore, the
faster relearning is found even with the four cases in which the

Table 1
Overt Identification in 10-Alternative, Forced-Choice Tasks

Percentage correct

Amount of
damage (%) M SE
Hidden unit damage
12.5 62 4.9
25.0 43 5.0
37.5 43 4.8
50.0 24 4.3
62.5 14 35
75.0 13 34
87.5 8 2.7
Input unit damage

12.5 64 4.8
25.0 56 5.0
37.5 41 4.9
50.0 26 4.4
62.5 17 3.8
75.0 17 3.8
87.5 19 39
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(A) Hidden Unit Lesions

100 ]
90 1
80
70 1
60
50 7
407
30 1
20 ]
10 1

0 v —
00 125 250 375 500 625 750 875 100.0
Percent Units Removed

Percent Correct

(B) Input Unit Lesions

100
90 7]
801
70
60 1
50 1
40 7
301
201
10 1

Percent Correct

00 125 250 375 50.0 625 750 875 100.0
Percent Units Removed

Figure 3. Performance of model at forced-choice naming of faces after
varying degrees of damage to (A) face hidden units and (B) face input
units,

pretraining performance of the damaged network is compara-
ble for correct and incorrect pairings: 62.5% and 75% damage
to face input units and 50% and 75% damage to face hidden
units. Tested individually, over the 10 different random lesions,
these differences in learning rate have chance probabilities of
.0004, .0763, .0671, and .0148 by ¢ test, respectively.

Why does the damaged network relearn correct (old) name-
face associations faster than incorrect (novel) ones? The answer
lies in the ability of the network to incorporate the residual
knowledge in the remaining weights into a new pattern of
weights that enable it to associate names and faces. This can be
verified by comparing the pattern of weights after damage but
before relearning with the pattern of weights after relearning
correct and incorrect face-name associations. Accordingly, we
computed the total sum of the squares (TSS) distance between
the weight matrices for the initial damaged network (which is a

subset of the original set of weights, specifically all weights ex-
cept those going into and out of the eliminated units) and both
the correct and incorrect face-name associations after relearn-
ing. This procedure was repeated for 10 different networks at
each lesion size. As shown in Table 3, the pattern of weights in
the damaged network before relearning is more similar to (lower
TSS) the pattern of weights for the relearned correct face-name
pairings than for the incorrect face-name pairings.

Simulation 2: Speed of Visual Perception

The goal of this simulation was to examine the effect of
different degrees of damage to visual units on the speed of visual
analysis of face patterns and specifically whether speed of anal-
ysis will depend on face familiarity at levels of damage where
faces are not reliably identified. This question is of interest pri-
marily because of de Haan et al.’s (1987b) demonstration that
their prosopagnosic subject could perform physical same-
different matching on faces more quickly when the faces were
previously known to him. Presumably, the effect of familiarity
on speed in this paradigm is not dependent on same—different
matching per se but reflects a difference in the speed of deriving
a visual representation that can be used to compare the appear-
ance of the two faces. Therefore, we have not tried to implement
a same—different matching paradigm here. The relevant issue is
whether visual analysis of a face pattern proceeds more quickly
when the face is familiar than when it is unfamiliar.

In the present model, the speed of visual perception is most
directly measured by the number of cycles needed for the visual
units of the network to settle into a stable pattern after presenta-

Table 2
Savings in Relearning Correct Relative to
Incorrect Face-Name Pairings

Percentage correct
Correct pairings Incorrect pairings
0 epochs 10 epochs 0 epochs 10 epochs

Amount of
damage (%) M SE M SE M SE M SE

Hidden unit lesion

12.5 580 50 980 14 60 24 100 30
25.0 260 44 820 39 80 27 140 35
37.5 340 48 620 49 80 27 180 39
50.0 180 39 500 51 100 3.0 120 33
62.5 200 40 360 4.8 40 20 60 24
75.0 120 3.3 360 438 180 39 140 35
87.5 60 24 240 43 160 37 120 33
Input unit lesion
12.5 680 47 98.0 1.4 00 00 40 20
25.0 580 50 960 20 80 27 40 20
37.5 320 47 720 45 80 27 40 20
50.0 200 40 740 44 60 24 18.0 39
62.5 160 37 180 39 100 3.0 100 3.0
75.0 120 3.3 460 5.0 60 24 240 43
87.5 100 30 180 39 20 14 200 40
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Table 3
Distances Between Weight Matrix Before and Afier 10 Epochs
of Learning for Correct and Incorrect Face-Name Pairings

Distance®
Correct pairing Incorrect pairing
Amount of — —
damage (%) M SE M SE
Hidden unit lesion
12.5 4.84 0.54 19.90 0.60
25.0 7.58 0.76 18.71 0.47
37.5 10.74 0.94 19.57 0.58
50.0 12.67 0.69 19.56 0.68
62.5 15.33 0.77 19.84 0.75
75.0 15.99 0.94 18.13 0.76
87.5 16.14 0.49 15.45 0.71
Input unit lesion
12.5 2.88 0.65 19.20 0.40
25.0 6.81 0.77 19.38 0.62
37.5 11.19 0.87 19.51 0.78
50.0 14.90 1.17 20.68 0.66
62.5 15.87 1.07 19.87 0.66
75.0 16.71 0.87 21.00 0.74
87.5 20.67 1.13 19.10 0.58

a Distance is the total sum of the squares.

tion of a face pattern. Note that we need assume only a mono-
tonic relationship between model settling time and human RT
to interpret the results of the present simulation. Nevertheless,
no transformations of the data are necessary to capture the
qualitative pattern of human RTs.

Method. The model was lesioned as in the previous simulation. The
face portion of the 10 actor and 10 politician patterns were then pre-
sented to the network. As explained earlier, in the description of the
model, the network had been trained on half of these patterns, divided
equally into 5 actors and 5 politicians. The number of cycles needed for
the visual units (input and hidden) of the network to settle was recorded
for each face pattern. The visual units were considered to have settled
when the average change in activation of the units in a cycle was less
than .001. The face input unit activations were allowed to settle by pre-
senting the input pattern as a component of the net input to each unit,
instead of simply clamping the activations (i.e., “soft” clamping). As for
the previous simulation, 10 replications were performed with different
random patterns of damage.

Results and discussion. The settling times for familiar and
unfamiliar face patterns are shown in Table 4 and presented
graphically in Figure 5. At levels of damage causing poor or
chance overt performance (see Table 1), the settling time for
familiar face patterns is nevertheless faster than for unfamiliar
patterns. This pattern is maintained throughout all degrees of
damage to the face hidden units and is present with as much as
50% damage to the face input units.

Why should the familiarity of the pattern affect how quickly
it settles? In an intact network, a familiar input pattern will roll
into an attractor representing the correct pattern of activation
to which it should be associated, because the energy landscape
has been tailored for this purpose. Given that much of the acti-
vation space has been shaped by learning, the trajectory of the
network when presented with the input portion of an unfamil-

iar pattern will also tend toward attractors for the familiar pat-
terns. However, because the activation space has not been spe-
cifically shaped to bring the unfamiliar patterns into attractors,
their trajectories will typically be less direct and more circu-
itous. For this reason, familiar input patterns will settle faster
than unfamiliar input patterns in an intact network.

When the network is lesioned, the loss of units reduces the
dimensionality of the space, and the loss of weights distorts the
shape of the new, lower dimensional energy landscape. Whereas
the new surface will lack some of the topographic features that
draw familiar input patterns into the correct attractors, it will
retain others, so that at least part of the trajectory of at least
some of the familiar patterns will tend to be maintained. In con-
trast, this will be no more true of unfamiliar patterns after dam-
age than before.

The faster settling of familiar patterns is also relevant to
Greve and Bauer’s (1990) finding of greater attractiveness rat-
ings for faces seen previously by their prosopagnosic subject,
which they interpreted as greater perceptual fluency, or speed
of perceptual analysis. With exposure to new patterns, the dam-
aged network will alter its weights to begin to form attractors
for those patterns, although it will arrive at the best set of
weights more slowly than a network that has a larger number
of weights (cf. the slower learning of the increasingly damaged
networks in Simulation 1). This leads to faster settling times
for faces seen postdamage than for completely novel faces, even
before the network has learned to accurately recognize the
patterns.

Indeed, examination of the settling times for the novel
patterns of Simulation 1 (i.e., the novel combinations of faces
and names) shows that, at early stages of learning associated
with chance overt performance in the damaged network, set-
tling time is nevertheless reduced relative to no learning. As
shown in Table 5, at all levels of hidden unit damage and at 4

Table 4
Settling Time for Familiar and Unfamiliar Face Patterns
Number of cycles
Familiar face Unfamiliar face
Amount of
damage (%) M SE M SE
Hidden unit lesion
12.5 154.3 6.9 278.1 14.1
25.0 176.5 11.5 256.3 12.8
37.5 170.6 10.2 267.4 13.8
50.0 162.5 10.8 2235 14.3
62.5 145.0 8.5 191.6 10.1
75.0 124.2 6.9 162.5 8.3
87.5 119.9 12.0 138.3 7.4
Input unit lesion

12.5 187.4 10.2 284.2 18.4
25.0 222.3 10.8 276.4 15.2
37.5 2559 14.2 255.7 14.3
50.0 258.3 11.2 306.6 18.1
62.5 2553 14.4 273.3 15.0
75.0 293.7 14.0 296.6 14.7
87.5 368.9 20.8 359.2 18.8
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Figure 5. Speed of perception of familiar and unfamiliar faces. (Set-
tling time for [A] face hidden units and [B] face input units after varying
degrees of damage, for familiar and unfamiliar faces.)

out of 7 levels of input unit damage, settling time is faster after
Jjust 5 epochs of training than before.

Simulation 3: Semantic Priming of Occupation
Decisions

The goal of this simulation was to examine the effects of
different amounts of damage to the visual units on facilitation
and interference caused by a face prime when judging the occu-
pation of a named person. As a related measure of overt perfor-

mance, the network was presented with the face input patterns
alone to classify according to occupation.

Method. The model was lesioned as in the previous simulations. The
name portions of the 5 familiar actor and 5 familiar politician patterns
were presented to the network, paired with face patterns from the same
group of individuals. Each of the 10 names was presented in three con-
ditions: alone, paired with the nonidentical same-occupation faces, and
paired with the different-occupation faces. The number of cycles needed
for one of the occupation units, actor and politician, to attain a positive
activation value was recorded. (The bias weights, learned during train-
ing, were largely inhibitory, leaving the units in a negative state in the
absence of input activation.) As usual, 10 replications of the simulation
with different random lesions in each of the two pools of units were
carried out.

The overt ability of the network to derive occupation information
from the face patterns was measured by recording which occupation
unit reached threshold (i.e., became positive) after presentation of the
face. For trials on which neither unit reached threshold, the network
was assumed to guess with probability .5 of being correct. The rationale
for scoring performance in this way, rather than taking the larger activa-
tion of the two regardless of whether either are positively activated, is
that units, like neurons, have a categorical quality to their state. In the
present model, there is a categorical difference between the way in which
positive- and negative-valued activation in a unit affects the other units
to which it is connected. For example, a negatively activated unit will
inhibit units to which it is connected by positive weights but will excite
them when its activation goes positive. Note that the method of scoring
overt categorization was lenient in that we only require the sign of the
activation to be correct.

Results and discussion. The performance of the network on
the overt occupation decision for faces is shown in Table 6. With
lestons to hidden units or input units of 50% and 62.5%, the
network’s performance falls in the range of 59%—-65% correct.
This is roughly similar to the performance of the prosopagnosic

Table 5
Settling Time for Novel Patterns Before and After a
Small Amount of Learning

Number of cycles
After training 5
Before learning epochs
Amount of
damage (%) M SE M SE
Hidden unit lesion
12.5 376.0 18.8 365.0 21.1
25.0 476.2 26.9 430.9 26.3
37.5 475.3 239 419.1 30.0
50.0 S13.9 29.2 465.8 25.7
62.5 506.6 249 438.3 23.6
75.0 521.6 25.7 467.2 25.3
87.5 669.4 35.0 431.6 18.2
Input unit lesion
12.5 369.5 22.0 365.8 22.5
25.0 473.3 273 446.7 29.3
37.5 464.3 21.4 486.1 334
50.0 529.4 314 474.3 234
62.5 506.3 26.9 462.8 26.6
75.0 538.5 25.3 468.2 21.7
87.5 469.6 22.6 544.2 36.5
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Table 6
Overt Occupation Categorization
Percentage correct
Amount of
damage (%) M SE
Hidden unit damage
12.5 85.5 3.1
25.0 77.0 33
37.5 74.0 4.4
50.0 62.5 4.5
62.5 59.5 5.1
75.0 530 5.0
87.5 51.5 4.5
Input unit damage
12.5 88.0 1.2
25.0 86.5 2.3
37.5 73.0 3.4
50.0 64.5 4.4
62.5 59.5 49
75.0 57.5 4.8
87.5 57.0 5.0

patient reported by de Haan et al. (1987a, 1987b), who ob-
tained 55.5% and 62.5% correct in comparable tasks.

Table 7 and Figure 6 show the number of cycles required for
the correct occupation unit to become positive after presenta-
tion of a name, without an accompanying face, and with faces
from the same- or different-occupation category. Fewer cycles
are required for the occupation units to attain positive values
when the face and name are from the same-occupation category
than when they come from different-occupaton categories. The
effect of the face is evident at all but the most extreme levels of
damage. In particular, it is evident at the levels of damage to
input and hidden units whose corresponding overt performance
was discussed earlier. The data from the no-face condition sug-
gest that, as in de Haan et al’s (1987a, 1987b) studies, the effect
is primarily one of interference rather than facilitation.

The mechanism by which faces affect performance in the
present model is as follows: To the extent that the presentation
of a face pattern causes any activation to propagate into the rest
of the network, this activation will influence the activation of
the occupation units, even if it is not in itself sufficient to bring
them all the way to threshold. At first glance this would seem
to predict both facilitation and interference. Facilitation would
arise because the face would contribute activation toward its
occupation unit, and if the name has the same occupation, less
additional activation from the name pattern would be needed
for that occupation unit to attain a positive value. Interference
would be predicted because the negative correlation between
the two occupation units’ activations, over the set of known pat-
terns, would have resulted in an inhibitory connection between
them having been learned by the network, so that the activation
of either occupation unit would tend to inhibit the activation of
the other. In effect, the network learns which subpatterns are
consistent and inconsistent with which others, and inconsistent
subpatterns (e.g., the single-unit actor or the single-unit politi-
cian) will tend to inhibit each other. The lack of an observed

facilitation effect is attributable to mutual inhibition of the pat-
terns for different individuals in the same-occupation category
counteracting the facilitation mechanism just described. That
is, some of the units activated by the name, which would nor-
mally contribute activation to the occupation unit, are them-
selves being inhibited by the influence of the face pattern.

A similar account has already been presented by Burton et al.
(1991) to explain semantic priming by faces in prosopagnosia.
They adapted a model of normal face recognition, developed by
Burton, Bruce, and Johnston (1990), which was based on the
McClelland and Rumelhart (1981) IAC architecture. In the
Burton et al. model, there are three pools of units, face recogni-
tion units (FRUs), semantic information units, and name units,
all connected by way of personal identity units (PINs), which
serve to index the appropriate parts of each individual’s repre-
sentation to one another. They model covert recognition by
leaving intact all units, including the FRUS, and attenuating the
connections between the FRUs and the PINs. Semantic priming
by faces is therefore the result of attenuated activation of se-
mantic and name units coming from intact FRUs, which is in-
sufficient to push semantic or name units over threshold for an
overt response but lowers the amount of activation from name
inputs needed to reach threshold.

The structural similarities between their model and ours in-
clude the three types of units (excluding PINs) and the use of a
connectionist architecture. Perhaps more important, both
models agree that the basic mechanism for semantic priming
after damage involves subthreshold activation of semantic rep-
resentations. The models differ structurally in that their repre-
sentations are local, whereas ours are distributed, and their con-

Table 7

Time to Categorize Names According to Their Occupation
Alone and in the Presence of Same- and
Different-Category Faces

Cycles for correct occupation unit
to attain positive activation

Different

No face Same category category

Amount of
damage (%) M SE M SE M SE

Hidden unit damage

12.5 50.5 5.5 490 44 1428 13.6
25.0 49.8 5.9 75.3 9.1 150.5 12.2
37.5 55.3 5.8 76.1 9.3 110.1 8.9
50.0 70.8 13.3 81.6 8.9 114.0 8.8
62.5 66.6 13.9 59.6 6.5 82.1 6.9
75.0 73.0 15.1 84.0 7.6 98.0 7.8
87.5 62.8 9.1 72.9 9.2 66.9 5.0
Input unit damage
250 69.6 9.2 101.7 9.2 71.0 16.0
378 55.8 5.6 88.9 8.3 96.3 20.2
12.5 52.0 4.4 115.4 9.3 553 9.3
50.0 101.3 10.4 146.5 13.1 126.9 21.6
87.5 76.3 7.6 78.8 6.7 144.0 27.2
62.5 106.0 1.2 131.8 11.3 123.0 24.2
75.0 107.5 10.9 120.6 10.7 130.9 21.9
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Figure 6. Semantic priming. (Time needed for correct occupation
unit to reach threshold when name input is accompanied by face of
same occupation, different occupation, or no face, for varying degrees
of damage to [A] face hidden units and {B} face input units.)

nections are hand wired, whereas ours are set by learning. One
of the most obvious consequences of these differences is that
our model can attempt to account for savings in face-name re-
learning (Simulation 1), whereas the hand-wired model cannot.
A further, indirect result of the learning process in our model
was the development of inhibitory relationships among patterns
for different individuals, which causes the model to evince more
interference than facilitation in the occupation semantic-prim-
ing task (Simulation 3), just as real human subjects do. Our use
of distributed, as opposed to local, representations allowed us

to simulate the effects of familiarity within that system on set-
tling time (Simulation 2). Perhaps most important, in a model
with distributed face representations, which undergo “graceful
degradation,” it seems natural to explore the effects of degrad-
ing the face recognition system proper, and this provided the
basis for all of our simulations.

The same mechanism proposed here, in principle, explains
Young et al’s (1988) finding of semantic priming of names by
associated faces in a name familiarity task. In this case, the rel-
evant locus of priming would not be limited to occupation units
but would involve any part of semantics shared by the priming
and target individuals. Indeed, Burton et al. (1991) were also
able to simulate the two kinds of priming task in the same way.

Simulation 4: Covert Recognition of Overtly
Unrecognized Faces

In this final section, we demonstrate that the preserved covert
recognition ability in the damaged network is not the result of
the network’s preserved overt recognition ability for a subset of
the familiar patterns. The demonstration takes the form of a
series of existence proofs. For each of the three tasks that were
simulated, we tested the covert recognition performance of the
network just on the subset of faces that it failed to recognize in
the overt recognition tests.

Method. A randomly selected 50% of the face hidden units were dam-
aged, and the resulting network was tested on the overt 10-alternative,
forced-choice recognition test. The 2 faces out of 10 that were correcty
identified were eliminated from the set of test faces. For the semantic-
priming experiment, only the 5 faces that were not correctly categorized
as actors or politicians were retained in the test set. The damaged net-
work was then tested for covert recognition in the three previously de-
scribed tasks.

Results and discussion. The network relearned the correct
associations among the eight faces and names faster than the
incorrect: After damage and before learning, it obtained a score
of 0% correct for both the correct and incorrect name—face
pairs. After 10 epochs of learning, more learning had taken
place for the correct pairs: The network obtained a score of 50%
correct for the correct pairs and 0% correct for the incorrect
pairs. '

As before, presentation of a face from the wrong occupation
category delayed the relevant occupation unit from reaching
threshold when a name was presented. The mean number of
cycles to reach threshold was 70.0 when no face was presented,
33.6 when a face from the same category was presented, and
94.9 when a face from the other category was presented. Settling
time in the face units was faster for the 8 previously learned
faces than for the 10 novel faces, on average 200.8 and 232.2
cycles, respectively.

In summary, the covert recognition abilities displayed by
damaged attractor networks does not depend on the presence in
the test set of any overtly identified face patterns.

General Discussion

We have shown that some very general properties of neural
networks lead to preserved performance, after network damage,
for the types of tasks used to measure covert recognition in
prosopagnosia. Specifically, we have simulated in varying de-
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grees of detail three types of behavioral tasks used to document
covert recognition. At levels of damage associated with low
overt identification and categorization performance of face pat-
terns, the network continues to manifest knowledge of the faces
when tested by the covert tasks. Of additional interest is the fact
that visual portions of the network were damaged in these sim-
ulations, demonstrating that one need not conclude that visual
recognition is intact in cases of prosopagnosia with covert rec-
ognition. In the remainder of this article, we discuss the im-
plications of these results for our understanding of covert face
recognition, other covert visual abilities, prosopagnosia, and
consciousness.

Covert Face Recognition

Previous attempts to explain covert recognition of faces in
prosopagnosia have assumed that covert and overt recognition
are dependent on at least partly distinct components of the cog-
nitive architecture, somehow disconnected by brain damage,
and that the visual recognition component is intact. In contrast,
we have shown that the same systemn may subserve both overt
and covert visual recognition and that damage to this system
may spare covert recognition relative to overt recognition. This
result is another example of how connectionist architectures
can provide unified accounts of dissociations that initially ap-
pear to imply the existence of separate mechanisms (Rumelhart
& McClelland, 1986; Seidenberg & McClelland, 1989).

Of course, the results of our simulations do not prove that our
account is correct, merely that it is possible. Nevertheless, we
find it plausible for three reasons: First, it follows from a set of
independently motivated computational principles. These in-
clude the robustness and efficiency of distributing knowledge
among a large number of connections (relevant to all simula-
tions, but especially Simulation 1), the notion that there is a
degree of fit between a network and any input pattern (relevant
to Simulation 2), and the utility of having a threshold for activa-
tion flow between units (relevant to Simulation 3). Second, it is
consistent with the available data on overt and covert performa-
nce in prosopagnosic patients, specifically the occasional suc-
cess in overt tasks by these patients. Third, it is a parsimonious
account. It is not necessary to invoke separate brain centers for
recognition and overt awareness of recognition, and only one
face recognition system is hypothesized (cf. Bauer, 1984). Fur-
thermore, consideration of the lesion sites and associated per-
ceptual deficits in cases of prosopagnosia suggest that the visual
system is likely to have been damaged.

In our view, the phenomenon of covert recognition in pros-
opagnosia is no less interesting or important if it is explained in
terms of incomplete damage to the face recognition system. The
fact that recognition can be manifest in different ways, some of
which are accompanied by conscious awareness and others are
not, and that this distinction appears to be coextensive with
their vulnerability to brain damage, is of obvious high impor-
tance to the understanding of perception and the brain. We are
merely pointing out that the most straightforward explanation
of this dissociation, that the face recognition system is spared
and the impairment in overt recognition tasks arises elsewhere,
is not the only possibility. In addition to questioning the prevail-

ing hypothesis, we are offering a new one that has the advantage
of being more explicit about mechanism.

Covert Recognition in Other Syndromes

In addition to covert recognition in prosopagnosia, there are
several other syndromes in which indirect tests of visual percep-
tion seem to reveal greater capacities than are apparent on stan-
dard overt tests (see Farah, in press, for a review). Can these
dissociations also be explained in terms of a single damaged
network capable of supporting performance of some tasks and
not others? In principle, they could, although there is no reason
to assume that all of the syndromes will have the same explana-
tion. In some cases, there is clear evidence favoring the involve-
ment of at least partially distinct systems subserving overt and
covert perception. We briefly review the other syndromes and
assess the applicability of the present hypothesis, that covert
perceptual abilities reflect the functioning of a damaged, but
not obliterated, visual system.

Blindsight. The phenomenon of blindsight, in which corti-
cally blind patients who deny having any visual experience can
localize and discriminate visual stimuli, was the first neuropsy-
chological dissociation involving conscious awareness to be
studied in detail. Although it was initially subject to much skep-
ticism, two decades of careful research have demonstrated to
most people’s satisfaction that the dissociation is real, and cur-
rent efforts center on elucidating the specific neural systems re-
sponsible for the nonconscious components of visual perception
in blindsight (see Weiskrantz, 1990, for a review). Although it
has been suggested that the visual abilities in blindsight may
be mediated by residual functioning of spared primary visual
cortex (Campion, Latto, & Smith, 1983), there is evidence of
disproportionate involvement of the subcortical visual system
in at least some of these abilities. For example, asymmetries
in the processing of visual stimuli between nasal and temporal
hemifields suggests that the subcortical visual system (which re-
ceives disproportionate input from the temporal hemifield)
plays a primary role in some of the covert visual abilities in
this syndrome (e.g., Rafal, Smith, Krantz, Cohen, & Brennan,
1990). A wealth of other evidence (summarized by Weiskrantz,
1990) suggests that more than one visual pathway may be in-
volved in the preserved abilities of blindsight patients but that
the residual functioning of the primary visual cortex is not a
necessary factor,

Implicit reading. Another form of visual recognition in the
absence of conscious awareness of recognition can be found in
certain patients with pure alexia. Pure alexic patients are, by
definition, impaired in reading but have roughly normal audi-
tory word comprehension and writing, and their underlying
deficit is therefore inferred to be one of visual word recognition.
To the extent that they are able to read, they do so by a slow and
laborious letter-by-letter strategy, and their reading can there-
fore be obliterated entirely by presenting words briefly. How-
ever, with brief presentations of words, some pure alexic pa-
tients are able to derive considerable information from the
words, even though they report being unable to recognize the
words and even though they cannot name the words (e.g., Shal-
lice & Saffran, 1986; Coslett & Saffran, 1989). For example,
with presentations too brief for any explicit reading, these pa-
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tients are able to discriminate words from orthographically le-
gal nonwords and to classify words as belonging to a certain
category (e.g., animals or foods) at levels far above chance. Im-
plicit reading may also be carried out by different systems from
those subserving normal explicit reading. The hypothesis of
right-hemisphere mediation of implicit reading (in contrast
with the predominant role of the left hemisphere in normal
reading) is supported by the relative absence of implicit reading
for abstract words, function words, and grammatical inflec-
tions, and the lack of access to phonology, all characteristics of
the right-hemisphere lexicon (Coslett & Saffran, 1989). Never-
theless, it is conceivable that this profile of reading abilities
would also emerge from damage to the left-hemisphere reading
system, as discussed by Shallice and Saffran (1986). For exam-
ple, differences between word classes such as word frequency
and availability of collateral support from semantic representa-
tions may confer different degrees of robustness to damage on
them. However, differences in the regularity of mapping among
print, meaning, and phonology could also affect the robustness
of these mappings in the network after damage and would seem
to predict lesser rather than greater vulnerability of phonology
relative to semantics.

Unconscious perception of extinguished visual stimuli. Ex-
tinction refers to the impairment in perception of a contrale-
sional stimulus when presented simultaneously with an ipsile-
sional stimulus. Volpe, Ledoux, and Gazzaniga (1979) tested
the ability of right parietal-damaged patients to perceive con-
tralesional visual stimuli in two ways. First, the patients were
shown a tachistoscopic presentation of a pair of stimuli (line
drawings or words), one on each side of fixation, and were asked
to name what they saw. In this task, the patients manifested
visual “extinction” of the left stimulus by the right, which is
typical of right parietal-damaged patients: the right stimulus
was generally named correctly, but the left stimulus was not,
and patients sometimes even denied that the left stimulus had
been presented. In contrast, the patients performed well in a
second kind of task with the same stimuli. When asked whether
the two stimuli presented on a given trial were the same or
different, the patients were highly accurate, even though this
task requires perception of the left stimulus. Volpe et al. inter-
preted their findings as revealing “a breakdown in the flow of
information between conscious and nonconscious mental sys-
tems” (p. 724). However, it is possible that these findings can be
explained in terms of the residual functioning of a damaged
visual system, rather than a dissociation between two types of
system, one conscious and one unconscious.

Farah, Monbheit, and Wallace (1991) showed that the dissoci-
ation observed by Volpe et al. could be obtained in normal sub-
Jects simply by placing a translucent sheet of drafting stock over
the left half of the display to degrade subjects’ perception of
stimuli on the left. We also showed that the dissociation could
be eliminated in parietal-damaged patients with extinction
when the overt and covert tasks were matched for the precision
of visual perception required by each. This implies that the dis-
sociation between overt and covert perception after parietal
damage is also due to differences in the quality of information
needed to support performance in the two types of task, with
performance in the covert task again more robust to low-quality
information. The nature of the information degradation ap-

pears to be different in the two cases, however. In prosopagnosia,
what is degraded is the pattern of previously learned associa-
tions within the visual recognition system, so that the effects of
prior learning on perception are disrupted. In extinction, there
is no structural impairment of representations, as evidenced by
the ability of patients with extinction to perceive normally in
the absence of a simultaneously occuring ipsilesional stimulus.
Rather, the locus of degradation appears to be before visual rec-
ognition, affecting the input to visual recognition memory. This
is consistent with our ability to simulate covert recognition in
extinction by degrading the stimulus input to normal subjects.

The most general implication of the present model for the
study of covert perception is that it demonstrates another mech-
anism by which overt and covert processing can be dissociated,
beyond those previously considered by neuropsychologists.
Schacter et al. (1988) listed three general types of account for
overt—covert dissociations: conservative response bias in the
overt tasks, disconnection from language (on the assumption
that language is more involved in the overt tasks) and truly dis-
tinct and thus dissociable processing systems for overt and co-
vert performance. To these we would add a fourth: differential
susceptibility to damage of overt and covert performance. We
have shown how knowledge can reside in a damaged network
but be inaccessible for most purposes, for reasons quite distinct
from either the signal-detection theory concept of bias or a dis-
connection from other systems. As Hinton and Plaut (1987)
showed, savings in relearning reveals the knowledge retained in
damaged networks that is not apparent in the overt performa-
nce of the network. We have extended these findings to two
other measures of covert knowledge in damaged networks:
speed of settling and priming.

Prosopagnosia

The finding that some prosopagnosic patients manifest covert
recognition and others do not has been taken as an indication
that there are two different types of prosopagnosia: one caused
by a visual perceptual impairment per se and the other caused
by a disconnection of visual recognition and other, conscious,
mental systems (e.g., Bauer, 1986; Bruyer, 1991; Burton et al.,
1991; de Haan et al., 1992; Newcombe et al., 1989). However,
our analysis suggests that these two groups of prosopagnosic pa-
tients are more likely to differ in severity than in kind. In par-
ticular, the similarity of the effects obtained when we lesioned
face input units and face hidden units suggests that the presence
of covert recognition may not be a precise way of discriminating
different functional loci of damage. In fact, lesions further
downstream in our model also showed similar effects to the ones
reported here. This is a consequence of the highly interactive
nature of the model. The nonlocalizability of errors resulting
from damage in interactive models has been discussed in detail
by Hinton and Shallice (1991) for their model of reading. This
is not to deny that prosopagnosia may be accompanied by, or
may even result from, impairments of different levels of visual
face processing.

Consciousness

The dissociations between covert and overt perception in
prosopagnosia and in other syndromes are of interest indepen-
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dent of the association between overt perception and conscious-
ness. The fact that knowledge may be accessible in certain tasks
and not in others is somewhat counterintuitive and promises
insights into how information is represented in the brain. In-
deed, this has been the focus of the present article. However, it
cannot be denied that part of the fascination of these dissocia-
tions comes from the involvement of consciousness, specifically
the patients’ seemingly earnest denials of conscious awareness
of stimulus properties of which they show knowledge in certain
tasks. On the basis of our research, can we offer any insights
into consciousness?

We believe that neuropsychological evidence can indeed an-
swer certian questions about consciousness, specifically those
concerning its physical correlates. In the present case, it appears
that conscious awareness of recognition is correlated with a cer-
tian minimal quality of information representation within the
visual recognition system. Why should the likelihood of con-
scious awareness depend on the quality of the representation?
Kinsbourne (1988) has suggested that stimuli reach conscious
awareness only when they are integrated into the global infor-
mation-processing state of the brain as a whole. He has also
suggested that faulty perceptual processing of a stimulus will
decrease the likelihood that it will become integrated. This idea
is consonant with the dynamics of neural networks, particularly
attractor networks such as the one presented here: When a new
input pattern is presented, it pulls the network into a new at-
tractor state, with each part of the network taking on new acti-
vation values that are integrated in the sence of being mutually
compatible. When the input patterns are degraded by damage
to perceptual units, they loose their ablility to pull the remain-
ing parts of the network into an integrated state consistent with
themselves (i.e., ssmantics and name units no longer take on the
patterns corresponding to the presented face), even for levels of
degradation at which residual information can be detected by
other means (that do not involve propagating information
throughout the system). In summary, our model suggests that
an important neural correlate of conscious awareness in per-
ception is the quality of perceptual representation, perhaps be-
cause perceptual quality limits the ability of perceptual repre-
sentations to draw other parts of the system into an integrated
state with themselves.
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1994 APA Convention “Call for Programs”

The “Call for Programs” for the 1994 APA annual convention appears in the September issue
of the APA Monitor. The 1994 convention will be held in Los Angeles, California, from
August 12 through August 16. The deadline for submission of program and presentation
proposals is December 3, 1993. Additional copies of the “Call” are available from the APA
Convention Office, effective in September. As a reminder, agreement to participate in the
APA convention is now presumed to convey permission for the presentation to be
andiotaped if selected for taping. Any speaker or participant who does not wish his or her
presentation to be audiotaped must notify the person submitting the program either at the
time the invitation is extended or before the December 3 deadline for proposal submission.




