RATIONAL DECISIONS



Preferences

Consider an agent who chooses among alternatives (A, B, etc.), sometimes
called states, outcomes, or prizes.

Agent may also choose among lotteries, i.e., situations with uncertain prizes

Lottery L. = [p, A; (1 —p), B 1-p

Notation:
A> B A preferred to B
A~ B indifference between A and B

AZ B B not preferred to A



Constraints on preferences

Preferences of a rational (sensible) agent must obey certain constraints.

Orderability
(A= B)V(B>=A)V (A~ B)

Transitivity
(A-=B)AN(B>C) = (A>C)

Continuity
A=B»~C = dp [p,A; 1 —p,C|~ B

Substitutability
A~B = [p,A; 1—-p,C]~[p,B;1—p,C]

Monotonicity
A=B = (p>q & [p,A; 1—p,B|<[q,4; 1—q,B))




Constraints on preferences

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give

away all its money

It B = (', then an agent who has <
would pay (say) 1 cent to get B 1c 1c
It A > B, then an agent who has B
4
would pay (say) 1 cent to get A B C
A\
If C' = A, then an agent who has A \10/

would pay (say) 1 cent to get C



Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944)
Given preferences satisfying the previous constraints, there exists a
real-valued function U such that

U(A)>U(B) <& AZXB
U(lp1,S1; - pnySn)) = 23 pU(S))

Choose the action that achieves the maximum expected utility (MEU).

An agent that chooses according to MEU is rational:
If the utility function reflects the performance measure by which the
agent is judged, it will achieve the highest possible performance.

MEU principle still applies when environment is uncertain
(expectation is over all forms of uncertainty).

Note: An agent can be rational without ever representing or manipulating
utilities and probabilities (e.g., look up table behavior for tic-tac-toe).



Utilities

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities:
Define “best possible prize,” having utility u.
Define “worst possible catastrophe,” having utility | .
To evaluate utility of some state A, compare it to lottery
L=p,ut;(1—p),ul.
Adjust p until A ~ L, yielding U(A) = p(ut —uy) +u,.

0.999999 continue as before

pay $30 -~ ]

instant death



Utility scales

Normalized utilities: v+ = 1.0, ©; = 0.0

Micromorts: one-millionth chance of death
useful for assessing product risks

QALYSs: quality-adjusted life year (one year in good health)
useful for medical decisions involving substantial risk

Note: behavior is invariant with respect to positive linear transformation

U'(x) =kU(x)+ky where ki >0



Utility of money

Money does not translate directly to utility: U($m) # m.
E.g., would you rather have a prize of $5000, or enter a lottery [.5, $10000; .5, $0]?

Empirical utility curve: For what p are you indifferent between prize $m and

a lottery [p,$M; (1 — p),$0]|, where M is some fixed large number.
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People are risk averse when it comes to gains, risk prone when it comes to
losses (extrapolation).



Decision networks

Decision network = belief network + utility nodes + action nodes

Complete model for one-shot rational decision making

Airport Site

Algorithm:
For each value of action node
compute expected value of utility node given action and evidence
Return action yielding MEU



Multiattribute utility

How can we handle utility functions of many variables X, ... X7
E.g., what is U(Deaths, Noise, Cost)?

Need an arbitrary look up table in the worst case, with O(d") entries.
How can we simplify these complex utility functions?

Scheme 1: identify conditions under which decisions can be made without
complete identification of U(z1,...,z,)

Scheme 2: identify various types of independence in preferences
and derive resulting canonical forms for U(x1, ..., x,)
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Strict dominance

Define variables X ... .X,, such that U is monotonic in each

Strict dominance: choice B strictly dominates choice A iff

Vi Xi(B) > X;(A)

Thisregion X5
/ dominates A A
°D
>X1

Deterministic attributes

(and hence U(B) > U(A))

Strict dominance seldom holds in practice

Uncertain attributes

>X1
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Stochastic dominance: Univariate example
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Choice S; stochastically dominates choice S if V&
P(S; > x) > P(Sy > x) or equivalently, P(S; < x) < P(5; < x)

If S1 and S5 have outcome distributions p; and p»,
Vo [ p(t)dt < [ po(t)dt

If U is monotonic in =, [°._ pi(z)U(x)dz > [72 po(x)U(x)dz
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Stochastic dominance cont.

Multivariate case: stochastic dominance on all attributes = optimal

Stochastic dominance can often be determined without
exact distributions using qualitative reasoning

E.g., construction cost increases with distance from city
S is closer to the city than S5 =
S stochastically dominates S, on cost

E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information:
X 3 Y (X positively influences Y') means that
Vi, x9 x1 > x9 = P(Y|x1,2) stochastically dominates P (Y |9, z)
for every value z of Y's other parents Z
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Independence: Deterministic Environments

X1 and X preferentially independent of X35 iff
preference between (x1, zo, x3) and (x), x}, x3) does not depend on 3

E.g., (Noise, Cost, Safety):
(20,000 suffer, $4.6 billion, g deaths/mpm) vs.
(70,000 suffer, $4.2 billion, ¢ deaths/mpm)

X1....X, are mutually preferentially independent if each pair of variables is
preferentially independent of each other variable.

Mutual preferential independence =- existence of additive value function:

V(S) = 2;Vi(Xi(9))
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Independence: Stochastic environments

Need to consider preferences over lotteries:
Set of variables X is utility-independent of X, if
preferences over lotteries in X do not depend on X,.

Set of variables X is mutually utility independent if each subset of its vari-
ables is utility-independent of the remaining variables.

Mutual Ul implies existence of a multiplicative utility function:
U(X) = k1U1<X) + ngQ(X) + ngg(X)
+ k1k2U1<X)U2(X) + kagUQ(X)Ug(X) + k3k1U3<X>U1(X)
+ k1koksU (X)Usy(X)Us(X)

Note: N component single-variable utility functions and NV free parameters.
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Value of information

|dea: compute value of acquiring each possible piece of evidence
Can be done directly from decision network

Example: hidden money
Holding $1 coin in one closed hand
P(left) = P(right) = .5
You can pay $0.50 to guess which hand has coin.
Liz offers to tell whether left hand contains coin. Fair price?

Solution: compute expected value of information
= expected value of best action given the information
minus expected value of best action without information

= 0.50 - 0.00 = 0.50
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General formula

Current evidence F/, current best action «
Possible action outcomes 5;, potential new evidence F;

FU(alF) = max 23 U(S;) P(S;|E, a)
Suppose we knew £; = e, then we would choose e, St
EU(Oéejk|E, Ej = ejk) = mgx Zz U(SZ) P(SZ|E, a, Ej = ij>

E; is a random variable whose value is currently unknown
= must compute expected gain over all possible values:

VP[E(E]) = <Zk P(EJ = 6j]€|E)EU(Oéejk‘E, Ej = ij)> — EU(O&‘E)

(VPI = value of perfect information)
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Properties of VPI

Nonnegative—in expectation, not post hoc
Vi, E VPIg(E;) >0
Nonadditive—consider, e.g., obtaining £, twice
VPIg(E;, Ey) # VPIg(E;) + VPIg(Ey)
Order-independent
VPIg(Ej, Ey) = VPIg(E;) + VPIpp(Ey) =V PIg(Ey) +VPIg g (E))

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
= evidence-gathering becomes a sequential decision problem
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Qualitative behaviors

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a lot
c) Choice is nonobvious, information worth little

P(UIE;) P(UIE;) P(UIE;)

U, Uy U, Ug U, Uy

(@ (b) (©)



