REINFORCEMENT LEARNING

Markov decision problem

MDP consists of:

States $s \in S$

Actions $a \in A$

Model $T(s,a,s') \equiv P(s'|s,a) = \text{probability that } a \text{ in } s \text{ leads to } s'$ Reward function R(s)

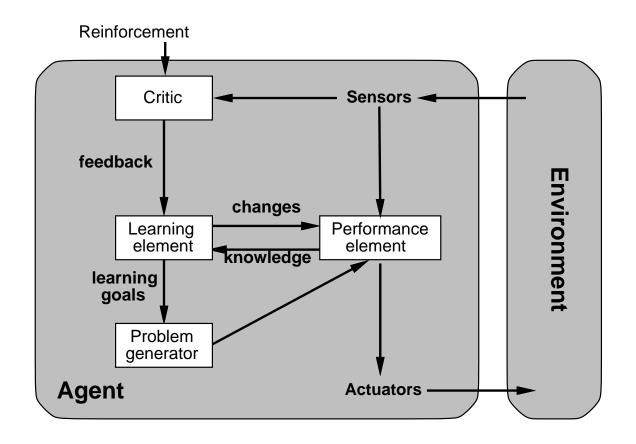
Previous topic: determine optimal policy, $\pi^*(s)$ given T(s,a,s') and R(s)

Next topic: determine optimal policy, $\pi^*(s)$ when T(s,a,s') and R(s) are unknown.

E.g., navigating an unfamiliar city

E.g., pole balancing

Interaction with an unknown environment



The reinforcement learning problem

At each time step t, the agent is in some state s_t .

Agent must choose an action a_t .

Action causes state update $s_{t+1} = \delta(s_t, a_t)$ and agent receives reward $r(s_{t+1})$

Passive reinforcement learning

Agent's policy π is fixed; goal is to learn utility function

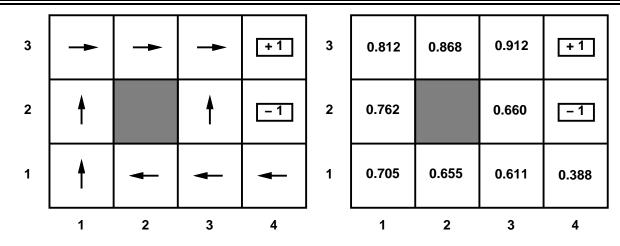
$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^t R(s_t) | \pi, s_0 = s\right]$$

Cannot use value iteration algorithm

$$U(s) \leftarrow R(s) + \gamma \max_{a} \sum_{s'} U(s') T(s, a, s')$$
 for all s

because T and R are unknown.

Passive reinforcement learning (contd.)



Idea: Run a series of trials

$$(1,1)_{-.04} \rightarrow (1,2)_{-.04} \rightarrow (1,3)_{-.04} \rightarrow (1,2)_{-.04} \rightarrow (1,3)_{-.04} \rightarrow (2,3)_{-.04} \rightarrow (3,3)_{-.04} \rightarrow (4,3)_{+1}$$

$$(1,1)_{-.04} \rightarrow (1,2)_{-.04} \rightarrow (1,3)_{-.04} \rightarrow (2,3)_{-.04} \rightarrow (3,3)_{-.04} \rightarrow (3,2)_{-.04} \rightarrow (3,3)_{-.04} \rightarrow (4,3)_{+1}$$

$$(1,1)_{-.04} \rightarrow (2,1)_{-.04} \rightarrow (1,1)_{-.04} \rightarrow (1,2)_{-.04} \rightarrow (1,3)_{-.04} \rightarrow (2,3)_{-.04} \rightarrow (3,3)_{-.04} \rightarrow (3,2)_{-.04} \rightarrow (3,4)_{-1}$$

Scheme 1: Direct estimation of utility

Compute expectation over observed state sequences:

$$U^{\pi}(s) = E_{sample} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) | \pi, s_{0} = s \right]$$

Problem: Fails to exploit knowledge about how states are connected.

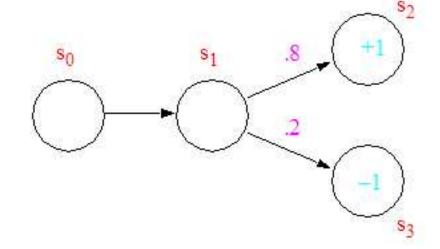
Utility of a state s is related to expected utility of successor states s':

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} T(s, \pi(s), s') U^{\pi}(s')$$

Previously, much experience with s_1 :

$$s_7 \rightarrow s_1 \rightarrow s_2$$
 $s_4 \rightarrow s_1 \rightarrow s_3$
 $s_4 \rightarrow s_1 \rightarrow s_2$
 $s_5 \rightarrow s_1 \rightarrow s_2$

Now, $s_0 \rightarrow s_1 \rightarrow s_2$.



Scheme 2: Adaptive dynamic programming

Learn $T(s, \pi(s), s')$ and R(s) and then apply ordinary value iteration.

How do we learn?

Keep track of $N(s, \pi(s), s')$, the count of the number of times the policy took agent from s to s'.

$$\hat{T}(s, \pi(s), s') = N(s, \pi(s), s') / \sum_{x} N(s, \pi(s), x)$$

Keep track of r(s), the total reinforcement received in state s.

$$\hat{R}(s) = r(s) / \sum_{x,y} N(s,y,x)$$

Model based versus direct (model free)

Scheme 3: Temporal difference (TD) learning

Direct method that exploits the identity

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} T(s, \pi(s), s') U^{\pi}(s')$$

or, if state transitions are deterministic,

$$U^{\pi}(s) = R(s) + \gamma U^{\pi}(s')$$

Use observed transitions to adjust values of observed states to agree with the identity:

$$U^{\pi}(s) \leftarrow R(s) + \gamma U^{\pi}(s')$$

Because rewards and transitions can be nondeterministic, don't simply replace utility estimate, average old and new:

$$U^{\pi}(s) \leftarrow (1 - \xi)U^{\pi}(s) + \xi[R(s) + \gamma U^{\pi}(s')] \text{ with } \xi \in [0, 1]$$
$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \xi[R(s) + \gamma U^{\pi}(s') - U^{\pi}(s)]$$

Active reinforcement learning

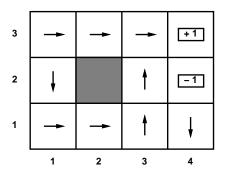
Active \equiv choice of action is not given; must be learned.

I.e., find π^* that maximizes cumulative reward.

Active greedy reinforcement learning

- start with random policy
- use ADP to estimate world model and utility function
- use utility function and one-step lookahead to update policy
- repeat

Initial policy has a big impact on ultimate policy \rightarrow agent seldom discovers optimal policy



Exploration - Exploitation Dilemma

Should we use current policy, or try out alternative actions to see if they are better?

E.g., exploring a new city

Possibilities:

- with probability μ , choose random action instead of action prescribed under current policy
- softmax: $P(a|s) = \alpha \sum_{s'} T(s,a,s') \exp(U(s')/\nu)$
- initially μ or ν large, but decrease over time (stationary env.)
- initialize utility function with optimistic estimates of utility (any unexplored state will be preferred over an explored state)

E.g., eating

Lousy strategy will reflect utilities under current policy

Q values

Active ADP agent constructs explicit model of environment— $T(s,a,s^\prime)$ and R(s).

Direct alternative to model-based approach: Q values

Q(a,s): Utility of taking action a in state s $U(s) = \max_a Q(a,s)$

$$Q(a,s) = R(s) + \gamma \sum_{s'} T(s,a,s') U(s') \qquad \text{for all } s,a$$

— immediate reward received upon executing action a in state s, plus discounted utility of following optimal policy thereafter.

Equivalently,

$$Q(a,s) = R(s) + \gamma \sum_{s'} T(s, a, s') \max_{a'} Q(a', s')$$

Q learning

Given

$$Q(a,s) = R(s) + \gamma \sum_{s'} T(s,a,s') \max_{a'} Q(s',a')$$

use TD updating procedure on Q given observed sequence of states and rewards:

$$Q(a,s) \leftarrow (1-\xi)Q(a,s) + \xi[R(s) + \gamma \max_{a'} Q(a',s')]$$

Requires exploration strategy!

Optimal policy:

$$\pi^*(s) = \operatorname{argmax}_a Q(a, s)$$

Comments on Q learning

Theorem (Watkins & Dayan, 1992): Q-learning will eventually converge to the optimal policy for any deterministic MDP

Theorem (Sutton, 1988; Dayan, 1992): TD-learning will also converge with probability 1.

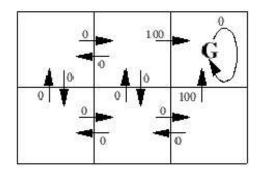
Convergence is slow if search space is large: Theorem relies on visiting every state infinitely often

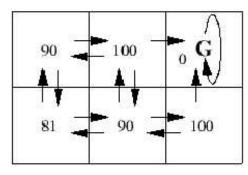
For real-world problems, can't rely on a look up table for Q(a,s); need to have some type of generalization across states

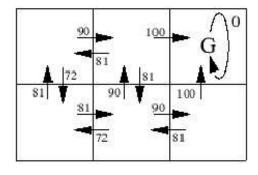
Q learning example

From T.Mitchell, Machine Learning, McGraw-Hill 1997.

Assume $\gamma=0.9$







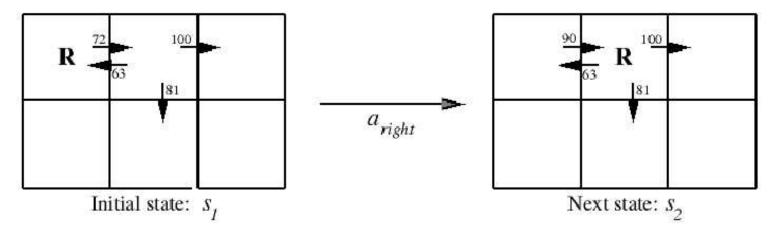
Reward

Value

Q(s,a) values

Q learning example

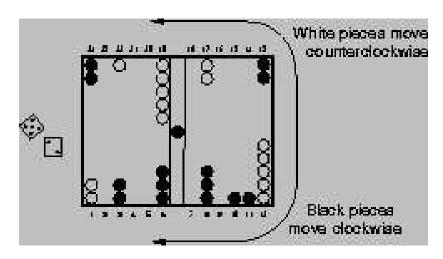
From T.Mitchell, Machine Learning, McGraw-Hill 1997.



$$\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \max_{b} \hat{Q}(s_2, b) \\
\leftarrow 0 + 0.9 \max\{63, 81, 100\} \\
\leftarrow 90$$

TD Gammon

Learns to play backgammon with temporal-difference estimation



Program	Hidden Units	Training Games	Opponents	Results
TD-Gam 0.0	40	300,000	Other Programs	Tied for Best
TD-Gam 1.0	80	300,000	Robertie, Magriel,	-13 pts / 51 games
TD-Gam 2.0	40	800,000	Var. Grandmasters	-7 pts / 38 games
TD-Gam 2.1	80	1,500,000	Robertie	-1 pts / 40 games
TD-Gam 3.0	80	1,500,000	Kazaros	+6 pts / 20 games

TD Gammon

Active reinforcement learning, in which transition and reward models known.

A variation on value iteration:

- U(s) updated via TD procedure
- U(s) approximated with neural net instead of look up table
- policy optimized by choosing action that maximizes utility
- exploration strategy
- $TD(\lambda)$ with $\lambda = .7$,

 λ : how much look ahead in estimating utility

$$U^{\pi}(s) = R(s) + \gamma U^{\pi}(s') \qquad \lambda = 0$$

$$U^{\pi}(s) = R(s) + \gamma R(s') + \gamma^{2} U^{\pi}(s'') \qquad .$$

$$U^{\pi}(s) = R(s) + \gamma R(s') + \gamma^{2} R(s'') + \gamma^{3} U^{\pi}(s''') \qquad .$$

$$... \qquad .$$

$$U^{\pi}(s) = \Sigma_{t} \gamma^{t} R(s_{t}) \qquad \lambda = 1$$

Issues

- active or passive reinforcement learning
- explicit or implicit model of environment