REINFORCEMENT LEARNING

Markov decision problem

MDP consists of:
States s € S
Actions a € A
Model T'(s,a,s") = P(s|s,a) = probability that a in s leads to s
Reward function R(s)

Previous topic: determine optimal policy, 7*(s) given T'(s,a,s’) and R(s)

Next topic: determine optimal policy, 7*(s) when T'(s,a,s’) and R(s) are
unknown.

E.g., navigating an unfamiliar city
E.g., pole balancing

Interaction with an unknown environment

Reinforcement

~

Critic g Sensors =

)

feedback

m
-
changes | =.
. -
Learning [™ Performance @)
element e element -]
nowledge 3
learning o)
goals -
~+
Problem
generator

@g ent Actuators -

The reinforcement learning problem

At each time step ¢, the agent is in some state s;.
Agent must choose an action a;.

Action causes state update s;,1 = d(sy, ay)
and agent receives reward 7(S;41)

Passive reinforcement learning

Agent’s policy 7 is fixed; goal is to learn utility function
U'(s)=F L%jo Y R(s)|, 89 = 3}

Cannot use value iteration algorithm
U(s) < R(s) +v max 2 U(s)T(s,a,8) forall s

because T" and R are unknown.

Passive reinforcement learning (contd.)

3| = | == | — 3 | o812 | oges | 0912

2 1 1 2 0.762 0.660
1 1 - - - 1 0.705 0.655 0.611 0.388
1 2 3 4 1 2 3 4

(1,1)—0a = (1,2)—0a = (1,3)—0a = (1,2)—0a = (1,3)=0a = (2,3)_ 04 —
(3,3)—0a = (4,3) 11

(1,1)—0a = (1,2)_0a = (1,3)—0a = (2,3)—0a = (3,3)—04a = (3,2)_ 04 —
(3,3)—04a = (4,3)11

(1, D) 04 = (2,1)—0a = (1, 1)—0a = (1,2)—0a = (1,3)_04a = (2,3)_ 04 —
(373)—.04 — (372)—.04 — ())—1

Scheme 1: Direct estimation of utility

Compute expectation over observed state sequences:

UW(S) = Esample ngo ')/tR(St)|7T, S0 = S}

Problem: Fails to exploit knowledge about how states are connected.

Utility of a state s is related to expected utility of successor states s’

U"(s) = R(s) + ’Y%T(S, m(s), s\ U™(s)

Previously, much experience with s: .- g
S7 —> 81 — 89 I. /"
S4 — 81 — S3 Qﬁ"Q 4

S4 —> 81— S9

S5 —> S1 — S9 \\h
Now, sg — s1 — So.

Scheme 2: Adaptive dynamic programming

Learn T'(s,m(s),s') and R(s) and then apply ordinary value iteration.
How do we learn?

Keep track of N(s,7(s),s’), the count of the number of times the policy
took agent from s to s’

A

T(s,m(s),s") = N(s,m(s), 3’)/;]\[(5,%(5),3:)

Keep track of 7(s), the total reinforcement received in state s.

AN

R(s) = r(s)/ 5 N(s,,2)

Model based versus direct (model free)

Scheme 3: Temporal difference (TD) learning

Direct method that exploits the identity
U™(s) = R(s) + 7§T(s, m(s),s U™ (s")

or, if state transitions are deterministic,
U™(s) = R(s) +yU"(s)

Use observed transitions to adjust values of observed states to agree with
the identity:

U™(s) < R(s) + U™ (s)

Because rewards and transitions can be nondeterministic, don't simply re-
place utility estimate, average old and new:

U™(s) « (1= §U™(s) + £[R(s) + vU™(s')] with £ € [0,1]
U(s) = UT(s) + &[R(s) +7U™(s") = UT(s)]

Active reinforcement learning

Active = choice of action is not given; must be learned.
l.e., find 7* that maximizes cumulative reward.

Active greedy reinforcement learning
— start with random policy
— use ADP to estimate world model and utility function
— use utility function and one-step lookahead to update policy
— repeat

Initial policy has a big impact on ultimate policy —
agent seldom discovers optimal policy

10

Exploration - Exploitation Dilemma

Should we use current policy, or try out alternative actions to see if they are
better?

E.g., exploring a new city

Possibilities:
— with probability 1, choose random action instead of action
prescribed under current policy
— softmax: P(a|s) = a2yT(s,a,s)exp(U(s")/v)
— initially p or v large, but decrease over time (stationary env.)
— initialize utility function with optimistic estimates of utility
(any unexplored state will be preferred over an explored state)

E.g., eating

Lousy strategy will reflect utilities under current policy

11

Q values

Active ADP agent constructs explicit model of environment— T'(s, a, s') and

R(s).
Direct alternative to model-based approach: Q values

Q)(a, s): Utility of taking action a in state s
U(s) = max, Q(a, s)

Q(a,s) = R(s) +vXyT(s,a,s\U(s") forall s,a
— immediate reward received upon executing action a in state s,
plus discounted utility of following optimal policy thereafter.

Equivalently,
Q(a,s) = R(s) +v2yT(s,a,s) maxy Q(a, s

12

Q learning

Given

Qla,s) = R(s) +v 24T (s,a,s) max Q(s', o)

use TD updating procedure on Q given observed sequence of states and

rewards:

Qla,) + (1 - £)Qa,) +€[R(s) + 7y Q(d',)

Requires exploration strategy!
Optimal policy:

7" (s) = argmax,Q(a, s)

13

Comments on Q) learning

Theorem (Watkins & Dayan, 1992): Q-learning will eventually converge to
the optimal policy for any deterministic MDP

Theorem (Sutton, 1988; Dayan, 1992): TD-learning will also converge with
probability 1.

Convergence is slow if search space is large:
Theorem relies on visiting every state infinitely often

For real-world problems, can’t rely on a look up table for Q(a, s);
need to have some type of generalization across states

14

Q learning example

From T .Mitchell, Machine Learning, McGraw-Hill 1997.

Assume v = (.9

j—'l; e ; 00 10 I (a i; o GQU
Hrh=t Y e
:]; _'j_; 81 ™ o0 1o ;; ;;

Reward Value ()(s,a) values

Q learning example

From T .Mitchell, Machine Learning, McGraw-Hill 1997.
T2 JEE-__ Gl l{li'-__
R ,¢ﬁ iﬁ‘ R
%1 £1
! > 7
ﬂr-igkf
Initial state: s, Next state: 5,

Qstsarign) — -+ 7 Qo b
— 0+ 0.9max{63,81,100}
«— 90

TD Gammon

Learns to play backgammon with temporal-difference estimation
. White pecaa movs

LA U Jodnal moadas 11 u 1l \ cﬂuntarﬂ‘l:l:h'l'ﬂﬂa

8- J[¢

£l
i 34 BEw s mE EEI':-F'E':EH
~" move cloTkwiga
Program | Hidden | Training Opponents Results
Units Games
TD-(Gam [.0 40 400,000 ODther Programa Tied for Beat
TD-(Gam 1.0 Bl 300,000 | Robertie, Magriel, ... | —13 pts / bl games
TD-(Gam 2.0 40 800,000 Var. Grandmasters | —7 pta/ 38 games
TD-(Gam 2.1 80 1,500,000 BRobertie —1 pta / 40 games
TD-(Gam 3.0 Bl 1.500.000 Kazaros +6 pta / 20 pames

TD Gammon

Active reinforcement learning, in which transition and reward models known.

A variation on value iteration:
— U(s) updated via TD procedure
— U(s) approximated with neural net instead of look up table
— policy optimized by choosing action that maximizes utility
— exploration strategy

— TD()) with A = .7,

A: how much look ahead in estimating utility

U™(s) = R(s) + yU™(s) A=0
U™(s) = R(s) + yR(s") +y*U"(s") .
U™(s) = R(s) + YR(s') + ¥*R(s") + y*U™(s") .

U(s) = 51 v'R(s;) A=1

18

Issues

— active or passive reinforcement learning
— explicit or implicit model of environment

19

