REASONING WITH BAYESIAN NETWORKS



Example of a Bayesian network

Toothache @

Weather is independent of the other variables
Toothache and Clatch are conditionally independent given Clavity

Topology of network encodes conditional independence assertions.



Bayesian networks

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ~ “directly influences")
a conditional distribution for each node given its parents:

P(X;|Parents(X;))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over X, for each combination of parent values

Bayesian nets provide a simple, graphical notation for conditional indepen-
dence assertions.

Therefore, Bayesian networks provide a compact specification of full joint
distributions.



Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a
burglar?

Variables: Burglar, Farthquake, Alarm, JohnCalls, MaryCalls

Causal knowledge:
— A burglar can set the alarm off
— An earthquake can set the alarm off
— The alarm can cause Mary to call
— The alarm can cause John to call

This causal knowledge is incorporated into network topology.



Example contd.
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Compactness

A CPT for Boolean X; with & Boolean parents has

2% rows for the combinations of parent values @

Each row requires one number p for X, =true }ZA‘I
(the number for X; = false is just 1 — p) @ @

If each variable has no more than £ parents,
the complete n-node network requires O(n - 2%) numbers

l.e., grows linearly with n, vs. O(2") for the full joint distribution

For burglary net, 1 + 1 +4 + 2+ 2=10 numbers (vs. 2> — 1 = 31)



Semantics of Bayesian nets

We have described what a network is, not what it means.

Two ways of understanding semantics:

Global semantics: network represents the full joint distribution
Local semantics: network encodes assumptions about conditional inde-
pendence



Global semantics

Full joint distribution defined as the
product of the local conditional distributions:

P(Xi,...,X,) =II]_ P(X;|Parents(X;))

eg., PGAMAaA—-bA—e)

Jo
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Global semantics

Full joint distribution defined as the
product of the local conditional distributions:

P(X,,...,X,) = 1I'_ P(X;|Parents(X;))
eg., PGAMAaA—-bA—e)
= P(jla)P(m|a)P(a|-b,~e)P(—~b)P(—e)




Local semantics

Each node is conditionally independent of its nondescendants given its par-

ents.

Theorem: Local semantics < global semantics
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Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Constructing Bayesian networks

Here is a method of constructing a network that guarantees global semantics
yet requires only locally testable assertions of conditional indpendence.

1. Choose an ordering of variables Xy, ..., X,
2. Fori =1ton

add X, to the network

select parents from X, ..., X,;_; such that

P(XAPCLT@HZ%S(XJ) — P(XZ‘Xl, Cee Xz'—l)
This choice of parents guarantees the global semantics:

P(Xy,....X,) = II'_ P(X;| X1, ..., X;_1) (chain rule)
= [I7_,P(X;|Parents(X;)) (by construction)

Ordering of variables is very important.
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Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)?
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Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)? No
P(A|J, M) = P(A|.J)? P(A]J, M) = P(A)?
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Example

Suppose we choose the ordering M, J, A, B, E

Burglary

P(J|M) = P(J)? No
P(A|J, M) = P(A|J)? P(A|J, M) = P(A)? No
P(B|A, J, M) = P(B|A)?

P(B|A, J, M) = P(B)?



Example

Suppose we choose the ordering M, J, A, B, E

Earthquake
7 No

P(J|M) = P(J):

P(A|J,M) = P(A|J)? P(A|J,M)= P(A)? No
P(BJA,J,M) = P(B|A)? Yes

P(B|A,J,M)= P(B)? No

P(E|B, A, J, M) = P(E|A)?

P(E|B, A, J, M) = P(E|A, B)?
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Example

Suppose we choose the ordering M, J, A, B, E

Burglary
Earthquake

P(J|M)= P(J)? No

P(A|J,M) = P(A|J)? P(A|J,M)= P(A)? No
P(BJA,J,M) = P(B|A)? Yes

P(B|A,J,M)= P(B)? No

P(E|B, A, J, M) = P(E|A)? No

P(E|B, A, J, M) = P(E|A, B)? Yes
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Problems with this network

Burglary

Earthquake

Network is less compact: 1 +2 +4 4 2 + 4 =13 numbers needed

Deciding conditional independence is hard in noncausal directions
(Causal models and conditional independence seem hardwired for humans!)

Assessing conditional probabilities is hard in noncausal directions
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Ordering of variables

Because it is easier for us to apply knowledge in the causal direction,
the correct order to add nodes is to start with "root causes’,
then add the variables that they influence, and so on,
until we reach the variables that have no direct causal influence
on other variables.

MaryCalls

Earthquake
@ @ Burglary
Earthquake

(@ (b)

Burglary
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Example: Car diagnosis

Initial evidence: car won't start
Testable variables (green), “broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

alternator fanbelt
battery age ernatc

Patey
battery battery fuel line starter
meter dead blockeg broken

S
CEPRRCT ED oo
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Example: Car insurance
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Compact conditional distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly
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Deterministic conditional distribution

Deterministic nodes are the simplest case:

X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican < Canadian VvV US VNV Mezican

E.g., numerical relationships among continuous variables

O0Level
Ot

= inflow + precipitation - outflow - evaporation
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Noisy-OR conditional distribution

Noisy-OR distributions model multiple, noninteracting, unreliable causes.

Cold alone causes a fever with probability .4.
Flu alone causes a fever with probability .8.
Malaria alone causes a fever with probability .9.

P(fever|cold, = flu, —~malaria) = .4
P(fever|—cold, flu, ~malaria) = .8

P(fever|—cold, = flu, malaria) = .9

Cold and flu together fail to cause a fever only if cold alone fails and flu
alone fails.

P(—=fever|cold, flu, —malaria) =
P(—fever|—cold, = flu, malaria) P(— fever|cold, — flu, ~malaria)

P(fever|cold, flu, —malaria) =1 —
[1—P(fever|—cold, = flu, malaria)||1—P( fever|cold, = flu, ~malaria)]
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Noisy OR

Formally, consider all potential causes U ... U} of some effect X
(can add leak node).

Some subset of causes (e.g., 1...7) are present, i.e., Uy ... Uj, 7Ujt1 ... " U.
r; . probability that (present) cause ¢ alone produces effect

Effect fails to occur if all present causes independently fail to produce effect.
P(—z|uy ... uj, ~Ujyq ... "ug) = (1=

P(x|uy...uj,—ujq ... ~ug) =1 —II]_;(1—m)
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Noisy OR

Cold Flu  Malaria| P(fever] P(—fever]
Cold, Flu, Malaria)| Cold, Flu, Malaria)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=0.2x 0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12=0.6 x 0.2

T T T 0.988 0.012 =0.6 x 0.2 x 0.1

Number of parameters linear in number of parents
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Hybrid (discrete+continuous) networks

Discrete (Subsidy and Buys); continuous (Harvest and Cost)

o | G
(Cost>

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., C'ost)
2) Discrete variable, continuous parents (e.g., Buys)
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Continuous child variables

Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,

P(Cost =c|Harvest =h, Subsidy = true)
= N(ath + b, 04)(c)

- Jt;%exp (_; (C — (a(t: 4 bt>)2)

Mean C'ost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range
but works OK if the likely range of Harwvest is narrow

28



Continuous child variables

All-continuous network with LG distributions
= full joint distribution is a multivariate Gaussian

Discrete4-continuous LG network is a conditional Gaussian network i.e., a
multivariate Gaussian over all continuous variables for each combination of
discrete variable values
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Discrete variable w/ continuous parents

Probability of Buys given C'ost should be a “soft” threshold:
1 . . . . .
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Probit distribution uses integral of Gaussian:
O(z) =/_o *N(0,1)(z)dx
P(Buys=true | Cost=c) = ®((—c+ u)/0o)
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Why the probit?

1. It's sort of the right shape

2. Can view as hard threshold whose location is subject to noise

/\

& @ @

Buys?
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Discrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:

P(Buys=true | Cost=c) =

1
1 + exp(—2=5)

Sigmoid has similar shape to probit but much longer tails:

P(Buys?=false|Cost=c)

1 .
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Summary

Given causal knowledge, Bayes nets provide a natural representation for en-
coding conditional independence.

Topology + CPTs = compact representation of joint distribution
Generally easy for (non)experts to construct
Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables =- parameterized distributions (e.g., linear Gaussian)
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