
The Adaptive House
Michael Mozer+*
Robert Dodier#

Debra Miller*
Marc Anderson*

Josh Anderson✩ Tom Moyer✝

Dan Bertini# Charles Myers✩

Matt Bronder* Tom Pennell*
Robert Cruickshank# James Ries✩

Brian Daugherty* Erik Skorpen✩

Mark Fontenot✜ Joel Sloss✩

Okechukwu Ikeako✩ Lucky Vidmar*
Paul Kooros✩ Matthew Weeks✩

Diane Lukianow✩

University of Colorado
*Department of Computer Science

+Institute of Cognitive Science
#Department of Civil, Environmental, and Architectural Engineering

✩Department of Electrical and Computer Engineering
✝Department of Mechanical Engineering
✜Department of Aerospace Engineering

http://www.cs.colorado.edu/~mozer/adaptive-house



Home automation

Homes might be programmed to
• close drapes at night

• turn down sterero volume when phone rings

• flash bathroom lights as reminder to take medication

• draw a bath at a certain temperature at a certain time

Vision of the future
...Imagine that the owner of a new home does not plan 
on using his lower level much at night. He can have a 
technician at the central station program his system so 
that the temperature is lowered to 60° at 10 p.m. But 
later, a home theater is installed in the basement, and 
many late weekend evenings are spent watching laser-
discs and videos. The owner can simply call the tech-
nician and request that the program be changed so that 
the lower level remains a comfortable 72° on Friday 
and Saturday nights. (Electronic House)



The failure of home automation

“Homes get smart with automation systems”, USA Today, 9/2/97
Before retiring for the night, for example, the Alexanders will set a hello or morning mode, which 
will wake the family at 7 a.m. to lights, music, or television morning shows. Coffee begins brewing. 
The thermostat adjusts for family comfort. The hot water kicks in, and hot water fills the tub...

“Our biggest problem so far has been in forgetting to activate the home mode when we arrive home 
at the end of the day,” says Alexander. “My wife, in particular, likes to take a hot bath and the end of 
her work day, but if she or I forget to press the home mode, there won’t be any warm water in the hot 
water heater for her bath because we’ve turned off the appliance during the day to conserve electric-
ity.”

“The smart house”, San Francisco Examiner, 4/14/96
“When I consider all the aggravation and the money, I wouldn’t spend as much again the next time, 
said Tiburon homeowner Bob Becker. In 1991, he built a high-tech castle atop a hill...with about 
$70,000 in electronic upgrades.

“I use about half of it,” said Becker...

Interview with Martha Stewart, in Wired, 8/98
Q: Any thoughts on smart houses? How about having your refrigerator talk to your stereo?

A: I don’t want my refrigerator talking to me period. I don’t want it telling me that I am low on meat-
balls. I do have a brain.



State of the art in lighting control



The adaptive house

Not a programmable house, but a house that programs itself.

House adapts to the lifestyle of the inhabitants.
House monitors environmental state and senses actions of inhabitant.

House learns inhabitants’ schedules, preferences, and occupancy patterns.

House uses this information to achieve two objectives:
(1) anticipate inhabitant needs
(2) conserve energy

Domain: home comfort systems
• air heating

• lighting

• water heating

• ventilation



Tremendous potential cost/energy savings

single set back period on furnace 9–18%

multiple set back periods 25–30%

set back (electric) water heater 25%

shift majority of electric use off peak 20–40%



The adaptive house

Residence in Marshall, Colorado, outside of Boulder



Some of the gang



Great room



Bedrooms and bathrooms



Sensors



Sensors



Water heater



Furnace
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Computers



Floor plan



Training signals

Actions performed by inhabitant specify setpoints
➜ anticipation of inhabitant desires

Gas and electricity costs
➜ energy conservation



An optimal control framework

Each constraint has an associated cost:
discomfort cost if inhabitant preferences are neglected

energy cost depends on device and intensity setting

The optimal control policy minimizes

where t = index over nonoverlapping time intervals
t0 = current time interval
ut = control decision for interval t
xt = environmental state during interval t
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ACHE
(Adaptive Control of Home Environments)

Separate control system for each task

air temperature regulation

furnace
space heaters
fans
dampers
blinds

lighting regulation

wall sconces
overhead lights

water temperature regulation

hot water heater

device 

inhabitant actions

environmental
state

setpoints

and energy costs

ACHE



General architecture of ACHE

instantaneous
environmental state

occupancy
model

state
transformation

predictors

setpoint
generator

device
regulator

decision

state
representation

occupied
zones

setpoint
profile

future state
information



Knowledge encapsulation
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knowledge about inhabitants’ 
schedules

knowledge about inhabitants’
comfort needs and preferences

knowledge about energy devices and
physical layout of house



Training procedures
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neural networks trained with
self-supervised learning

reinforcement learning with look-up

system identification using neural
networks 

tables or memory-based approaches



Lighting control

What makes lighting control a challenge?
Twenty-two banks of lights, each with 16 intensity levels; seven banks of lights in 
great room alone

Motion-triggered lighting does not work

Lighting moods

Two constraints must be satisfied simultaneously
• maintaining lighting according to inhabitant preferences
• conserving energy

Range of time scales involved

Sluggishness of system



Sequential decision problem

To learn, must determine which decisions are responsible for 
observed costs (temporal credit assignment).

Time scale dilemma
Control decisions must be responsive to changing environmental conditions.

Therefore, time intervals must be brief (~200 ms).

But shorter time intervals make learning more difficult.

x1 x2 x3 x4 x5 x6 x7

time interval

state

decision

cost

1 2 3 4 5 6 7

u1 u2 u3 u4 u5 u6 u7

c1 c2 c3 c4 c5 c6 c7



Resolving the time scale dilemma

Event-based segmentation
Detect salient events such as zone entry, change in outdoor light level.
Window of time between events treated as basic interval.
Lighting control decision made when event occurs.

Temporal credit assignment problem greatly simplified.

Motivated by orienting response in biological systems.

entry exit entry
BR1

outdoor light

orienting
mechanism

sensory
input

sensory
information
processing



Resolving the sluggishness dilemma

Anticipator: Neural network that predicts which zone(s) will become 
occupied in the next two seconds

Input
1, 3, and 6 second average of motion signals (36)
instantaneous and 2 second average of door status (20)
instantaneous, 1 second, and 3 second average of sound level (33)
current zone occupancy status and durations (16)
time of day (2)

Output
p(zone i becomes occupied in next 2 seconds | currently unoccupied) (8)

Runs every 250 ms



Training anticipator
Occupancy model provides training signal

Two types of errors
miss

false alarm

Training procedure
Given partially trained net, collect misses and false alarms.
Retrain net when 200 additional examples collected.
TD algorithm for misses

state(t – 2000 ms)
state(t – 1750 ms)
...
state(t – 250 ms)
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Examples of anticipator performance



Lighting controller costs

Energy cost
7.2 cents per kW-hr

Discomfort cost
1 cent per device whose level is manually adjusted

Anticipator miss cost
.1 cent per device that was off and should have been on

Anticipator false alarm cost
.1 cent per device that was turned on



Results

• about three months of data collection
• events logged only from 19:00 – 06:59
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Air temperature control

reports house occupancy

predicts future occupancy
status of house

instantaneous
environmental state

occupancy
model

state
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predictors
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generator
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regulator

decision

Based on: time of day, day of week, average proportion
of time home occupied in the 10, 20, and 30 minutes from
present time of day on the previous 3 days and on the same
day of the week during the past 4 weeks, proportion of time 
home was occupied during the past 60, 180, and 360 minutes

predictive optimal controller
Searches over a fixed horizon of κ decisions, δ minutes
apart, for a decision sequence that minimizes expected cost.

performs first decision in 
sequence



Misery cost

To estimate misery, must predict future house occupancy and indoor 
temperature.
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Simulation methodology

Simulated environment
• thermal and comfort cost models are exact
• outdoor temperature, g, constant 0°C

Occupancy data
• real data collected from neural net house over an 8 month period

• artificial data, manipulating regularity of occupant schedule
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Alternative heating policies

• Constant Temperature Policy

setpoint = 22.5°C

• Occupancy Triggered Policy

setpoint = 18°C if house empty
22.5°C if house occupied

• Setback Thermostat Policy

setpoint = 18°C half hour before mean morning departure time for day of week 
22.5°C half hour before mean evening return time

Each policy produces a setpoint at each time step.

Furnace turns on if actual temperature lower than setpoint.



Comparison of control policies
using artificial occupancy data
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Comparison of control policies
using real occupancy data

Mean Daily Cost
productivity loss
ρ = 1 ρ = 3

Neurothermostat $6.77 $7.05
constant temperature $7.85 $7.85
occupancy triggered $7.49 $8.66
setback thermostat $8.12 $9.74



Sample Performance
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Empirical issues

Are there sufficiently robust regularities in the inhabitants’ 
behavior that ACHE can exploit them?

Is a system of ACHE’s complexity warranted, or will a simple rule-
based system do 99% of the job?


