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Home automation

Homes might be programmed to
• close drapes at night

• turn down sterero volume when phone rings

• flash porch lights if baby is crying

• offer recipes to go with the ingredients in the cupboard

Vision of the future
...Imagine that the owner of a new home does 
not plan on using his lower level much at night. 
He can have a technician at the central station 
program his system so that the temperature is 
lowered to 60° at 10 p.m. But later, a home the-
ater is installed in the basement, and many late 
weekend evenings are spent watching DVDs. 
The owner can simply call the technician and 
request that the program be changed so that the 
lower level remains a comfortable 72° on Friday 
and Saturday nights. (Electronic House)



The failure of home automation

“Pressing situations”, Electronic House, February 2005
One of the best things about owning a lighting control system is being able to turn every 
light off by pressing one button. But as convenient as this is, it can get you into a lot of
trouble. Take Gary Cox of Boise, ID. For some reason he kept pressing the ALL OFF button 
on his LiteTouch lighting system when he didn’t mean to...Tired of being left in the dark, he 
called the firm that had installed the system to help him kick the habit. Their solution was to 
make it so that Gary had to hit the ALL OFF button twice to enact the function.
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“Oh, shut up, house!”, SF Chronicle, November 2004
The Microsoft Home...can turn the dishwasher on, but it still won’t fill it with dirty dishes or 
empty out the clean ones. It can tell you which sweater goes with which pair of pants, but it 
won’t hang the pants up for you. In other words, in its current incarnation, the smart house is 
more nag than household helper.

...All this takes programming—something that may be simple enough for the engineers who 
put together the Microsoft Home but is no such thing for those of us who have been stymied 
by today’s “smart” electronics (the programmable thermostat comes to mind) that come with 
every known option but an on-off switch.
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empty out the clean ones. It can tell you which sweater goes with which pair of pants, but it 
won’t hang the pants up for you. In other words, in its current incarnation, the smart house is 
more nag than household helper.

...All this takes programming—something that may be simple enough for the engineers who 
put together the Microsoft Home but is no such thing for those of us who have been stymied 
by today’s “smart” electronics (the programmable thermostat comes to mind) that come with 
every known option but an on-off switch.

Interview with Martha Stewart, Wired, August 1998
Q: Any thoughts on smart houses? How about having your refrigerator talk to your stereo?
A: I don’t want my refrigerator talking to me period. I don’t want it telling me that I am low on 
meatballs. I do have a brain.



State of the art in lighting control



The adaptive house

Not a programmable house, but a house that programs itself.

House adapts to the lifestyle of the inhabitants.
House monitors environmental state and senses actions of inhabitant.

House learns inhabitants’ schedules, preferences, and occupancy patterns.

House uses this information to achieve two objectives:
(1) anticipate inhabitant needs
(2) conserve energy

Domain: home comfort systems
• air heating

• lighting

• water heating

• ventilation



Tremendous potential cost/energy savings

single set back period on furnace 9–18%

multiple set back periods 25–30%

set back (electric) water heater 25%

shift majority of electric use off peak 20–40%



The adaptive house

Residence in Marshall, Colorado, outside of Boulder



Some of the gang



Great room



Bedrooms and bathrooms



Sensors



Sensors



Water heater



Furnace



Controls



Computers



Training signals

Actions performed by inhabitant specify setpoints
anticipation of inhabitant desires

Gas and electricity costs
energy conservation



An optimal control framework

Each constraint has an associated cost:
discomfort cost if inhabitant preferences are neglected

energy cost depends on device and intensity setting

The optimal control policy minimizes

where t = index over nonoverlapping time intervals
t0 = current time interval
ut = control decision for interval t
xt = environmental state during interval t
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ACHE
(Adaptive Control of Home Environments)

Separate control system for each task

air temperature regulation

furnace
space heaters
fans
dampers
blinds

lighting regulation

wall sconces
overhead lights

water temperature regulation

hot water heater

device 

inhabitant actions

environmental
state

setpoints

and energy costs

ACHE



General architecture of ACHE
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Knowledge encapsulation

instantaneous
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regulator

decision

knowledge about inhabitants’ 
schedules

knowledge about inhabitants’
comfort needs and preferences

knowledge about energy devices and
physical layout of house



Training procedures

instantaneous
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regulator

decision

neural networks trained with
self-supervised learning

reinforcement learning with look-up

system identification using neural
networks 

tables or memory-based approaches



Lighting control

What makes lighting control a challenge?
Twenty-two banks of lights, each with 16 intensity levels; seven banks of lights 
in great room alone

Motion-triggered lighting does not work

Lighting moods

Two constraints must be satisfied simultaneously
• maintaining lighting according to inhabitant preferences
• conserving energy

Range of time scales involved

Sluggishness of system



Sequential decision problem

To learn, must determine which decisions are responsible 
for observed costs (temporal credit assignment).

Time scale dilemma
Control decisions must be responsive to changing environmental conditions.

Therefore, time intervals must be brief (~200 ms).

But shorter time intervals make learning more difficult.

x1 x2 x3 x4 x5 x6 x7

time interval

state

decision

cost

1 2 3 4 5 6 7

u1 u2 u3 u4 u5 u6 u7

c1 c2 c3 c4 c5 c6 c7



Resolving the time scale dilemma

Event-based segmentation
Detect salient events such as zone entry, change in outdoor light level.
Window of time between events treated as basic interval.
Lighting control decision made when event occurs.

Temporal credit assignment problem greatly simplified.

Motivated by orienting response in biological systems.

entry exit entry
BR1

outdoor light

orienting
mechanism

sensory
input

sensory
information
processing



Resolving the sluggishness dilemma

Anticipator: Neural network that predicts which zone(s) will 
become occupied in the next two seconds

Input
1, 3, and 6 second average of motion signals (36)
instantaneous and 2 second average of door status (20)
instantaneous, 1 second, and 3 second average of sound level (33)
current zone occupancy status and durations (16)
time of day (2)

Output
p(zone i becomes occupied in next 2 seconds | currently unoccupied) (8)

Runs every 250 ms



Training anticipator
Occupancy model provides training signal
Two types of errors

miss

false alarm

Training procedure
Given partially trained net, collect misses and false alarms.
Retrain net when 200 additional examples collected.
TD algorithm for misses

state(t – 2000 ms)
state(t – 1750 ms)
...
state(t – 250 ms)
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Examples of anticipator performance



Lighting controller costs

Energy cost
7.2 cents per kW-hr

Discomfort cost
1 cent per device whose level is manually adjusted

Anticipator miss cost
.1 cent per device that was off and should have been on

Anticipator false alarm cost
.1 cent per device that was turned on



Results

• about three months of data collection
• events logged only from 19:00 – 06:59
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Air temperature control

reports house occupancy

predicts future occupancy
status of house

instantaneous
environmental state

occupancy
model

state
transformation

predictors

setpoint
generator

device
regulator

decision

Based on: time of day, day of week, average proportion
of time home occupied in the 10, 20, and 30 minutes from
present time of day on the previous 3 days and on the same
day of the week during the past 4 weeks, proportion of time 
home was occupied during the past 60, 180, and 360 minutes

predictive optimal controller
Searches over a fixed horizon of κ decisions, δ minutes
apart, for a decision sequence that minimizes expected cost.

performs first decision in 
sequence



Misery cost

To estimate misery, must predict future house occupancy 
and indoor temperature.
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Simulation methodology

Simulated environment
• thermal and comfort cost models are exact
• outdoor temperature, g, constant 0°C

Occupancy data
• real data collected from neural net house over an 8 month period

• artificial data, manipulating regularity of occupant schedule
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Alternative heating policies

• Constant Temperature Policy

setpoint = 22.5°C

• Occupancy Triggered Policy

setpoint =18°C if house empty
22.5°C if house occupied

• Setback Thermostat Policy

setpoint =18°C half hour before mean morning departure time for day of week 
22.5°C half hour before mean evening return time

Each policy produces a setpoint at each time step.

Furnace turns on if actual temperature lower than setpoint.



Comparison of control policies
using artificial occupancy data
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Comparison of control policies
using real occupancy data

Mean Daily Cost
productivity loss

ρ = 1 ρ = 3
Neurothermostat $6.77 $7.05

constant temperature $7.85 $7.85
occupancy triggered $7.49 $8.66
setback thermostat $8.12 $9.74



Sample Performance

0 5 10 15 20
off

on 
fu

rn
ac

e
Sunday March 6, 2000

0 5 10 15 20
away

home

0 5 10 15 20
0

0.5

1

Time of day

p(
st

at
e 

ch
an

ge
)



Relation Between Prediction and Temperature



Lessons

Statistical regularities in inhabitant behavior can be 
exploited to save energy.
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e.g., How do we design ACHE to work well out of the box?
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Value in providing inhabitants with information to make 
informed decisions.

Mutual adaptation









Reinforcement learning

Dynamic programming can be used to perform optimization
• requires models of environment and cost function

• computing expectation may be very expensive

Reinforcement learning is a stochastic form of dynamic 
programming that samples trajectories in state space.
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Q learning
(Watkins, 1989; Watkins & Dayan, 1992)

Q(x,u): If action u is taken in state x, what is the minimum 
cost we can expect to obtain?

Policy based on Q values:

Incremental update rule for Q values:

Given fully observable state, infinite exploration, etc., 

π xt( ) argminuQ xt ut,( ) with probability 1 θ–( )

random with probability θ⎩
⎨
⎧

=

exploration rate
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guaranteed to converge on optimal policy.

Decisions have no long term consequences
Effect of decision completely undone by subsequent decision.
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	Reinforcement learning
	Dynamic programming can be used to perform optimization
	. requires models of environment and cost function
	. computing expectation may be very expensive
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