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Introduction

If we had really huge brains, say the size of watermelons, attention would play a much smaller
role in our behavior. Its signi�cance stems primarily from limitations in our processing hardware.
We simply do not have suÆcient brain capacity to analyze all information that passes through our
sense organs, to reason exhaustively about all possible courses of action, and to maintain multiple
interpretations of the world. Attentional selection is needed to determine what information will be
processed by the available hardware.

Consider the task of recognizing objects in a visual scene. What sort of processing resources
would be required to identify all objects in parallel, regardless of their positions, orientations,
and size in the scene? If we are familiar with o di�erent objects, and any object can appear in
any of p horizontal or vertical positions and r orientations and s scales, the number of di�erent
object instantiations is op2rs. This number would be far larger still if the objects are not rigid.
Regardless of the nature of the recognition process, the number of possible object instantiations
roughly determines the amount of processing resources required. You can plug in reasonable guesses
as to how many object instantiations are possible; 100 million might be a reasonable ballpark �gure.
If we limit ourselves to one object at a time, however, and the object's position, orientation, and
scale are computed �rst, then the number of object instantiations that have to considered at once
is only o, or a number more like 10,000. Ballard (1986) and Tsotsos (1990, 1991) have presented
computational complexity analyses of this sort to argue that the combinatorics of vision require
some type of attentional selection to reduce the number of possibilities that need to be considered,
and that attention can be particularly bene�cial when exploiting knowledge of the particular task
being faced by the visual system.

In accord with the computational arguments, human vision shows strong limitations on how
many objects can be processed and identi�ed in parallel (e.g., Duncan, 1987; Mozer, 1983, 1989;
Pashler & Badgio, 1987; Shi�rin & Gardner, 1972; Schneider & Shi�rin, 1977; Treisman & Schmidt,
1982). In general terms, one can conceive of processing of a visual stimulus as occurring along
a certain neural pathway. If the processing pathways for two stimuli are nonoverlapping, then
processing can take place in parallel. But if the pathways cross|i.e., they share common resources
or hardware|the stimuli will interact or interfere with one another. One role of attention is to
reduce this interference by restricting the amount of information that is processed at once.

In this chapter, we examine the role of spatial attention from a computational perspective.
Because the function of attention can be understood only in its relation to visual information
processing, we must model not only the attentional system itself, but also the process of object
recognition. We begin by presenting a basic model of object recognition, showing that interference
prevents the system from reliably processing multiple, complex stimuli, and then we show how a
simple mechanism of attentional selection can reduce this interference. Our initial goal will be to
present a model that is computationally adequate, that is, a model that has the computational
power to perform the sort of visual information processing tasks that people do. Psychologists are
most concerned with another issue: whether the model can explain various experimental �ndings
and whether it has any ability to predict the outcome of further experiments. In our view, the
demands of computational adequacy and explanatory/predictive power are complementary, and a
compelling account should satisfy both, and in so doing, allow one to understand the mechanisms
that underlie information processing.
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Figure 1: A connectionist processing unit. The arrows on the left depict inputs to the unit, and
the arrow on the right depicts its output.

What is a computational model?

Models are often divided into two categories: descriptive and process models. Descriptive models
primarily describe the data obtained from experiments via mathematical equations. In contrast,
process models explain the cognitive mechanisms underlying performance in a task. Process models
vary in their abstractness, from qualitative verbal descriptions to quantitative computer simulations
that embody the cognitive process. Computational models are process models that lean toward the
quantitative end of the spectrum.

Computational models come in many varieties. In the area of spatial attention, some models
are abstract mathematical characterizations of behavior (e.g., Bundeson, 1990; Sperling & Weich-
selgartner, 1995), others are algorithmic, describing behavior in a sequence of steps much like a
computer program (e.g., Ullman, 1984; Weismeyer & Laird, 1990), and still others, called connec-

tionist or neural network models, attempt to capture the operation and functional architecture of
the brain. Connectionist models are large networks of simple, autonomous, neuron-like processing
elements (McClelland, Rumelhart, & Hinton, 1986).

We focus on connectionist models for several reasons. First, connectionist models have proven
extremely useful for explaining psychological phenomena in visual perception and attention. Sec-
ond, while connectionist models do not necessarily describe information processing at a neural level,
connectionist models make contact with neurobiological data more readily than do other types of
computational models. Third, connectionist models tend to o�er a deeper level of explanation
than do more abstract frameworks; for example, a mathematical model might treat an attention
shift as a primitive operation, whereas in a connectionist model, the attention shift is an emergent
consequence of the model's dynamics. Fourth, computer vision research has shown that tasks such
as object recognition requires massively parallel, distributed processing (e.g., Marr, 1982), of the
sort found in connectionist models. Fifth, and perhaps most important, it is our intuition that
connectionist models are the right level of description for characterizing the essential properties
of visual perception and attention. Ultimately, one must trust their intuition in selecting a set of
modeling tools.

Connectionist models

The basic element of a connectionist model is a neuron-like processing unit. Figure 1 shows a typical
unit. The unit conveys a scalar value, its activity level, to other units. The activity level can be
thought of as something like the average �ring rate of a biological neuron. The activity of unit i is
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Figure 2: A typical activation function relating the weighted input to a unit and its output activity.

denoted xi. The arrow on the right of the Figure depicts the 
ow of activity from the unit. The
arrows on the left depict the 
ow of activity from other units into the unit. The unit's activity is a
function of its inputs. In the Figure, there are n input lines. To compute its activity, the unit �rst
calculates a weighted sum of its input, called the net input,

neti =
nX

j=1

wijxj ;

where wij is the weighting factor from unit j to unit i. The output of the unit is then a function
of the net input:

xi = f(neti):

This activation function is typically monotonic and restricts activity between some minimum and
maximum value. A common activation function is

f(net) =
1

1 + e�net
:

As shown in Figure 2, this activation function maps a net input in the range of �1 ! +1 to
activities in the range 0! 1.

If a particular weight, say wji, is zero, unit j will not in
uence the activity of unit i; if the
weight is positive, activity in unit j will tend to produce activity in unit i; and if the weight is
negative, activity in unit j will tend to suppress activity in unit i. Positive and negative weights are
therefore called excitatory and inhibitory connections, respectively. Learning in a neural network
involves modifying the connection weights which changes the response properties of units. We give
an example of connectionist learning in a model we introduce below.

Because it is often important to model the time course of activation, we can add a further
constraint to the activation dynamics that the rate at which information can 
ow from a unit is
limited. This is achieved by de�ning the output of the unit as follows:

xi(t+ 1) = �f(neti(t)) + (1� �)xi(t)

where t is an index over time, assumed to be quantized into discrete steps, and � , in the range
[0; 1], speci�es the rate of change. A � of 0.0 speci�es that the rate is in�nitely slow, while a � of
1.0 speci�es that the output instantaneously re
ects the input state.
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(a) (b)

Figure 3: (a) A feedforward architecture in which activity 
ows from the bottom layer of units to
the top layer; (b) A recurrent architecture in which activity 
ows in cycles.

Connectionist units can be interconnected to form two basic architectures: feedforward and
recurrent. In a feedforward architecture (Figure 3a), activity 
ows in one direction, from input
units to output units. The architecture shown in the �gure is also layered by virtue of the fact
that units in one layer communicate only with units in the next layer. In a recurrent architecture
(Figure 3b), units are connected in a chain such that activity 
ows out of a unit, through other
units, and can eventually in
uence activity in the unit itself.

A basic model of object recognition

We begin by introducing a general, relatively noncontroversial connectionist model of visual infor-
mation processing and object recognition. It may strike experimental cognitive psychologists as
unusual to propose a model without reference to speci�c data. However, the strategy we pursue is
to �rst put forth a mechanism that is suÆcient to perform the sort of information processing tasks
that we believe are essential to cognition. In the case of visual perception, this includes recognizing
objects and making judgements about visual stimuli. While the model embodies a basic theoretical
perspective on visual information processing, we will not attempt to model speci�c experimental
data until the basic framework has been laid out. The point of the model is not to explain object
recognition per se, but to motivate the need for attention and to study how attention interacts
with object recognition. Later, we validate the model as psychologically plausible by showing that
it can account for experimental data.

Before describing the model itself, we begin by explaining the input and output of the model.
To present a visual stimulus to the model, a pattern of activity is imposed on the model's retina.
The retina is a collection of feature maps. Each feature map is a topographic array of units that
detect the presence of a particular visual feature in a particular location of the visual �eld. The
version of the model we'll describe has an array of 15� 15 units in each feature map, and 5 feature
maps: oriented line segments at 0Æ, 45Æ, 90Æ, 135Æ, and line-segment terminators. We refer to these
inputs as primitive features.1

1The name \retina" should not be interpreted literally. The primitive feature representation is more like that found
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Figure 4: The top left panel shows the set of primitive features that form four letters, A, C, D,
and X. The small circles depict terminators. The remaining �ve panels show the activity in each
feature map, with a dark symbol indicating that the corresponding feature unit is active, and a
light symbol indicating that the feature unit is inactive.

We use a simple font for uppercase letters in which each letter occupies a 3� 3 region of retina
(Mozer, 1991). Figure 4 shows the pattern of activity that corresponds to four letters|A, C, D,
and X|on the retina. The activity of a feature unit is represented by the shading of the symbol,
dark for activity 1.0 or light for activity 0.0.

In the version of the model we have implemented, the model's task is to recognize letters of the
alphabet. There is one output unit for each letter. A unit should be active if its corresponding
letter is present in any location on the retina.

Figure 5 shows a sketch of the model. It is a hierarchical feedforward architecture in which each
layer of units feeds to the next layer. The bottom layer in the Figure is the input, the top layer
is the output. The basic idea of the architecture is to transform low-level, location-speci�c visual
features into high-level, location-invariant object identities. By \low level" or \high level," we mean
that the features respond to either simple or complex patterns, respectively; by \location speci�c"
or \location invariant," we mean that the feature detector responds to stimuli only in a particular
location on the retina or over the entire retina, respectively. The transformation from input to
output is accomplished in several stages. At each stage, the number of feature maps increases, the
features respond to increasingly more complex patterns, and the region of the retina over which
they respond increases. The logic of the architecture is that by increasing the number of feature
maps at each layer, information about spatial relations among features in the layer below can be

in early visual cortical areas than on the human retina. Further, we do not even wish to claim that the coordinate
frame of the primitive features is retinotopic. We have simply stated that the features are arranged topographically,
but we have not speci�ed whether the feature maps are de�ned with respect to a coordinate frame that is retinotopic,
head-centered, body-centered, or environmental. We avoid this diÆcult issue because it is not critical to the discussion
that follows.
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Table 1: Architecture of the recognition neural network
number of receptive �eld receptive �eld

layer dimensions feature types size characteristics

4c 1x1 26 2x2
4s 2x2 26 2x2 overlapping
3c 3x3 20 2x2 nonoverlapping
3s 6x6 20 2x2 overlapping
2c 7x7 15 2x2 nonoverlapping
2s 14x14 15 2x2 overlapping
1 15x15 5

encoded implicitly and hence the explicit representation of spatial relations (i.e., the dimensions of
the feature maps) can be reduced.

The details of the architecture, not too important for the rest of our presentation, are as follows.
Units in a layer receive projections only from a local spatial region of the layer below. Neighboring
units in a layer receive projections from neighboring regions of the layer below. Table 1 summarizes
the architecture. The input layer, layer 1, has an array of 15�15 cells of 5 feature types. The output
layer, layer 4c, has an array of 1�1 cells (i.e., there is no explicit representation of location) and 26
feature types (the letters of the alphabet). Between the input and output are three transformation
stages, each composed of a \simple" layer and a \complex" layer. The simple layer forms higher-
order feature detectors by integrating information over space and feature types in the layer below,
while the complex layer integrates only over space, resulting in a representation of the same features
with lower spatial resolution. Thus, one will note that the number of feature types in the simple
layer is greater than in the layer below, while the number of feature types in the complex layer is
the same as in the simple layer. The terms \simple" and \complex" are a reference to cell types in
visual cortex.

The ideas embodied in this architecture are traditional. Barlow (1972) and Milner (1974) have
described hierarchies of feature detectors for vision. Fukushima and Miyake (1982), Sandon and
Uhr (1988; Uhr, 1987), Le Cun et al. (1989), Mozer (1991), and others have built hierarchical
connectionist architectures for vision tasks. The idea of dividing each stage of the transformation
into simple and complex layers comes from Fukushima and Miyake and Le Cun et al.

Training the model

We have described the basic pattern of connectivity in the model|which units are connected to
which other units. The response of the model also depends on the strength of connections between
units, the network weights, which are found by a neural network training procedure. We sketch the
training procedure but it is not essential to understanding the rest of the chapter.

We �rst generate a set of training examples, each of which consists of an input pattern and a
target output. For instance, given the input pattern shown in Figure 4, the target would be an
activity level of one for output units corresponding to A, C, D, and X, and an activity level of zero
for all other output units. The training examples included displays of containing between one and
four letters, 104 examples of each display size. Letters in each example were selected at random
and always appeared in one of the four standard positions shown in Figure 4.

The goal of the neural network training procedure is to �nd a set of weights that allow the
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Figure 5: The object recognition model. Each layer is a topographic array of processing units. The
bottom layer is the input, the top layer is the output. Activity 
ows from bottom to top. Each
circle represents a collection of processing units that detect di�erent features. The connectivity in
the network is illustrated by shading a rectangular region in layer l and the location in layer l + 1
into which this region feeds. Only a small fraction of the connections are depicted.
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Table 2: Generalization performance of the recognition neural network
number of letters miss rate false alarm rate

2 10% 0%
3 21% 1%
4 37% 1%

network to perform correctly on the training examples. That is, when any input pattern in the
training set is presented, the network should produce an output pattern closely matching the cor-
responding target output. This is achieved by a commonly used algorithm called back propagation

(Rumelhart, Hinton, & Williams, 1986). This algorithm starts with random initial values for the
weights and makes small incremental changes to the weights such that with each successive weight
change, the network produces outputs that better match the target outputs. In order for units of
the same feature type in di�erent locations to repsond to the same pattern, their incoming weights
must be identical. This is achieved by imposing weight constraints among the units, a common
approach for visual object recognition networks (details can be found in Rumelhart, Hinton, &
Williams, 1986).

Performance of the model

Following training, we can present any single letter in any of the four standard positions and the
model will give a strong response to the appropriate letter (output) unit and a weak response to all
other letter units. We can quantify the model's performance in terms of misses and false alarms.
A miss occurs when the model fails to activate the output unit corresponding to a letter present in
the image above a threshold of .5; a false alarm occurs when the model activates the output unit
corresponding to a letter not present in the image above a threshold of .5. By these criteria, the
training set of single letters produce a miss rate of 0% and a false alarm rate of 0%. When we test
the model on letters presented in novel positions, i.e., not one of the four standard positions, the
model shows a fair degree of generalization, achieving a miss rate of 30% and false alarm rate of
5%. This is not surprising, as the local receptive �eld architecture and the constraints among the
neural network weights favor, but do not strongly enforce, translation invariance.2

Table 2 shows performance on test examples of double, triple, and quadruple letter displays.
The test examples were formed by selecting random combinations of distinct letters and selecting
a location randomly from among the four standard letter positions. Displays that were used in
training were excluded.

Performance drops as the number of stimuli increases. One can understand why this must be
the case when one views the model in terms of processing channels. Information 
owing from one
letter position in the input to the output passes through a set of intermediate units. The units
involved in the processing of one letter position overlap with those involved in the processing of
other letter positions, especially at higher layers of the model. The processing channels are thus
dependent, and if information is 
owing from two channels simultaneously, interference can occur,
resulting in the loss of information. Thus, while the model was designed to process visual stimuli
in parallel, �nite resources result in capacity limitations. This motivates the need for some type of
attentional processing that can limit the amount of information that the model attempts to handle

2Translation invariance means that the response of the system is the same regardless of the position of a visual
stimulus on the retina.
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at once. We now can present an attentional mechanism that performs this function.

A model of attentional selection

We have described a simple network that can recognize single letters well, and can recognize pairs
of letters in parallel for the most part, but as the number of letters increases, the quality of the
recognition degrades. On computational grounds, then, some means is required to select a subset
of the locations in the visual �eld where letters appear. By selecting locations sequentially, the
attentional system can control the 
ow of information and prevent the recognition system from
being overloaded.

The attentional model we present is most similar to an early-selection model described by
Mozer (1991). However, there are many related models in the literature, including Ahmad (1991),
Koch and Ullman (1985), LaBerge and Brown (1989), and Sandon (1990). We have attempted
to synthesize and incorporate the most promising features of each. The core of the model is a
set of units arranged topographically, in one-to-one correspondence with retinal locations. This
attentional map is depicted in Figure 6, along with the primitive feature maps. (Other details in
the Figure can be ignored for the time being.) In other models, the attentional map is also referred
to as the priority map or the saliency map. Activity of a unit in the attentional map indicates that
units in the corresponding location on the retina are being attended. Attending to a region of the
visual �eld requires activating a compact, contiguous set of units on the attentional map. For the
time being, we won't discuss how activity patterns arise in the attentional map. Assume that the
activity pattern has been established that indicates attention to a particular region. We will refer
to this activity pattern as the attentional state.

How might attention control the 
ow of information in the visual system? The most straight-
forward notion is to allow the attentional units to gate the activity 
ow from the primitive input
features through the object recognition network. If an attentional unit is active, all primitive
features at the corresponding location transmit their activities to the recognition network. If an
attentional unit is inactive, the activity of primitive features at the corresponding location is not
available to the recognition network. This is consistent with experimental �ndings that once a
location is selected, all features at that location are processed (Kahneman & Henik, 1981). This
gating operation is depicted in Figure 6 for two locations by a convergence of the output from an
attention unit onto the bundle of outputs from the primitive features.

A mathematical speci�cation of this gating operation is simple; it basically involves multiplying
the activity of the attentional unit by the activity of the primitive feature units. Let axy denote the
activity of a unit at location (x; y) of the attentional map, and suppose this activity level ranges
from a minimum of 0.0 to a maximum of 1.0. Let rqxy denote the activity of a primitive feature
type q at location (x; y) on the retina. Then the activity from this primitive feature unit that is
conveyed to the recognition network, r̂qxy, is

r̂qxy = axy(rqxy � �r) + �r

where �r is the resting activity level of the primitive feature units. If the attentional unit has
activity 0.0, only the resting activity is conveyed. As the attentional unit activity rises to 1.0,
the activity conveyed approaches the actual primitive feature activity. This type of multiplicative
junction between processing units is common in connectionist models (see, e.g., Hinton, Rumelhart,
& McClelland, 1986).
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Figure 6: Each \slab" of circles on the right depicts a primitive feature map, in which the circles
represent processing units that respond to a particular feature in a particular location. The slab
on the left depicts the attentional map, with a set of units in one-to-one correspondence with the
primitive feature maps. Further details of the Figure are explained later in the chapter.

Information in the unattended �eld seems not to be completely ignored in at least some situa-
tions (e.g., Gatti & Egeth, 1978; Eriksen & Ho�man, 1973; Sha�er & LaBerge, 1979). This suggests
that activity of the primitive feature units in unattended locations should not be completely sup-
pressed, because if it was, unattended information could have no e�ect on behavior. We will thus
suppose that unattended information is attenuated, using a gating function of the form

r̂qxy = g(axy)(rqxy � �r) + �r

where g(:) is a monotonic function, such as

g(a) = �+ (1� �)a�:

For the moment, ignore �. The constant � determines the degree to which unattended information
is passed through the recognition network. With � = :05, which we use throughout this chapter,
5% of activity is conveyed even in unattended regions of the visual �eld. The consequence of a
nonzero � on behavior is not immediately obvious. The fact that 5% of activity is conveyed does not
necessarily imply that 5% of unattended objects will be recognized or that their activity will be 5%
that of attended objects. This depends in a fundamental way on the operation of the recognition
network, and might well interact with familiarity of the unattended stimuli (i.e., the extent to
which the recognition network is tuned to processing a particular stimulus) and the nature of task
demands (e.g., the information on which responses are based).

The constant � has been included to help suppress the e�ect of attentional units with weak
activity. If � > 1 and the attentional unit activities are in the range [0; 1], small activity values will
be squashed more than large activity values. Throughout the chapter, we use � = 4.
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Having described how an attentional state a�ects processing in the recognition network, we now
specify how the model forms attentional states.

Dynamics of the attentional network

In a model of location-based selection, the attentional state should indicate a contiguous spatial
region on the retina; attentional units within the region should be active and all others inactive. It
turns out to be somewhat tricky to design an elastic-spotlight model that permits regions of varying
size and shape. However, we do not need to deal with this problem right now, because letters are
of constant size and are always presented to the model in one of four positions. Consequently,
we will describe a simpli�ed implementation that captures the essence of the model but, by its
simplicity, is easier to interpret and analyze. In this rigid-spotlight model, four attentional states
suÆce, corresponding to the four quadrants of the retina. To attend to a letter position, say the
upper left corner of the retina, all attentional units in that quadrant should have activity 1.0 and all
units in the other three quadrants have activity 0.0. Because of the redundancy in this attentional
state, we can collapse all attentional units in a quadrant to a single unit.

The rigid-spotlight model requires just four units. What determines how active these units
will be? There are two sources of input to the attentional network: exogenous and endogenous.
Exogenous input comes from sensory data: in any quadrant where primitive features are present,
attention should be directed to that quadrant. This will cause attention to shift to locations where
stimuli appear. Endogenous input results from previous learning, priming, or cueing which gives
rise to expectations about the location of interesting sensory data. Both exogenous and endogenous
input directly activate the appropriate attentional units. In the case of exogenous input, one can
think of each primitive feature as having a small-weighted connection to the attentional unit in the
corresponding location. In the case of endogenous input, one can think of input from an unspeci�ed
source to each attentional unit. This is depicted, for the elastic-spotlight model, in Figure 6.

Because only one attentional unit should be active at a time|corresponding to the selection of
a particular location|the units should compete with one another. If each unit has an inhibitory
connection to each other unit, the unit that is most active will inhibit all others. This is known
in the connectionist literature as a winner-take-all network (Feldman & Ballard, 1982; Grossberg,
1976). Additionally, each unit should have an excitatory connection to itself, so that if it is active,
it will tend toward the maximum activity level. Figure 7 shows a schematic depiction of the
attentional model. Algebraicly, the net input to the attentional unit in location (x; y) at time t is:

netxy(t) = extxy(t) + �axy(t)� �
X

q;r 6=x;y

aqr(t)

and the activity update rule is

axy(t+ 1) = �h(netxy(t)) + (1� �)axy(t)

where extxy(t) is the external input, endogenous and exogenous, to the attention unit, � is the
strength of the excitatory self-connection, � is the strength of the inhibitory connection between
pairs of units, and h is a threshold linear function that limits activity to the range [0; 1]:

h(net) =

8><
>:

0 if net < 0
net if 0 � net � 1
1 if net > 1
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Figure 7: The rigid-spotlight attentional model. Each attentional unit represents a quadrant of
the retina. Each unit is self-excitatory and inhibits each other unit. Each unit receives input
from exogenous and endogenous sources. Excitation is represented by connections with arrows,
inhibition by connections terminated with small circles.
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Figure 8: Activity of four attentional units as a function of time. All units have initial activity 0.0.
Unit 1 (solid line) has external input .7, unit 2 (dashed line) has external input .6, and units 3 and
4 (dotted lines) have external input .2.

In simulations, we use � = :4, � = 3:5, � = :2 for the attentional net. Figure 8 shows a graph of the
activity over time of four attentional units, given �xed inputs, extxy. Unit 1 wins the competition
and becomes fully active, while the other units are suppressed. Exogenous input to an attentional
unit is based on the number of primitive features present in the quadrant represented by the unit.
Each feature has a probability � of being included in the external input at each time. When
detected, the feature contributes a constant � to the external input. In simulations, we used � = :8
and � = :1.

Curiously, this model does not treat attention as a limited resource of which there is only a
�nite amount to go around; if we wanted to, we could reduce the value of � so that units would
no longer compete so strongly as to shut one another o�. The limited resource in this model is
found in the object recognition system. Without attentional selection, objects in the visual �eld
will interfere with the processing of each another.
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Figure 9: Build up of activity in an attentional unit (solid line) and the letter S unit (dashed line)
in response to the stimulus S.

Simulations of spatial selection

The bene�t of attentional precuing

With the attentional network in place, we can run simulation experiments using the model. Initially,
the model is reset to a neutral attentional state in which all attentional units are inactive. A stimulus
is presented to the model by introducing a pattern of activity over the primitive features. The
primitive features provide input to the attentional network, leading to activation of attentional
units. At �rst, the inactive attentional network prevents most primitive feature activity from
entering the recognition network, but as the competition takes hold in the attentional network, one
location becomes preferred and primitive feature units in this location are allowed to pass their
activity through the recognition network. Figure 9 shows the response of the model when the letter
S is presented in the upper left quadrant. The Figure depicts both the activity of the attentional
unit in the stimulus location and the activity of the letter unit. The time required to activate the
letter unit is due to the gradual build up of activity in the attentional network as well as the slow
propagation of activity through the recognition network (as determined by the constant �).

A simulation trial does not have to begin with a neutral attentional state. If the model has been
cued to a location in advance of the trial, endogenous input to the attentional network will sustain
activation at that location in the attentional map prior to stimulus onset. When the stimulus
is presented, activation from the primitive features will immediately 
ow through the recognition
network. Consequently, one might expect more rapid response to the stimulus.

Posner (1980) has studied a speeded detection task with location precuing. Subjects were asked
to detect the onset of a suprathreshold target stimulus at one of several possible locations. Prior to
target onset, the subject might be provided with a spatial cue indicating the location in which the
target is likely to appear. Subjects were faster to detect the target when a cue was given than when
no cue was given. Our description of the model's behavior is consistent with this result. Further,
Posner manipulated the cue to be either a valid or invalid predictor of target location. Responses in
the valid cue condition were faster than in the neutral cue condition, while responses in the invalid
cue condition were slower (second column of Table 3).3

3Most of the human data we use for comparison and for setting model parameters has been extracted from �gures
of the referenced experimental papers, and/or has been averaged over several experiments. Because the details of our
simulation experiments do not match the details of the human experiments (e.g., stimuli, presentation conditions),
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Table 3: Reaction time to detect target onset
cue condition human RT model cycles model RT

valid 230 ms 15.7 cycles 234 ms
neutral 260 ms 17.5 cycles 256 ms
invalid 300 ms 20.9 cycles 301 ms

Simulating experimental results even as basic as these nonetheless requires further assumptions
about the operation of the model.

1. How do the di�erent cue conditions correspond to states of the model? We assume that in the
neutral condition, all attentional units are inactive. A cue|valid or invalid|guides attention
endogenously to the cued location prior to presentation of the target.

2. How does the model formulate a response? The detection response must be based on some
representation in the model; it could be the primitive input features, on the letter units, or on
any level between. We assume that read out is based solely on the outputs of the recognition
network.4 Because the detection response depends only on whether a stimulus is present, not
its identity, we assume that the evidence upon which a response is based is the total activity
of the letter units.

3. When does the model initiate a response? One might assume a response is initiated when
the total evidence passes some threshold. If there were no noise in the model, the threshold
could be set to zero. However, our recognition model is noisy in that letter units have slight
activity even when no stimulus is present. Additionally, most models assume some built-in
noise that re
ects sources of variability not modeled explicitly. Thus, the threshold should
be set as low as possible such that responses can be initiated rapidly and without producing
false detections due to noise.

The response generation procedure we adopted is a variant of the procedure used by McClel-
land and Rumelhart (1981). We describe the general procedure. For each possible response
r the model might be asked to make at time t, the evidence for the response, denoted er(t),
is computed. The probability of producing a response r at time t is then:

p(r; t) =
exp(�er(t))P
s exp(�es(t))

;

where � is a constant that translates evidence into response strengths. The numerator is the
strength of response r, and the denominator normalizes the probabilities to sum to 1. This
rule will always choose a response at each time t it is applied. However, we would like to
prevent the model from making a response unless suÆcient evidence has accumulated. To do
this, we add an additional response category, which we call \no response", that has constant
evidence eNR. This constant behaves as a probabilistic threshold; if eNR is large relative to
the evidence for the other responses, then the model will likely hold o� making a response.
eNR is a free parameter of the model, and it essentially controls the speed-accuracy trade o�:

there is little to be gained by trying to determine and model the exact outcome of a speci�c human experiment.
4It may seem strange to read out at a high level when the task does not call for stimulus identi�cation. We �nd

it most parsimonious to make the strong assumption of a single level of read out, and thereby avoid the issue of
determining where read out occurs on a task-by-task basis.
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Figure 10: Summed letter unit activity as a function of model cycles for the valid (solid line),
neutral (dashed line), and invalid (dotted line) cue conditions, averaged over a large number of
stimulus presentations. A cycle is a single update of the activities of all units in the model.

the larger eNR is, the more evidence must accumulate before a response is initiated. In all
our simulations, � = 10; in detection tasks, eNR = :3 and in discrimination tasks, eNR = 1:2,
re
ecting the fact that more evidence should be required for a discrimination response than
a detection response.

Figure 10 shows the summed letter unit activity as a function of time for the three cue conditions.
Time is measured in cycles; each cycle is a single update of the activities of all units in the model.
One can clearly see that activity rises most rapidly in the valid cue condition, followed by the
neutral cue condition, followed by the invalid cue condition. The third column of Table 3 shows
the mean number of cycles for the model to initiate a detection response, over a large number of
stimulus presentations. The simulation response times are qualitatively in accord with the data.
We scaled the model response time in cycles, RTmodel to real-world response times, RT realworld,
according to a formula that assumed a �xed number of milliseconds per cycle, 
, and a �xed amount
of time, �, for input preprocessing and motor response:

RT realworld = 
RTmodel + �;

We chose values for these constants|12.8 for 
 and 32.8 for �|to obtain a reasonable �t to this
data. The same constants will be used in all subsequent simulation experiments.5

Cohen et al. (1994) and Jackson, Marrocco, & Posner (1994) have modeled the e�ect of cues on
speeded detection using essentially the same approach|a set of attentional units that compete to
select a location and preactivating units at the cued location. While the activation dynamics and
competition mechanisms vary among the three models, and while Cohen et al. and Jackson et al.
do not simulate the perceptual system in any detail, all three models show the same e�ect. This
suggests that the e�ect is robust under a variety of implementations of the same key notion|that
attention is the result of a competition among locations. Jackson et al. have attempted to provide
a more neurobiologically plausible mechanism, localizing various components of their model to
di�erent brain regions. Both Cohen et al. and Jackson et al. also account for data of neurological
patients with attentional disorders by \lesioning" their models in a manner consistent with the
form of damage the patients are known to have su�ered.

5Surprisingly, some modelers (e.g., Cohen et al., 1994) have allowed themselves the freedom of �tting the results
of di�erent experiments with di�erent scaling parameters.
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We attempted to extend our model in a somewhat di�erent direction. Shiu and Pashler (1994),
summarizing the literature on the e�ect of advance knowledge of stimulus location in processing
single-item displays, concluded that although a spatial precue results in signi�cant speedups in
detection tasks, the e�ect is more modest in speeded suprathreshold discrimination tasks. We
simulated a discrimination task in which the model was given a valid, neutral, or invalid cue, which
was followed by one of two visually confusable targets, such asX andY, and a forced-choice speeded
response was required. For the discrimination task, a response cannot be initiated until the model
is con�dent that one stimulus was presented and not the other. This is particularly critical because
a stimulus like X will often produce activity for visually confusable letters like Y. Thus, we set the
evidence for the X response, eX, to be the di�erence in activity between the X and Y units, and
symmetrically for the Y response.

After experimenting with parameter values, activation functions, and response functions for
over a week, we had to admit defeat: The model always produced a cue-validity e�ect in the
discrimination task which was as large as the e�ect in the detection task. Figure 10 suggests one
argument for why this might be. The curves for the three cue conditions appear identical except
for a shift in time. Although the Figure shows summed activity of all letter units, this is true for
the individual unit activity curves too. Any response initiation procedure based on these parallel
curves will necessarily produce response times for the cue conditions that di�er by the time shift.
Thus, the detection cue-validity e�ect must be the same as the discrimination e�ect. Although it
is theoretically possible that certain parameter settings might result in nonparallel curves, we were
unable to discover such settings.

Two lessons might be learned from this exercise. First, the model shows a parameter-independent,
qualitative behavior, indicating that it represents a strong, testable theoretical perspective. Large
computational models often arouse suspicion because they appear suÆciently malleable that they
can be made to account for any piece of data. More often than not, this belief is misguided, as
we discuss later. Second, if one has strong con�dence in the model, one might question Shiu and
Pashler's conclusion from the literature, which is based on studies of Posner (1980) and Posner,
Snyder, and Davidson (1980). Although both studies appear to show smaller cue-validity e�ects for
discrimination than detection, this conclusion was not backed up by statistical analyses. Further,
the detection and discrimination tasks were performed with di�erent stimulus materials and ex-
perimental procedures, making it problematic to directly compare results. (Our simulation results
assume that detection and discrimination tasks are carried out under identical stimulus and exper-
imental conditions, except for the response required of subjects.) Resolving whether the model or
the characterization of the data is right is beyond the scope of this chapter, but the model|right
or wrong|has clearly pointed to an avenue of further investigation.

Time course of attention shifts

In the cue-validity simulation, we assumed that the cue was presented suÆciently far in advance of
the target that attention could settle on the cued location prior to the target onset. What happens
if the stimulus-onset asynchrony (SOA) between cue and target is varied so that the target is
presented before attention becomes fully active at the cued location? Experimental studies have
shown that response times decrease monotonically for increasing SOA, up to about 200 ms in both
detection and discrimination tasks with peripheral cueing (e.g., Eriksen & Ho�man, 1974; Posner,
1980).

Figure 11 shows a simulation result for the model on a detection task in which a cue is presented
for a varying number of cycles, and is then replaced by a target item to be detected. We assume
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Figure 11: Response time of the model to detect a stimulus as a function of cue-target SOA. The
simulation shows the same pattern as human performance: Response times decrease monotonically
for SOAs up to about 200 ms.

that the cue initiates activity in the attentional network but not in the recognition network. The
same detection procedure is applied as in the cue-validity simulations. Clearly, the model shows
the same pattern as human performance.

E�ect of spatial uncertainty

Speeded response to a visual stimulus is delayed by the presence of irrelevant stimuli, even when
sensory interference, discriminability diÆculties, and response con
ict are ruled out as contributing
factors. In a study by Kahneman, Treisman, and Burkell (1983), observers were asked to read
as rapidly as possible a word that appeared unpredictably above or below the �xation point. On
half the trials, another object was presented on the opposite side of �xation, either a word or a
word-sized patch of randomly placed black dots. The mere presence of the second object resulted
in a reading time delay of 30{40 msec.

We simulated this experiment by presenting a letter in one of the four letter locations and a
\black dot patch" in one of the other locations. We assume the black dots activate some unspeci�ed
primitive visual features that drive attention to the location of the black dots, as do the other
primitive features, but they do not activate the letter features used in the recognition network. We
also assume that the letter features provide strong exogenous input to attention, causing attention
to eventually select the letter location.6

Using the discrimination task, response time of the model was 568 ms in the condition with a
letter alone and 605 ms in the condition with a letter and the black dot patch. The explanation
for this behavior is straightforward: When the dot patch competes with the letter for attention,
the activity of the letter location in the attention network grows more slowly, causing a delay in
propagating information through the recognition network.

6As we elaborate later, the model requires the ability to modulate the degree to which each primitive feature
type can drive attention; in this task, choosing the letter location is desirable, and hence letter features should drive
attention more strongly than features of the black dots.
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Table 4: Reaction time to target
distractor type human data model

compatible 460 ms 459 ms
neutral 500 ms 493 ms
incompatible 540 ms 546 ms

The e�ect of irrelevant stimuli

When subjects are asked to make a speeded response to a target letter in a known location, their
responses can be in
uenced by the identies of other letters nearby in the display (e.g., Eriksen &
Eriksen, 1974; Eriksen & Ho�man, 1973; Eriksen & Schultz, 1979; Miller, 1991). Consider the task
of pressing one response key for the target A or U, and another key for the target H orM. Letters
can be presented 
anking the target which are either compatible with the target (i.e., selected
from the same response category), incompatible, or neutral (i.e., not belonging to either response
category). Responses are fastest on compatible trials and slowest on incompatible trials (Table 4).
Flanker e�ects are signi�cantly reduced when the 
ankers are presented one degree of visual angle
or more from the target, but this may well be due to reduced acuity at greater distances (Egeth,
1977).

The 
anker e�ect appears to be a failure of focal attention, in that subjects are unable to prevent
the processing of letters adjacent to a target even if the target location is known in advance. This
e�ect can be eliminated under some conditions, however (LaBerge et al., 1991; Yantis & Johnston,
1990).

The model has a simple explanation for the 
anker e�ect. When a location is unattended,
activity from that location is not completely suppressed; a small amount of activity stemming from
that location|represented by the constant �|is transmitted to and analyzed by the object recog-
nition network. This may result in letter activity that will strengthen the evidence for one response
category in the case of compatible 
ankers or weaken the evidence in the case of incompatible

ankers.

We performed a simulation study in which a target letter was presented in a fully attended
location, and two 
ankers appeared in adjacent unattended locations. A large number of trials
were run, varying the response sets and the stimulus locations. The response initiation procedure
was that of the discrimination task we modeled earlier. The results in the three 
anker conditions
are shown in Table 4. When unattended information is fully suppressed by setting � to zero, the
e�ect vanishes.

The model has now been shown to account for the results of four quite di�erent phenomena
related to selective attention. Although the model produces excellent quantitative �ts to the human
data, the reader should recognize that there is a bit more going on behind the scenes than we have
told you about. For example, in the dot patch experiment, we had the freedom to manipulate the
strength of the exogenous input representing the dot patch, enabling us to produce an e�ect of
the right magnitude. Nonetheless, it would be impossible to manipulate the model to alter the
qualitative pattern of results, e.g., to cause the e�ect of attention to diminish as the cue-target
SOA increased. At the end of the chapter, we return to the issue of qualitative versus quantitative
modeling of data.
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Attention as a spotlight?

Spatial attention has been likened to a spotlight (e.g., Eriksen & Ho�man, 1973; Posner, 1980).
This metaphor implies that attention is allocated to a contiguous, possibly convex, region of the
visual �eld. If the spotlight metaphor is appropriate, then the spotlight should have an adjustable
diameter (Eriksen & Yeh, 1985; LaBerge, 1983). The rigid-spotlight attentional model simulated
in the previous section does indeed select a contiguous region, but the region is of �xed size and
shape|an entire quadrant of the visual �eld. We now discuss an implementation of the elastic-
spotlight attentional model, which is able to select regions varying in size and shape. In this model,
the attentional map has the same dimensions as the retinal map, and a region of the visual �eld is
attended by activating all attentional units in that region.

The elastic-spotlight model is identical to the rigid-spotlight model, except that the dimensions
of the attentional map are increased and the computation of the \net input" to the attentional unit
at map location (x; y), netxy, is changed to

netxy(t) = extxy(t) + �
X

(i;j)2

nbhdxy

aij(t)� �(
�a(t)� axy(t)) ;

where extxy(t) is the external input to the attentional unit, as before, nbhdxy is the set of nine
locations immediately adjacent to and including (x; y)|the neighbors, �a is the mean activity of
units with nonzero activity, � and � are the same constants as before, and 
 is an additional
constant.

The �rst term encourages each unit's activity to be consistent with the external input, as before.
The second term encourages each unit's activity to be as close as possible to that of its neighbors;
if a unit is o� and the neighbors are on, the unit will tend to turn on, and vice versa. The third
term encourages units having activity below the mean to shut o�, and units above the mean to
turn on. The constant 
 serves as a discounting factor: with 
 less than 1, units need not be quite
as active as the mean in order to be supported. Instead of using the average activity over all units,
it is necessary to compute the average over the active units. Otherwise, the e�ect of the third term
is to limit the total activity in the network, i.e., the number of units that can turn on at once. This
is not suitable because we wish to allow large or small spotlights depending on the external input.

To explain the activation function intuitively, consider the time course of activation. Initially,
the activity of all units is reset to zero. Activation then feeds into each unit in proportion to
its external input (�rst term in the activation function). Units with active neighbors will grow
the fastest because of neighborhood support (second term). As activity progresses, high-support
neighborhoods will have activity above the mean; they will therefore be pushed even higher, while
low-support neighborhoods will experience the opposite tendency (third term).

This model has been used to explain data from neurological patients su�ering from attentional
disorders (Mozer & Behrmann, 1990; Mozer, Halligan, & Marshall, 1996). We have adopted the
parameter values from the earlier work: � was set to .11, � to .5, and 
 to .11 times the total
external input, with lower and upper limits of .75 and 1.0. A feature contributes external input
not only to its corresponding attentional unit|as in the rigid-spotlight model, the contribution is
� with probability �|but also to its neighboring locations with �neigh = :02�. The original intent
of this blurring was to give the input a more continuous spread of activity.

Figure 12 shows an example of the attentional model selecting a single region when the external
input speci�es three blob-like patterns that represent distinct objects. The region chosen by the
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External Input Cycle 3 Cycle 6

Cycle 10 Cycle 15 Cycle 20

Figure 12: The upper left panel depicts the external input to the attentional model. The panel
consists of a 15 � 15 array of squares. The area of a white square corresponds to the amount of
external input to the corresponding unit of the attentional model. The small black dots are drawn
in locations where the external input is zero, to show the extent of the array. The external input
pattern is meant to indicate three objects, the largest one|the one with the strongest external
input|is in the upper left portion of the �eld. The next �ve panels show the activity as the
network settles. By cycle 20, the network has reached equilibrium and has selected the region of
the largest object.

External Input Cycle 3 Cycle 6

Cycle 10 Cycle 15 Cycle 20

Figure 13: The response of the attentional model to an external input pattern in which there are
three objects, the largest of which is at the bottom and center of the �eld.
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Figure 14: The response of the attentional model when the � parameter is raised from 0.5 to 0.7.
The external input is the same as in Figure 13, but the region selected is clearly smaller.

model corresponds to the object with the strongest external input. Figure 13 shows a similar
example when one of the blobs is made larger, and a correspondingly larger region is selected.
Comparing the two �gures, it is clear that the model can select regions of varying size. Model
parameters can also be adjusted to vary the size of its spotlight without changing the input.
Figure 14 shows the response of the model when the � parameter is raised from 0.5 to 0.7. The
external input is the same as in Figure 13, but the region selected is clearly smaller.

Two properties of the network are worth noting. First, the units on the edge of the spotlight
tend to have less activity than the units in the center of the spotlight. One is tempted to relate
this to the claim that sensitivity falls o� gradually at the perimeter of the attended region (Eriksen
& St. James, 1986; Downing & Pinker, 1985; LaBerge & Brown, 1989). Second, all stimulus
locations become active in the initial phase of processing. It isn't until competitive mechanisms
take reign that a winning location emerges. Thus, the model is unfocused initially, but over the
course of time it narrows in on a single object. Because the recognition network begins processing
immediately|and before the attentional network has settled to equilibrium|it initially tries to
handle all information in the �eld simultaneously. If one were to observe the activity of units in
the recognition network, it would appear as if the units responded to unattended stimuli at �rst,
but this activity was eventually suppressed. In single cell studies of monkey visual cortex, this
behavior has been observed: 60 msec after stimulus onset a response is triggered in the extrastriate
cortex, but not until 90 msec does attention kick in and suppress unattended stimuli (Desimone &
Duncan, 1995).

The model was not designed with these data in mind, but it does appear a natural consequence
of such a �ltering mechanism. One can envision two basic designs: (1) a cautious system that
does not allow the processing of any information until selection is complete; and (2) an audacious

system that allows the processing of all information until selection is complete. The audacious
system will respond more rapidly, but is more prone to error because items in the visual �eld may
interfere with one another when attention is unfocused. The model, and apparently the primate
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Figure 15: The response of the attentional model when it is already attending somewhere and the
external input changes, triggering an attention shift. The external input (upper-left panel) appears
at cycle 0, when the model is in the state depicted in the upper-middle panel. The remaining panels
show the shift of attention from the upper-left corner of the �eld to the lower-right corner.

brain, is audacious. This is a sensible strategy if the cost of slow responses is greater than the cost
of occasional errors.

In the simulations above, the initial state of the model was neutral. Essentially, the model was
attending nowhere, then a multi-item display appeared which initiated a competition among the
stimuli for attention. What if the model is already attending somewhere when the display appears,
requiring a shift of attention from one location to another? Figure 15 illustrates this situation.
Attention fades out from the old location and in to the new. The spotlight metaphor does not
seem appropriate for describing the attention shift. If the focus of attention were like a spotlight,
one would expect attention to move across the �eld in an analog fashion, illuminating intervening
points along the way. One would also expect that the time required to shift attention would be
monotonically related to the distance between foci. The model does not show this behavior either:
The time required for attention to shift from a focus at (2,2) to stabilize on a focus at (12,12) is 32
cycles (Figure 15). The time required for a shift half as far|from (2,2) to (7,7)|is also 32 cycles.

Early evidence in the literature did appear to support an analog view of attentional shifts
(Shulman, Remington, & McLean, 1979; Tsal, 1983). However, several critiques have appeared
of this interpretation of the original data (Eriksen, 1990; Yantis, 1988) and recent experiments
suggest that the time to shift attention is independent of the distance traversed and of the presence
of interposed visual obstacles (Sperling & Weichselgartner, 1995). The current consensus is that
the spotlight of attention turns o� at one location and then on at another (Eriksen, 1990; Kinchla,
1992). Thus, our attentional model, which was not designed to behave this way, appears to capture
the key property that attention shifts are discrete and distance independent.
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Modeling various selection criteria

We have described several simulations in which the model selects items for report based on location.
Other tasks require selection by di�erent properties of the stimulus, for example, reporting the
identity of the red letter or the location of the brightest dot. An important aspect of a computational
model is that, beyond explaining data, it can also carry out the same sort of operations as can
people. Thus, in this section, we endow our model with a mechanism that allows it to perform
selection by simple physical attributes such as color or brightness. The mechanism assumes that
selection by attributes other than location is nonetheless mediated by location selection, consistent
with �ndings of Snyder (1972), Nissen (1985), and Tsal and Lavie (1985). The mechanism is based
on models by Mozer (1991) and Wolfe, Cave, and Franzel (1989).

Earlier, we characterized the input to the model in terms of primitive feature maps. Each map
is a spatiotopic array of detectors tuned to a particular feature. Until now, we have only required
features of letters|oriented line segments and line terminators|but suppose that the primitive
feature maps include other dimensions of the stimulus, such as color and brightness.

To perform selection by arbitrary features, the model needs the ability to specify which of
the feature maps provide exogenous input to the attentional network. This is achieved through a
set of control signals, one per feature map, as shown in Figure 6. The control signals modulate
the probability that features in that feature map are detected by the corresponding unit in the
attentional map. We referred to this probability earlier as �, but we now add the index q to
indicate the control signal for feature type q, �q. By default, the �q will have value .8, as we
assumed for �. The control signals in Figure 6 are shown only for a single location, but the gating
is performed at every location across the spatiotopic map.

If the task requires selecting the red item for report, then the system should be con�gured such
that only activity from the \red" feature map drives the attentional network, causing selection of
red items. If the display contains only a single red item, it will be selected, activity from all feature
types in its spatial location will then be allowed to pass through the recognition network, and the
output of the recognition network will be the identity of the red item.

What are the primitive feature dimensions that can drive attention? In addition to edge ori-
entation and termination, color, and brightness, there is evidence to support dimensions such as
size, direction and speed of motion, binocular disparity, and three-dimensional surface properties
(Driver, Mcleod, & Dienes, 1992; Enns, 1990; Hillstrom & Yantis, 1994). Discontinuities or sin-
gletons in all of these dimensions appear capable of attracting attention as well (Pashler, 1988;
Sandon, 1990; also, see chapter by Yantis, this volume). And multiple spatial scales of resolution
must be encoded.7 By this reckoning, there are at least �fteen primitive feature dimensions, and
to coarse code a value on each dimension (e.g., to specify the value \red" on the color spectrum)
would require a bare minimum of, say, �ve feature types, resulting in at least 75 primitive feature
types.

Having argued for voluntarily control over which features can drive attention, we must add
that this control is certainly limited. Some visual features may attract attention willy nilly (e.g.,
Jonides & Yantis, 1988; Pashler, 1988; Treisman & Gormican, 1988), indicating that it is diÆcult or
impossible to gate out these features. And, based on evidence we discuss below, there are probably
bounds on the visual system's ability to gate in or out various feature types.

7Our framework makes no strong assumptions about the nature of the primitive visual features. Many features
we have listed would not ordinarily be considered \primitive." The framework allows for considerable preattentive
parallel visual processing prior to \feature" registration.
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In terms of the model, we propose a simple limitation on control over which features can drive
attention. Let us allow the control signal, �q, for each feature type q to be continuous in the range
[0; 1]. The control signal then determines the degree to which a feature type will attract attention.
Suppose that each �q has a default setting which has been determined by past experience, based on
what features in the environment tend to be most important and need to be responded to quickly.
Modulating the value of a �q requires some type of limited resource, let us call it regulatory juice.
The amount of juice is suÆcient to, say, fully open or close one gate, or to make small adjustments
in several gates. It may even be that some gates are easier to modulate with a �xed quantity of
juice. The point is that the �q cannot be adjusted arbitrarily.

The introduction of control signals into the model allows us to explain selection on the basis
of primitive features other than location. The notion of regulatory juice allows us to explain how
selection criteria are adjusted in response to task demands. Experimental data are consistent with
this notion, e.g., short-term experience performing a task can a�ect the degree to which certain
feature types drive attention, and this e�ect can be either excitatory or inhibitory, i.e., increasing or
decreasing the �q (Hillstrom, 1995; Maljkovic & Nakayama, 1994). Treating the regulatory juice as
a limited resource allows us to account for limitations on attentional selectivity. The general issue
of voluntary control over exogenous in
uences on attention is beyond the scope of this chapter,
although we �nd it diÆcult to build a computational model without at least specifying the \hooks"
for such control from unspeci�ed higher cognitive processes.

The relationship of object-based and location-based attention

Studies have shown that attention can select stimuli on the basis of object shape or structure
(e.g., Behrmann, Zemel, & Mozer, 1996; Duncan, 1984; Egly, Driver, & Rafal, 1994; Kramer &
Jacobson, 1991; Vecera & Farah, 1994). For example, Kramer and Jacobson examined the in
uence
of 
ankers on a target stimulus, similar to the experiments described earlier. When the 
ankers
and the target were considered part of the same object, there was a response-compatibility e�ect;
when the 
ankers and target were part of di�erent objects, there was no e�ect, even though the
spatial separation between the target and 
ankers was the same in the two conditions.

The data argue for object-based selection: Visual features are attended to not on the basis
of their spatial location but according to which object they belong, even if the features are not
spatially compact and overlap with features of other objects. Two very di�erent processes could
underlie object-based attention. One possibility is that attention is allocated to an object-based
representation, perhaps a high level, abstract representation of object identity. The other possibility
is that attention is allocated to a set of spatial locations, possibly noncontiguous, at which features
of an object are present. Evidence from Vecera (1994) supports the latter interpretation.

What is the relationship between object-based and location-based attention? Both forms of
attention can be observed in the same experiment (Egly, Driver, & Rafal, 1994), suggesting that
the two are not mutually exclusive. Consequently, one must ask which type of attentional selection
operates �rst, or whether there is an interactive process in which both types of selection occur
in parallel. Experimental work like that of Kramer and Jacobsen (1991) argues that object-based
segmentation must precede or interact with location-based selection. Assuming that object-based
segmentation is related to perceptual processes that group distinct display elements into coherent
regions, additional support for this hypothesis can be found (Driver & Baylis, 1989; Duncan, 1995),
and there are several recent theoretical proposals that embody the hypothesis (Grossberg, Mingolla,
& Ross, 1994; Humphreys & M�uller, 1993; Rensink & Enns, 1995; Trick & Pylyshyn, 1994).
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Given that object-based selection involves allocating attention to spatial arrays of features, and
that object-based selection operates prior to or simultaneously with location-based selection, the
mechanism of attentional gating we have already proposed is adequate to explain object-based
selection. We must, however, posit an additional process that segments features of a display
according to which object they belong and can guide attention to the locations of a single object's
features.

Several computational models have been proposed to segment displays into their component
objects. Humphreys and M�uller (1993) and Grossberg, Mingolla, and Ross (1994) have built
connectionist models that group display elements on the basis of similarity and spatial proximity.
Mozer, Zemel, Behrmann, and Williams (1992) have designed a connectionist model that learns
which features are likely to be grouped together or apart based on a set of presegmented examples.
It thus extends the notion from Gestalt psychology of �xed grouping principles to a more dynamic
process based on statistics of the environment. (Figure 16 shows the model segmenting a simple
image.) Both types of models use heuristics to guide the grouping process, rather than whole-object
knowledge. Although the heuristics will not be infallable, the hope is that they will suÆce for most
segmentation tasks, and even when they fail, recognition processes will be robust to some degree
of segmentation error (Enns & Rensink, 1992). This avoids the chicken-and-egg problems of how
to segment a display without knowing the component objects, and how to recognize the objects
without knowing the segmentation.8

Assuming some process has segmented the visual �eld into feature groups, how do the groups
in
uence attention? Here is one proposal in terms of our model. The attentional model selects
a single region|a contiguous set of locations|because each unit in the attentional map inhibits
all units outside its neighborhood. However, for object-based attention, the possibility of selecting
noncontiguous locations must be allowed. Thus, units representing locations of features of the
same group should excite rather than inhibit one another. The result of grouping processes, then,
should be to increase temporarily the connection strengths between attentional units that represent
grouped locations. The notion of dynamic, short-term weight adjustments in response to grouped
features was proposed by von der Malsburg (1981; von der Malsburg & Schneider, 1986).

The eventual attentional state will then be a complex interaction between the dynamic links
formed among grouped features and exogenous and endogenous inputs to the attentional network.
This brief sketch is hardly a compelling answer to the diÆcult and important question about how
object-based and location-based attention work together. Existing computational models do not
directly address how the two forms of attention are integrated, with the exception of preliminary
work by Goebel (1993) and Grossberg, Mingolla, and Ross (1994). This is clearly fertile ground for
future exploration and simulation.

8All segmentation models use some information about objects. The information can be as basic as the fact that two
features appearing in a certain spatial relation are more often part of the same object than parts of di�erent objects.
The information can be as complex as restrictions on how a feature can appear with respect to all the other features
that are part of the object, which we have referred to as whole-object knowledge. One can characterize the information
along a continuum of what order statistics comprise the knowledge. Second-order statistics describe relationships
between pairs of features; very high-order statistics are required to describe whole objects. The information used by
the Mozer et al. (1992) model is of intermediate order, based on spatially local con�gurations of features. Vecera and
Farah (1993) found that upright overlapping block letters are segmented more readily than the same stimuli inverted.
This experiment rules out the use of only low-order statistics, such as continuity between pairs of lines, because
upright and inverted letters are identical in terms of low-order statistics. While the use of whole-object knowledge for
segmentation could explain the experimental results, the results are also consistent with the use of intermediate-order
statistics that are di�erent for upright and inverted letters. For example, English letters are more often open on the
right than on the left. Inverted letters violate this con�gural property.



Mozer & Sitton 26

Cycle 0Cycle 0 Cycle 2Cycle 2 Cycle 4Cycle 4
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Figure 16: The adaptive grouping model of Mozer et al. (1992). The six panels show the state
of the model at various points in processing a display consisting of two overlapping rectangles.
The upper left panel is the initial state of the model; the lower right panel is the �nal output of
the model. Each oriented line segment is a primitive input feature. The coloring of the features
indicates the object label assigned to the features. The initially random labeling is transformed
into a pattern in which the features of each rectangle have a unique label.
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Simulations of visual search

In the previous three sections, we have discussed diverse aspects of attention: adjustable attentional
spotlights, shifts of attention, selection on the basis of object attributes, and the relationship of
location-based and object-based attention. All of these aspects must be addressed if we hope to
model the vast and complex literature on visual search.

In a visual search task, subjects are commonly asked to detect the presence or absence of a
target in a display containing distractor elements. Response time is measured as a function of the
number of elements in the display. The shape of this curve indicates something about how subjects
perform the search task. Flat curves, in which response time does not increase with the number of
elements or increases very gradually (less than about 10 milliseconds per element), is suggestive of
a parallel search across the visual �eld. Curves with steep slopes, in which each additional element
increases the response time, are suggestive of a serial search. For example, searching for a vertical
bar among horizontal bar distractors produces a 
at curve; searching for a plus among vertical
and horizontal bar distractors produces a positively sloped curve. Characterizing search using a
serial-parallel dichotomy has turned out to be an oversimpli�cation (see Chapter by Wolfe, this
volume). Response time curves are often nonlinear, and slopes vary across tasks continuously, from

at to steep. It is thus more appropriate to view search on an easy-to-hard continuum.

A variety of promising computational models have been devised to replicate various aspects
of the data (Ahmad, 1991; Ahmad & Omohundro, 1991; Gerrissen, 1991; Grossberg, Mingolla,
& Ross, 1994; Humphreys & M�uller, 1993; Mozer, 1991; Niebur & Koch, 1996; Sandon, 1990).
Most of these models are based on feature-integration theory (Treisman & Gelade, 1980; Treisman
& Gormican, 1988; Treisman & Sato, 1990) or the guided-search model (Wolfe, Cave, & Franzel,
1989). We will discuss the processes and mechanisms underlying visual search in terms of the model
we have developed for this chapter, but our account overlaps signi�cantly with these theories and
earlier computational models. An outline of this account is as follows.

� We assume that the target and distractor sets are known in advance. For each primitive
feature type, an analysis must be performed to determine how well the feature discriminates
targets from distractors. That is, if all display elements containing (or not containing) the
feature are discarded, have we done a good job in eliminating distractors and keeping targets?
Consider, for example, searching for a red vertical among blue verticals and blue horizontals.
If all red elements are ruled in (or equivalently, all blue elements are ruled out), the target
has been reliably separated from the distractors. However, if all verticals are ruled in (or
horizontals are ruled out), we are left with a set of elements that includes both targets and
distractors.9

� The control signals, �q, of highly discriminative feature types should be modulated such that
potential target elements will be more likely to capture attention and potential distractor
elements will be less likely. In our example of searching for a red vertical among blue verticals
and horizontals, �red should be increased, causing red elements to drive attention more than
blue elements. The modulation of control signals might be subject to a limited amount of
regulatory juice. The model also has the 
exibility to adjust other parameters that in
uence
its performance, including the diameter of the attentional spotlight, controlled by �, and the

9Judging the discriminative power of a feature requires additional assumptions about the nature of the stimulus
displays, such as the relative likelihood of various distractors and the relative frequency of target-present trials.



Mozer & Sitton 28

response criterion, controlled by eNR.
10

� When a search display is presented, features in the display will drive the attentional network
exogenously, gated by the control signals.

� A competition ensues within the attentional network to select one region. The region may
contain one or multiple display elements. The size of the region will depend on the density and
arrangement of elements, segmentation and grouping processes, and the adjustable parameter
of the attentional network that controls the spotlight diameter.

� As selection takes place, display elements are processed and identi�ed by the recognition
network. Even display elements that are commonly thought of as simple features, such as a
vertical bar, are processed by the recognition network. The vertical bar is an object which
might be composed of vertical bar and terminator primitive features.

� The output layer of the recognition network contains a set of units that represent identities
of the di�erent display elements that might appear. Target detection would occur using the
response initiation procedure of earlier simulations.

� If the target has not been detected by the time that the outputs of the recognition network
have stabilized, the selected region is deemed not to contain a target, and attention should be
prevented from returning there. This can be accomplished by forcing o� the currently active
attentional units, possibly by assigning them a strong negative bias that gradually decays
back to zero, and resetting the recognition system.11 12

� The attentional state is reset, and this process is repeated until all stimulus locations in the
display have been explored, at which point the model reports \target absent." It is possible
that the model could quit after only one or a small number of attentional �xations, or, at the
other extreme, that it could return to locations to verify the absence of a target.

This is a complicated, ill-speci�ed story, but visual search is a complicated, ill-speci�ed task|ill
speci�ed in the sense that subjects must make a variety of strategic and control decisions that are
not part of the task instructions. To simplify our simulation, we will model search in relatively
small displays, of up to nine elements. This allows us to avoid limitations on peripheral visual
acuity, eye movements, and|as we will show|the need for sequential attentional �xations. We
also neglect target-absent data, because modeling performance on these displays requires additional
mechanisms which, e.g., determine when to switch attention, when to quit searching, and how to
suppress locations such that they are not repeatedly searched.

10It is a diÆcult optimization problem to con�gure the model's parameters so as to minimize errors or response
time, especially under the constraint of a �nite amount of regulatory juice. Fine tuning the system parameters is no
doubt a matter of learning and experience.

11A bias is a tonic input to a unit. A negative bias causes the unit to shut o� unless there is overwhelming positive
input to the unit via excitatory connections from other units.

12Although we have not speci�ed the coordinate frame in which the attentional units operate, it seems most natural
to interpret it as retinotopic. There is evidence, however, that inhibition of return, the likely mechanism for preventing
the human visual system from returning to an already searched location, operates in a coordinate frame that does
not depend on eye position (Posner & Cohen, 1984).
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Figure 17: A pattern of activity that corresponds to �ve bars and a plus in random locations on
the model's retina.

Simulation methodology

For these simulations, we trained a version of the recognition model that recognizes three \objects":
a vertical bar, a horizontal bar, and a plus sign. The objects can appear in any of nine locations
in the �eld. Figure 17 shows a sample display. Note the distinction between vertical-bar objects
and vertical-bar features; the former is composed of the latter. The network was trained on 450
example displays of one to nine elements, similar to those used in the visual search simulations
described below. The training set was unbiased in that it contained equal numbers of examples
from each condition in the visual search simulations.

During testing, displays are presented to the model with a target and a variable number of
distractors. The elements are arranged randomly on the model's retina. The elastic-spotlight
attentional network, guided by control signals, selects a subset of the display elements, and the
recognition network reports the identities of the selected elements. Although we imagine that
detection responses are trigged by the response initiation process described earlier, we took a short
cut which is a deterministic approximation to the stochastic process, and simply used a �xed activity
threshold, generally around .5, as the all-or-none threshold for initiating a response. If a response
has not been initiated within 100 cycles, the model reports \target absent" and is considered to
have made an error.13 The threshold we selected was as low as possible, to produce responses as
fast as possible, such that the rate of false detection in target-absent displays was nearly zero.

Simple feature search

Searching for an element with a distinctive feature is easy. In a display containing a single vertical
target among a variable number of horizontal distractors, response time will be independent of the
number of distractors. Our model can explain this �nding by assuming that the control signal for
the distinctive feature is increased, causing attention to be driven directly to the location of the
distinctive feature. Once that location is attended, the object at that location is recognized and a
response is made.

We have simulated the search for a vertical among horizontals and a horizontal among verticals.
On each simulation trial, the control signal for the primitive feature unique to the target is increased
from .8 to 1.0, and the control signal for the primitive feature unique to the distractor is decreased
from .8 to 0.

13The processing involved in deciding the target is absent is undoubtably more complex than this. Indeed, Chun
and Wolfe (in press) suggests that absent responses are unlikely to be triggered by a �xed passage of time.



Mozer & Sitton 30

1 2 3 4 5 6 7 8 9
280

300

320

340

360

380

400

420

440

460

480

number of display elements

re
po

ns
e 

tim
e

feature

conjunction

Figure 18: Time for the model to initiate a detection response as a function of display size for
target-present trials in feature (dashed line) and conjunction (solid line) search.

The dashed curve in Figure 18 shows the model's performance on target-present trials as a
function of the number of display elements. Response times are not dependent on display size. The
model never fails to detect the target.

Theories of visual search generally assume that feature search does not require selective atten-
tion, and more strongly, that feature search does not bene�t from selective attention. We tested
whether this assumption is consistent with our model by forcing attention to be distributed across
the visual �eld. This is achieved by setting � = 1, which causes all perceptual data to be fully
analyzed by the recognition network, regardless of the attentional state. One might conjecture that
if simple feature displays can be processed in parallel and if there is a bene�t of allocating attention
prior to stimulus onset, as we observed in the cue-validity e�ect, response times might actually be
faster with distributed attention. Indeed, there is a statistically reliable bene�t for small displays,
replicating the cue-validity e�ect, but there is also a statistically reliable cost for large displays.
Cost and bene�t are both on the order of 30 ms, and over the various display sizes, they tend to
cancel. Thus, the attentional network is not really helping processing for simple feature displays,
nor is it hurting, consistent with the traditional view of feature search.

The model o�ers a nontraditional perspective in two other respects, however. First, simple
feature search is viewed as an object recognition task, albeit one which the recognition system
has capacity to perform in parallel. Second, while the guided-search model and feature-integration
theory consider the role of attentional guidance only in conjunction search, modulation of control
signals is critical in our model in feature search. Because the attentional network always acts to
select display elements, it is necessary to modulate control signals to select the target features or
else the target will be suppressed and may not be detected. It would be a challenge to develop an
experimental test that could distinguish this perspective from the traditional view.
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Conjunction search

Subjects are slow to search for an element de�ned by a conjunction of features, such as a red vertical
target among red horizontal and blue and red vertical distractors. An explanation in terms of our
model for the diÆculty of conjunction search is not obvious. Suppose that control signals were
set such that exogenous input from only the red and vertical feature maps was able to reach the
attentional network. Locations of red elements would receive a certain amount of input, locations
of vertical elements would receive roughly same input, but the locations of red vertical elements
would receive twice as much input. The attentional network should reliably select the location of
the target, independent of the number of distractors. Regardless of recognition and veri�cation
processes, one would expect the response curve to be 
at, in contrast to typical human data.
Thus, it might seem that our model is too powerful, even though there appear to be at least some
conjunction searches that are easy (e.g., color/depth and motion/depth, Nakayama & Silverman,
1986).

One account of the diÆculty of conjunction search, suggested by the guided-search model (Wolfe
et al., 1989) is to postulate that recognition and attention operate in an intrinsically noisy envi-
ronment. Although the attentional system should be directed more strongly to the target location
than to the distractor locations, the strength of the direction may not be suÆcient to overcome
noise, and will therefore not be reliable, and serial search will be required. A second way account of
the diÆculty of conjunction search is to postulate limits on the voluntary adjustment of the control
signals|the regulatory juice. These two accounts are complementary; weak limits on regulatory
juice and a high intrinsic noise level should yield performance similar to that with strong limits
on regulatory juice and a low intrinsic noise level. In simulating our model, we discovered that it
provides a somewhat di�erent account altogether, which we detail below.

In the canonical conjunction search task, the target is composed of features on two di�erent
dimensions. We could simulate this experiment by adding red and blue feature types to the model
and then training a net to recognize red and blue verticals and horizontals. We could then use
the control signals to bias attention toward the red and vertical feature maps, if the target was a
red vertical. Instead, we have chosen to simulate an experiment which is more challenging to the
model. Our simulation experiment involves a target plus symbol embedded in a distractor array
of verticals and horizontals. Even without modulating the default values of the control signals, the
exogenous input to the target location should be twice that of the exogenous input to any of the
distractors because the target is composed of twice as many features.14 It would thus seem that
selection should be strongly biased toward the location of the target|a problematic result for the
model.

With trepidation, we ran the conjunction search simulation. To our surprise, the model's
performance nicely matched the human data, as shown by the solid curve in Figure 18.15 As the
number of display elements increases, response times increase. For small displays, the curve is

at. This is in accord with the �nding of Pashler (1987) that nearly 
at search slopes can be
observed for small displays, and it re
ects the fact that the recognition network is able to detect
conjunctions in parallel, albeit with limited capacity. (Mordko�, Yantis, and Egeth, 1990, present
further experimental evidence of limited-capacity parallel conjunction detection.)

Response times increase with display size for two reasons. First, the competition among elements

14The guidance to the target is the same as it would be in the colored bar experiment if the control signals were
set up to allow only target features to guide attention, i.e., assuming no limit on the regulatory juice.

15By experimentation, we found that the model performed best when the control signals for all feature types were
lowered from .8 to .5 and when � was lowered from .10 to .04, creating a narrower focus of attention.



Mozer & Sitton 32

1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of display elements

p(
er

ro
r)

selective

distributed

Figure 19: Error rate of the model on target-present trials for conjunction search as a function
of display size. The solid line represents the condition in which the attentional network performs
selective attention. The dotted line represents the condition in which attention is distributed across
the �eld, i.e., all perceptual data enters the recognition network.

in the attention network increases. This can be shown by observing how long the attentional
network requires to reach a stable state. Second, unattended elements in the display interfere
with recognition. This can be shown by comparing performance of the network with � = 0, i.e.,
unattended information fully suppressed, to the standard model, which has � = :05. We �nd that
response times are statistically slower with unattended information fully suppressed, 39 ms slower
in the case of nine-element displays.

As we did with feature search, we can examine how important selective attention is for con-
junction search. Here, we �nd a very di�erent pattern. Figure 19 shows that the model's error rate
skyrockets when attention is divided across display elements. No setting of the response threshold
can achieve a low error rate over both target present and absent trials. The model cannot reliably
detect the plus target without selective attention, consistent with the traditional theories of visual
search.

However, our account of conjunction search is in part nontraditional, because it depends on
subtle properties of the model|the in
uence of unattended elements on the detection of attended
elements and the dynamics of the attentional model. Simulation studies were critical to discov-
ering that the model behaved correctly and why it did. Although the current simulation did not
require postulating noise in the attentional system or limitations on regulatory juice, these factors
may contribute to conjunction search performance, and may be necessary in simulations of other
experimental �ndings.

Discussion of visual search

In its present form, the model can explain other data relating to visual search, including the
�ndings of faster search in low-density displays (Cohen & Ivry, 1991) and the diÆculty of detecting
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the absence of features (Treisman & Souther, 1985). With minor extensions to the model, a wide
variety of other data can be addressed, including response-time curves for target-absent displays,
e�ects of target-distractor contrast (Treisman & Gormican, 1988), search asymmetries (Ivry &
Cohn, 1992; Treisman & Gormican, 1988), e�ects of distractor homogeneity (Duncan & Humphreys,
1989), and rapid conjunction search (Wolfe et al., 1989). However, our immediate goal is not to
present a comprehensive model of visual search, but rather to begin considering the underlying
mechanisms. By addressing data from experimental paradigms as disparate as spatial cueing and
visual search, we hope to have convinced the reader of the model's breadth and 
exibility. This is
the remarkable property of computational models|they can help one to integrate phenomena under
a uni�ed framework. The other lesson from these simulations of visual search is that, although the
model shows some behavior that one would intuitively expect, other aspects of its behavior were
found only via simulation. The model raises some intriguing possibilities, and addressing these
possibilities requires further human experimental studies.

The role of selective attention

When one adopts a computational perspective, a natural question to ask is what computational
role selective attention plays in visual information processing. Four distinct functional roles of
attention fall naturally from the computational perspective presented in this chapter.

� Controlling order of readout. The attentional system allows the recognition system to selec-
tively access information in the visual �eld by location. A task requiring sequential responses
to items in various locations could not be carried out with the recognition system alone.

� Reducing crosstalk. As we illustrated earlier, when the recognition network analyzes multiple
items in parallel, interactions within the network cause the processing of one item to interfere
with another. Deploying attention to one or a small number of items at once will reduce or
eliminate crosstalk.

� Recovering location information. The output of the recognition system we developed encodes
identities but not locations. Computationally, it makes sense to separate identity from lo-
cation, because often the same response should be made to a stimulus regardless of where
it appears in the visual �eld. Neurophysiological evidence also suggests that, at least in the
responses of individual cells, a great deal of location information is discarded in higher cortical
areas involved in object recognition (Tanaka, 1993). And some psychological data suggests
that stimulus identity is encoded apart from location (Mozer, 1989; Kanwisher, 1990). Thus,
some means of recovering location information is critical. Because the current locus of atten-
tion re
ects the spatial source of activations in the object recognition system, the attentional
system can convey the discarded location information.

� Coordinating processing performed by independent modules. The heart of feature-integration
theory is the notion that visual stimuli are analyzed by functionally independent modules
specialized along certain attribute dimensions such as color, form, and motion. Because
these modules operate autonomously, it is imperative to ensure that they coordinate their
processing e�orts. Otherwise, the system can encounter a binding problem in which attributes
of multiple objects are simultaneously activated and it cannot be determined which attributes
belong together, possibly resulting in illusory conjunctions (Treisman & Schmidt, 1982). By
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guiding all modules to analyze the same spatial region, attention can ensure that the attributes
of a single object will be bound together.16

Contrasting theoretical perspectives on selective attention

The key properties of our model are common to most theories of selective attention. We summarize
these properties, which collectively we call the spatial-selection perspective, as follows.

� Attention operates as a spatial gating mechanism. This is mandatory to perform selection by
location.

� The mechanism includes a representation of visual �eld location|the attentional map|which
is distinct from the representation of visual features used for object recognition.

� Attention acts to modulate the activity of visual features such that the signal strength of
features at attended locations are enhanced relative to the strength of features at unattended
locations.

� Object recognition is limited in capacity. While there may be some capacity to recognize
objects in parallel, interference among objects arises which necessitates attentional selection
early in the processing stream. Although selection is performed early, unattended information
receives some degree of processing and causes some interference with attended information.

� Selection can be performed on the basis of object attributes, if these attributes can be char-
acterized in terms of combinations of primitive features that discriminate the item of interest
from other items in the visual �eld.

� Perceptual grouping operates prior to attentional selection and can in
uence the deployment
of spatial attention.

An alternative theoretical perspective on selective attention has been suggested recently in
which competition is ubiquitous and is not limited to competition among locations (Allport, 1993;
Desimone & Duncan, 1995; Duncan, 1996; Phaf, van der Heijden, & Hudson, 1990). We call this
the ubiquitous-competition perspective, and highlight its the main properties as follows.

� Attention is viewed as the competition among stimulus representations at many loci in the
processing stream, from sensory input to response formation. Objects might compete within
subsystems that represent color, shape, and location information, as well as a subsystem that
represents possible actions.

� Within each subsystem, a winner-take-all process results in a gain in activity or representation
for one object and a loss for others.

� The competitive mechanisms are integrated such that multiple subsystems tend to work
concurrently on the same object.

16Note that this statement is not as strong as the claim of feature-integration theory that attention is necessary to
perform all types of binding. Even if intra-dimensional bindings are performed automatically, or if experience might
allow inter-dimensional bindings to be performed automatically, or if the modules are only weakly independent, there
is still a role for attention to coordinate processing.
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� Priming of representations within any subsystem acts to guide selection (see also Farah, 1994;
Grossberg, Mingolla, & Ross, 1994; Mozer, 1991).

� Selection by location is no more fundamental than selection on the basis of other stimulus or
response dimensions.

It is beyond the scope of this chapter to try to resolve the di�erences between this perspective
and the one we have presented. However, we point out that the two are not altogether incompatible.
One can accept the primacy of location-based selection, but also allow for competition among
higher-order object representations. For example, in the model we have presented, inhibitory
connections could be added between units that represent di�erent letters, forcing a selection of
a single letter. This competition among identity representations would be useful for response
selection; the process could even be primed to a particular letter by preactivating the appropriate
letter unit, in accord with the ubiquitous-competition perspective.

The di�erence between the two perspectives is primarily one of emphasis, the spatial-selection
perspective addressing capacity limitations in object recognition and the ubiquitous-competition
perspective focusing on the diverse sorts of cues that can be used for selection. However, the
two perspectives suggest quite di�erent mechanisms of selection on the basis of object identity.
The ubiquitous-competition perspective allows for competition to operate fairly late in processing
among high-level object representations, and then for cooperation among the subsystems to work
its way back to select the same object everywhere in the processing stream. The spatial-selection
perspective, as we have elaborated, suggests a variety of \quick and dirty" heuristics to guide
spatial attention to objects of interest. It remains to be seen which perspective will be most useful
in explaining the broad and complex corpus of psychological data on attentional selection.

Issues in computational modeling

We have presented an elaborate computational framework for analyzing and understanding spatial
attention. Our goal has not been to convince you that the framework is necessarily correct, but
rather that modeling is a valuable exercise that allows one to reason in concrete terms about the
computational mechanisms. We suspect that some readers will still be skeptical as to the value of
model building. For this reason, we conclude with a discussion of general issues in computational
modeling.

Why build computational models?

It goes against the tradition of experimental psychology to construct large, complex computational
models with dozens to hundreds of parameters. Nonetheless, as the �eld matures, computational
models should play an increasingly important role, for the following reasons.

� As one tries to explain larger and larger bodies of data and data from diverse experimental
paradigms, the complexity of the model must necessarily increase. Computational models
with many components and parameters thus become better justi�ed.

� Computational models provide a framework for integrating knowledge from behavioral studies
with results from �elds as neuroanatomy and neurophysiology.

� Computational models force one to be explicit about one's hypotheses and assumptions. To
test a computational mechanism, it must be speci�ed with precision and detail.
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� Computational models provide the ultimate in controlled experimentation. Any simulation
experiment can be replicated exactly. Stimulus materials can be generated that di�er just on
the dimension of interest, without any confounding factors. One can poke at and examine
any part of the model. One can precisely lesion or adjust individual components of the model
and observe the consequences.

� Computational models can make empirical predictions. The model can be presented with
novel stimuli or a novel experimental paradigm, and its performance can be compared to that
of human subjects. The ability of the model to predict nontrivial experimental �ndings that it
was not explicitly designed to explain is an indication that the model correctly captures some
aspect of cognition. In the best of circumstances, an experiment can be designed to distinguish
predictions of one model or model class from another, thereby providing not just support for
one model but evidence against another. Of course, the ability to predict experimental results
is not unique to computational models.

� Computational models allow one to observe the consequences of interactions among mecha-
nisms. In many models, the e�ect of changing one component trickles to others. It is diÆcult
to anticipate these e�ects without computer simulation.

� Computational models help one to understand the tradeo�s involved in the design of the cog-
nitive architecture. It is our conviction that limitations in human cognition are not arbitrary,
but are the result of sensible, if not optimal, design decisions given various constraints on the
cognitive architecture.

We do not mean to suggest that the mere fact that a model has been implemented in computer
simulation gives it some intrinsic value, nor the fact that a model is described qualitatively instead
of using equations implies that the model has little value. Any model is useful only to the extent
it helps us understand some aspect of cognition.

What makes a model compelling?

A simple model that can explain a large, diverse corpus of data is very compelling. However,
characterizing the complexity of a model is not a trivial task. For linear models, the number
of parameters is a measure of model complexity and of how many data points it is guaranteed
to account for. For nonlinear models such as connectionist models, no such direct relationship
exists. Some parameters give the model a lot of 
exibility, others practically none. For example,
in our model, any individual connection strength in the recognition network can be changed with
little e�ect on the model's qualitative or quantitative behavior; however, a parameter like �, which
determines the degree to which unattended information will be processed, dramatically a�ects the
qualitative behavior of the model.

Perhaps the complexity of a model should be measured in terms of how many basic principles
it embodies, rather than the total number of parameters. For example, our recognition model,
while it has several thousand parameters, embodies just a few principles|local receptive �elds,
convergence of information from di�erent regions of the retina, and so forth. The speci�c number
of feature types in each layer and the speci�c pattern of connectivity is probably not central to the
model's qualitative behavior.17

17To determine which aspects of the model are key and which are incidental, one must conduct simulation studies
over a variety of di�erent architectures. Unfortunately, this is computation intensive work, and is seldom done.



Mozer & Sitton 37

One question to ask when evalutating a model is whether more falls out of the model than has
been built into it, that is, whether the model has emergent properties. A clear demonstration of
emergent properties is when the model can make novel empirical predictions that are eventually
validated. However, this is not the only criterion by which a model can be judged as useful. The
Occam's Razor argument is that if a simple model can explain complex patterns of data, then there
is likely to be some truth in the model, regardless of whether the data are old or new.18 Ultimately,
it is up to the reader to determine whether the model is indeed simple relative to the amount of
data it explains.

When is a model right or wrong?

Odds are that the model is wrong, at least in some detail. This is not to say that the model has no
value; it may be one's current best theory, and the only way one has of contemplating mechanisms
of behavior. When the model makes a concrete prediction and this prediction is incorrect, one faces
the challenge of modifying the model to incorporate the new e�ect. More often, the model will
not be suÆciently well speci�ed to predict the outcome of an experiment; in this case, the model
will need to be elaborated to account for results. Thus, over time, the complexity of the model
will grow as the corpus of data it can explain grows. If the model is a good one, the model's rate
of growth will be far lower than the growth of the corpus. Each time the model is modi�ed or
elaborated, it becomes further constrained. Eventually, someone is likely to devise an experiment
that the model is simply not suited to explain. At this point, the model has run its useful life, and
a fresh conception of the underlying mechanisms is demanded.

What about other models that also explain the data?

One question that modelers are constantly asked is: Why should one believe in a particular model
when there are probably dozens of models that are just as e�ective in explaining the corpus of data?
The response of modelers is usually amusement; it is extremely diÆcult to build one model that can
explain the data, let alone a hundred. Those who have never built a model often fail to appreciate
this fact. The appropriate response is perhaps to challenge the questioner to propose an alternative
model. Then, experiments can be devised for which the models make di�erent predictions, or else
the models are functionally equivalent.

Depth versus breadth in modeling

Ultimately, one would like a model both broad and deep, \broad" in that it can address a variety
of experimental tasks and response paradigms, and \deep" in that it can explain subtleties and
quantitative properties of the data. Traditionally, psychological models have aimed for depth
over breadth, and the cost has been that a model of one phenomenon, say the word superiority
e�ect (McClelland & Rumelhart, 1981) may have little in common with a model of some other
phenomenon, say the Stroop task (Cohen, Dunbar, & McClelland, 1990), even though the two
models are ostensibly of the same fundamental process, reading in this case.

18In model building, the distinction between old and new data is seldom clear. One often constructs the model
with particular data in mind, and then discovers that the model, with no or minor changes, can explain other data
as well. In this case, the additional data are in fact predicted by the model, even though the data may have been
collected and published before the model was developed.
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We have aimed for breadth in our presentation by discussing data across a variety of experi-
mental tasks and paradigms. A consequence of this choice is a model with multiple components
and parameters which can be con�gured di�erently for di�erent tasks it is asked to perform. For
a particular task, we presented arguments for why the model should be con�gured a certain way.
This \con�guration" includes specifying decision criteria, modulating control signals, and adjusting
the diameter of the attentional spotlight, and in a more complete model it might also include the
vigilance level (the degree to which units are modulated by the attentional network, the parameter
�), exogenous guidance of attention, and priming to bias selection.

When subjects are given verbal task instructions, they are able to con�gure their perceptual
systems appropriately for the task. In addition to producing the right response to a stimulus|
whether the response is a foot tap when a vowel is presented or a spoken report of the number of
display items|response criteria are adjusted to trade o� speed and accuracy, and performance is
optimized, e.g., searching a display in parallel if subjects are capable of doing so. Understanding
and modeling this con�guration process is a tremendous challenge ahead for the next generation of
computational models of human cognition.
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