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Research Article

Forgetting is ubiquitous. Regardless of the nature of the 
skills or material being taught, regardless of the age or 
background of the learner, forgetting happens. Teachers 
rightfully focus their efforts on helping students acquire 
new knowledge and skills, but newly acquired informa-
tion is vulnerable and easily slips away. Even highly moti-
vated learners are not immune: Medical students forget 
roughly 25% to 35% of basic science knowledge after 1 
year, more than 50% by the next year (Custers, 2010), and 
80% to 85% after 25 years (Custers & ten Cate, 2011).

Forgetting is influenced by the temporal distribution 
of study. For more than a century, psychologists have 
noted that temporally spaced practice leads to more 
robust and durable learning than massed practice 
(Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006). Although 
spaced practice is beneficial in many tasks beyond rote 
memorization (Kerfoot et al., 2010) and shows promise in 
improving educational outcomes (Dunlosky, Rawson, 
Marsh, Nathan, & Willingham, 2013), the reward structure 
of academic programs seldom provides an incentive to 
methodically revisit previously learned material. Teachers 
commonly introduce material in sections and evaluate 
students at the completion of each section; consequently, 

students’ grades are well served by focusing study exclu-
sively on the current section. Although optimal in terms 
of students’ short-term goals, this strategy is costly for the 
long-term goal of maintaining accessibility of knowledge 
and skills. Other obstacles also stand in the way of incor-
porating distributed practice into the curriculum. Students 
who are in principle willing to commit time to review can 
be overwhelmed by the amount of material, and their 
metacognitive judgments about what they should study 
may be unreliable (Nelson & Dunlosky, 1991). Moreover, 
though teachers recognize the need for review, the time 
demands of restudying old material compete with the 
imperative to regularly introduce new material.

Method

We incorporated systematic, temporally distributed review 
into third-semester, eighth-grade Spanish foreign-language 
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Abstract
Human memory is imperfect; thus, periodic review is required for the long-term preservation of knowledge and skills. 
However, students at every educational level are challenged by an ever-growing amount of material to review and an 
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personalized review yielded a 16.5% boost in course retention over current educational practice (massed study) and a 
10.0% improvement over a one-size-fits-all strategy for spaced study.
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640 Lindsey et al.

instruction using a Web-based flash-card tutoring system, 
the Colorado Optimized Language Tutor (COLT). 
Throughout the semester, 179 students used COLT to drill 
on 10 chapters of material, which were introduced at 
approximately 1-week intervals. COLT presented vocabu-
lary words and short sentences in English and required 
students to type the Spanish translations, after which cor-
rective feedback was provided. The software was used 
both to practice newly introduced material and to review 
previously studied material. More information about the 
software and semester schedule can be found in the 
Experimental Methods section of Additional Methods and 
Results in the Supplemental Material available online.

For each chapter of course material, students engaged 
in three 20- to 30-min sessions with COLT during class 
time. The first two sessions began with a study-to- 
proficiency phase for the current chapter and then pro-
ceeded to a review phase. In the third session, these 
activities were preceded by a quiz on the current chapter, 
which counted toward the course grade. During the 
review phase of each session, study items from all chap-
ters covered so far in the course were eligible for presen-
tation. Selection of items for the review phase was 
handled by three different schedulers.

The massed scheduler continued to select material 
from the current chapter. It presented the item in the cur-
rent chapter that students had least recently studied. This 
scheduler corresponds to recent educational practice: 
Prior to the introduction of COLT, the educational soft-
ware used by these students allowed them to select the 
chapter they wished to study. Not surprisingly, given a 
choice, students focused their effort on preparing for the 
imminent end-of-chapter quiz, which is consistent with 
the preference for massed study found by Cohen, Yan, 
Halamish, and Bjork (2013).

The generic spaced scheduler selected one previous 
chapter to review at a spacing deemed to be optimal for 
a range of students and a variety of material, according to 
both empirical studies (Cepeda et al., 2006; Cepeda, Vul, 
Rohrer, Wixted, & Pashler, 2008) and computational 
models (Khajah, Lindsey, & Mozer, 2013; Mozer, Pashler, 
Cepeda, Lindsey, & Vul, 2009). Given the time frame of a 
semester—during which material must be retained for 1 
to 3 months—a 1-week lag between initial study and 
review results in near-peak performance for a range of 
declarative materials. To achieve this lag, the generic 
spaced scheduler selected review items from the previ-
ous chapter, giving priority to the least recently studied 
items (Fig. 1).

The personalized spaced scheduler used a latent-state 
Bayesian model to predict what specific material a par-
ticular student would most benefit from reviewing. This 
model infers the instantaneous memory strength of each 
item the student has studied. The inference problem is 
difficult because past observations of a particular student 
studying a particular item provide only a weak source of 
evidence concerning memory strength. For example, 
suppose that a student has practiced an item twice, fail-
ing to get the correct answer 15 days ago but succeeding 
9 days ago. Given these sparse observations, it would 
seem that one cannot reliably predict the student’s cur-
rent ability regarding the item. However, data from the 
population of students studying the population of items 
over time can provide constraints helpful in characteriz-
ing the performance of a specific student for a specific 
item at a given moment. Our model-based approach is 
related to that used by e-commerce sites that leverage 
their entire database of past purchases to make individu-
alized recommendations, even when customers have 
sparse purchase histories.
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Fig. 1.� Trial allocation of the three review schedulers. Course material was introduced one chapter at a time, generally at 1-week intervals. 
Each vertical slice indicates the across-student average proportion of trials spent in a given week studying each of the chapters introduced 
up to that point. (Each slice includes trials from both the study-to-proficiency and the review phases.) Each chapter is indicated by a 
unique color.
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The model we used defines memory strength as being 
jointly dependent on factors relating to (a) an item’s 
latent difficulty, (b) a student’s latent ability, and (c) the 
amount, timing, and outcome of past study. We refer to 
the model with the acronym DASH (i.e., difficulty, ability, 
and study history). By incorporating psychological theo-
ries of memory into a data-driven modeling approach, 
DASH characterizes both individual differences and the 
temporal dynamics of learning and forgetting. The appen-
dix describes DASH in detail.

The scheduler was varied within participants by ran-
domly assigning one third of a chapter’s items to each 
scheduler, with assignment counterbalanced across par-
ticipants. During review, the schedulers alternated in 
selecting items for retrieval practice. Each scheduler 
selected from among the items assigned to it, ensuring 
that all items had equal opportunity. All schedulers 
administered an equal number of review trials. Figure 1 
and Table 1 present statistics of how often and when 
individual items were studied by individual students for 
each scheduler over the time course of the experiment. 
More information about the experimental procedure, 
subject pool, and study materials can be found in 
Materials, Procedure, and Participants in the Supplemental 
Material available online.

Results

Two proctored cumulative exams were administered to 
assess retention, one at the semester’s end and one 28 
days later, at the beginning of the following semester. 
Each exam tested half of the course material, with items 
randomly selected for each student and balanced across 
chapters and schedulers; no corrective feedback was pro-
vided. On the first exam, retention for items assigned to 
the personalized spaced scheduler was 12.4% higher 
than retention for items assigned to the massed sched-
uler, t(169) = 1.01, p < .001, Cohen’s d = 1.38, and 8.3% 
better than retention for items assigned to the generic 
spaced scheduler, t(169) = 8.2, p < .001, Cohen’s d = 1.05 
(Fig. 2a). Over the 28-day intersemester break, the forget-
ting rate was 18.1%, 17.1%, and 15.7% for the massed, 
generic spaced, and personalized spaced conditions, 
respectively, so that the advantage of personalized review 

became even larger. On the second exam, personalized 
review boosted retention by 16.5% over massed review, 
t(175) = 1.11, p < .001, Cohen’s d = 1.42, and by 10.0% 
over generic review, t(175) = 6.59, p < .001, Cohen’s  
d = 0.88 (Fig. 2a).

The schedulers had their primary impact for material 
introduced earlier in the semester (Fig. 2b), which makes 
sense because memory for that material had the most 
opportunity to be manipulated via review. The personal-
ized spaced scheduler produced a large benefit for early 
chapters in the semester without sacrificing efficacy for 
later chapters. Among students who took both exams, 

Table 1.� Presentation Statistics of the Three Schedulers for Individual Students on Individual Items

Presentation statistic

Massed  
scheduler

Generic spaced 
scheduler

Personalized 
spaced scheduler

Mean SD Mean SD Mean SD

Number of study-to-proficiency trials 7.58 6.70 7.57 6.49 7.56 6.47
Number of review trials 8.03 11.99 8.05 12.14 8.03 9.65
Number of days between review trials 0.12 1.43 1.69 3.29 4.70 6.39
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Fig. 2.� Scores on the cumulative end-of-semester exams. The bar 
graph (a) presents mean score as a function of condition for each of the 
two exams separately. The line graph (b) presents mean score across 
the two exams as a function of the chapter in which the material was 
introduced, separately for each condition. Error bars indicate ±1 SE, 
calculated within subjects (Masson & Loftus, 2003).
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only 22.3% and 13.5% scored better in the generic spaced 
and massed conditions, respectively, than in the person-
alized spaced condition.

Note that massed review was spaced by usual labora-
tory standards, being spread out over at least 6 days (new 
material was introduced on a Friday and practiced until 
Wednesday or Thursday the following week). This fact 
may explain both the small benefit of the generic spaced 
over the massed scheduler and the absence of a spacing 
effect (generic and personalized spaced schedulers out-
performing the massed scheduler) for the final chapters 
(see Fig. 2).

DASH infers three factors contributing to recall suc-
cess: an item’s difficulty, a student’s ability, and the study 
history of the specific student on the specific item. 
Histograms of these inferred contributions showed sub-
stantial variability (Fig. 3), so decisions about what items 
to review were markedly different across individual stu-
dents and items.

DASH predicts a student’s response accuracy for an 
item at a point in time given the response history of all 
students and items to that point. To evaluate the quality 
of DASH’s predictions, we compared DASH against alter-
native models by dividing the 597,990 retrieval practice 
trials recorded over the semester into 100 temporally 
contiguous disjoint sets; we then used the models to pre-
dict the data for each set given the preceding sets. The 
accumulative prediction error (Wagenmakers, Grünwald, 
& Steyvers, 2006) was computed using the mean devia-
tion between the model’s predicted recall probability and 
the actual binary outcome, normalized such that each 
student was weighted equally. Figure 4 compares DASH 
against five alternatives: a baseline model that predicted 
a student’s future performance to be the proportion of 
correct responses the student had made in the past, a 
Bayesian form of item-response theory (IRT; De Boeck & 
Wilson, 2004), a model of spacing effects based on the 
memory component of ACT-R (Pavlik & Anderson, 2005), 

and two variants of DASH that incorporate alternative 
representations of study history motivated by models of 
spacing effects (ACT-R, multiscale context model). Details 
of the alternative models, model evaluations, and addi-
tional analyses of the experimental results are available 
in Additional Methods and Results in the Supplemental 
Material.

The three variants of DASH performed better than the 
alternatives. Each variant had two key components: (a) a 
dynamic representation of study history that character-
ized learning and forgetting and (b) a Bayesian approach 
to inferring latent difficulty and ability factors. Models 
that omitted the first component (baseline and IRT) or 
the second component (baseline and ACT-R) did not fare 
as well. The DASH variants all performed similarly. 
Because these variants differed only in the manner in 
which the temporal distribution of study and recall 
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Fig. 3.� Histograms of three inferred factors, expressed in terms of their additive contribution to predicted log odds of recall. Each factor 
varies over 3 log units, which corresponds to a possible modulation of .65 in recall probability.
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and the multiscale context model (MCM). Error bars indicate ±1 SEM.
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outcomes was represented, this distinction does not 
appear to be critical.

Discussion

Our work builds on the rich history of applied human-
learning research by integrating two distinct threads: 
classroom-based studies that compare massed with 
spaced presentation of material (Carpenter, Pashler, & 
Cepeda, 2009; Seabrook, Brown, & Solity, 2005; Sobel, 
Cepeda, & Kapler, 2011) and laboratory-based investiga-
tions of adaptive scheduling techniques, which are used 
to select material for an individual to study on the basis 
of that individual’s past study history and performance 
(e.g., Atkinson, 1972).

Previous explorations of temporally distributed study 
in real-world educational settings targeted a relatively nar-
row body of course material to which participants were 
unlikely to be exposed outside the experimental context. 
Further, these studies compared just a few spacing condi-
tions, and the spacing was the same for all participants 
and materials, as in our generic spaced condition.

Previous evaluations of adaptive scheduling have dem-
onstrated the advantage of one algorithm over another  
or over nonadaptive algorithms (Metzler-Baddeley & 
Baddeley, 2009; Pavlik & Anderson, 2008; van Rijn, van 
Maanen, & van Woudenberg, 2009), but these evaluations 
have been confined to the laboratory and have spanned a 
relatively short time scale. The most ambitious previous 
experiment (Pavlik & Anderson, 2008) involved three 
study sessions in 1 week and a test the following week. 
This compressed time scale limited the opportunity to 
manipulate spacing in a manner that would influence 
long-term retention (Cepeda et al., 2008). Further, brief 
laboratory studies do not deal with the complex issues that 
arise in a classroom, such as the staggered introduction of 
material and the certainty of exposure to the material out-
side the experimental context.

Whereas previous studies offer in-principle evidence 
that human learning can be improved by the timing of 
review, our results demonstrate in practice that integrat-
ing personalized-review software into the classroom 
yields appreciable improvements in long-term educa-
tional outcomes. Our experiment went beyond past 
efforts in its scope: It spanned the time frame of a semes-
ter, covered the content of an entire course, and intro-
duced material in a staggered fashion and in coordination 
with other course activities. We find it remarkable that 
the review manipulation had as large an effect as it did, 
considering that the duration of roughly 30 min a week 
was only about 10% of the time students were engaged 
with the course. The additional, uncontrolled exposure 
to material from classroom instruction, homework, and 
the textbook might well have washed out the effect of 
the experimental manipulation.

Personalization

Consistent with the adaptive-scheduling literature,  
our experiment shows that a one-size-fits-all variety  
of review is significantly less effective than personalized 
review. The traditional means of encouraging systematic 
review in classroom settings—cumulative exams and 
assignments—is therefore unlikely to be ideal. 

We acknowledge that our design confounded person-
alization and the coarse temporal distribution of review  
(Fig. 1, Table 1). However, indiscriminate review of older 
material is unlikely to be beneficial because it comes at 
the expense of newer material, and because time limita-
tions permit the selection of only a small fraction of the 
ever-growing collection of candidate material.

Any form of personalization requires estimates of an 
individual’s memory strength for specific knowledge. 
Previously proposed adaptive-scheduling algorithms 
based their estimates on observations from only the given 
individual, whereas the approach taken here is fundamen-
tally data driven, leveraging the large volume of quantita-
tive data that can be collected in a digital learning 
environment to perform statistical inference on the knowl-
edge states of individuals at an atomic level. This leverage 
is critical to obtaining accurate predictions (Fig. 4).

Outside the academic literature, two traditional adap-
tive-scheduling techniques have attracted a degree of 
popular interest: the Leitner (1972) system and 
SuperMemo (Wozniak & Gorzelanczyk, 1994). Both aim 
to present material for review when it is on the verge of 
being forgotten. As long as each retrieval attempt suc-
ceeds, both techniques yield a schedule in which the 
interpresentation interval expands with each successive 
presentation. These techniques underlie many flash- 
card-type Web sites and mobile applications, which are 
marketed with the claim of optimizing retention. Though 
one might expect that any form of review would show 
some benefit, the claims have not yet undergone formal 
evaluation in actual usage, and given our comparison of  
techniques for modeling memory strength, we suspect 
that there is room for improving these two traditional 
techniques.

Beyond fact learning

Our approach to personalization depends only on the 
notion that understanding and skill can be cast in terms 
of collections of primitive knowledge components, or KCs 
(VanLehn, Jordan, & Litman, 2007), and that observed 
student behavior permits inferences about the state of 
these KCs. The approach is flexible, allowing for any 
problem posed to a student to depend on arbitrary com-
binations of KCs. The approach is also general, having 
application beyond declarative learning to domains 
focused on conceptual, procedural, and skill learning.
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Educational failure at all levels often involves knowl-
edge and skills that were once mastered but cease to be 
accessible because of lack of appropriately timed 
rehearsal. Although it is common to pay lip service to the 
benefits of review, comprehensive and appropriately 
timed review is beyond what any teacher or student can 
reasonably arrange. Our results suggest that a digital tool 
that solves this problem in a practical, time-efficient man-
ner will yield major payoffs for formal education at all 
levels.

Appendix

Modeling students’ knowledge state

To personalize review, one must infer a student’s knowl-
edge state—the dynamically varying strength of each 
atomic knowledge component (KC) as the student learns 
and forgets. Knowledge-state inference is a central con-
cern in fields as diverse as educational assessment, intelli-
gent tutoring systems, and long-term memory research. 
Here, we describe two contrasting approaches taken in the 
literature, data driven and theory driven, and propose a 
synthesis used by our personalized spaced scheduler.

A traditional psychometric approach to inferring stu-
dent knowledge is item-response theory (IRT; De Boeck 
& Wilson, 2004). Given a population of students answer-
ing a set of questions (e.g., on SAT tests), IRT decom-
poses response accuracies into student- and question- 
specific parameters. The simplest form of IRT (Rasch, 
1961) models the probability that a particular student will 
correctly answer a particular question through a student-
specific ability factor, Ds, and a question-specific difficulty 
factor, Gi. Formally, the probability of recall success or 
failure on question i by student s, Rsi, is given by

Pr(Rsi = 1|Ds, Gi) = logistic(Ds − Gi),

where logistic(z) = [1 + e–z]–1.
IRT has been extended to incorporate additional fac-

tors into the prediction, including the amount of practice, 
the success of past practice, and the types of instructional 
intervention (Cen, Koedinger, & Junker, 2006, 2008; Chi, 
Koedinger, Gordon, Jordan, & VanLehn, 2011; Pavlik, 
Cen, & Koedinger, 2009). This class of models, known as 
additive-factors models, has the following form:

Pr(R
si
 = 1|Ds, Gi, J, msi) = logistic(Ds − Gi + ¦

j  
Jjmsij),

where j is an index over factors, Jj is the inferred skill 
level associated with factor j, and msij is the jth factor 
associated with student s and question i.

Although this class of models personalizes predictions 
on the basis of a student’s ability and experience, it does 
not consider the temporal distribution of practice. In 

contrast, psychological theories of long-term memory are 
designed to characterize the strength of stored informa-
tion as a function of time. We focus on two recent mod-
els, the multiscale context model (MCM) (Mozer et al., 
2009) and a theory based on the ACT-R declarative mem-
ory module (Pavlik & Anderson, 2005). These models 
both assume that a distinct memory trace is laid down 
each time an item is studied, and that this trace decays at 
a rate that depends on the temporal distribution of past 
study.

The psychological plausibility of MCM and ACT-R is 
demonstrated through fits of the models to behavioral data 
from laboratory studies of spaced review. Because mini-
mizing the number of free parameters is key to a compel-
ling account, cognitive models are typically fit to aggregate 
data—data from a population of students studying a body 
of material. They face a serious challenge in being useful 
for modeling the state of a particular KC for a particular 
student: A proliferation of parameters is needed to provide 
the flexibility to characterize different students and differ-
ent types of material, but flexibility is an impediment to 
making strong predictions.

Our model, DASH, is a synthesis of data- and theory-
driven approaches that inherits the strengths of each: the 
ability of data-driven approaches to exploit population 
data to make inferences about individuals and the ability 
of theory-driven approaches to characterize the temporal 
dynamics of learning and forgetting on the basis of study 
history and past performance. The synthesis begins with 
the data-driven additive-factors model and, through the 
choice of factors, embodies a theory of memory dynam-
ics inspired by ACT-R and MCM. The factors are sensitive 
to the number of past study episodes and their outcomes. 
Motivated by the multiple traces of MCM, we include fac-
tors that span increasing windows of time, which allows 
the model to modulate its predictions on the basis of the 
temporal distribution of study. Formally, DASH posits that

          Pr(Rsi = 1|Ds, Gi, φ, ψ) = logistic[Ds − Gi +   
          ¦

w 
I

w
log(1 + c

siw
) – \

w
log(1 + n

siw
)],     (1)

where w is an index over time windows, csiw is the num-
ber of times student s correctly recalled KC i in window 
w out of nsiw attempts, and Iw and \w are window- 
specific factor weights. The counts csiw and nsiw are regu-
larized by add-one smoothing, which ensures that the 
logarithm terms are finite.

We explain the selection of time windows shortly, but 
we first provide an intuition for the specific form of the 
factors. The difference of factors inside the summation of 
Equation 1 determines a power law of practice. Odds of 
correct recall improve as a power function of the number 
of correct trials with Iw > 0 and \w = 0, the number of 
study trials with \w < 0 and Iw = 0, and the proportion of 
correct trials with Iw = \w. The power law of practice is 
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a ubiquitous property of human learning incorporated 
into ACT-R. Our two-parameter formulation allows for a 
wide variety of power-function relationships, from the 
three just mentioned to combinations thereof. The formu-
lation builds into DASH a bias that additional study in a 
given time window helps, but has logarithmically dimin-
ishing returns. To validate the form of DASH in Equation 
1, we fit a single-window model to data from the 1st 
week of our experiment, predicting performance on the 
end-of-chapter quiz for held-out data. We verified that 
Equation 1 outperformed variations of the formula that 
omitted one term or the other or that expressed log odds 
of recall directly in terms of the counts instead of the 
logarithmic form.

To model effects of temporally distributed study and 
forgetting, DASH includes multiple time windows. 
Window-specific parameters (\w, Iw) encode the depen-
dence between recall at the present moment and the 
amount and outcome of study within the window. 
Motivated by theories of memory, we anchored all time 
windows at the present moment and varied their spans 
such that the temporal span of window w, denoted sw, 
increased with w. We chose the distribution of spans 
such that there was finer temporal resolution for shorter 
spans (i.e., sw+2

 – sw+1
 > sw+1

 – sw). This distribution allows 
the model to efficiently represent rapid initial forgetting 
followed by a more gradual memory decay, which is a 
hallmark of the ACT-R power-function forgetting. This 
distribution is also motivated by the overlapping time 
scales of memory in MCM. ACT-R and MCM both suggest 
the elegant approach of exponentially expanding time 
windows (i.e., sw v eUw).

We roughly followed this suggestion, with three cave-
ats. First, we did not try to encode the distribution of 
study on a very fine scale—less than an hour—because 
the fine-scale distribution is irrelevant for retention inter-
vals on the order of months (Cepeda et al., 2008) and 
because the fine-scale distribution typically could not be 
exploited by DASH as a result of the cycle time of retrain-
ing. Second, we wished to limit the number of time scales 
so as to minimize the number of free parameters in the 
model, to prevent overfitting and to allow for sensible 
generalization early in the semester when little data 
existed for long-term study. Third, we synchronized the 
time scales to the natural periodicities of student life. 
Taking these considerations into account, we chose five 
time scales: s = {1/24, 1, 7, 30, f}. Additional Methods and 
Results in the Supplemental Material available online 
describes inference in the model.

Personalized review scheduling

DASH predicts the probability of successful recall for 
each student on each KC. Although these predictions 
are necessary for optimal scheduling of review, optimal 
scheduling is computationally intractable because it 

requires planning over all possible futures. Consequently, 
the Colorado Optimized Language Tutor (COLT) uses a 
heuristic policy for selecting review material. This pol-
icy is motivated by two distinct arguments, summarized 
here.

Using simulation studies, Khajah et al. (2013) exam-
ined policies that approximate the optimal policy found 
by exhaustive combinatorial search. To serve as a proxy 
for the student, they used a range of parameterizations of 
MCM and ACT-R. Their simulations were based on a set 
of assumptions approximately true for COLT, including a 
10-week experiment in which new material is introduced 
each week and a limited, fixed time allotted for review 
each week. With a few additional assumptions, exact 
optimization could be performed for a student who 
behaved according to a particular parameterization of 
either MCM or ACT-R. Comparing long-term retention 
under alternative policies, Khajah et al. found that the 
optimal policy obtained performance only slightly better 
than a simple heuristic policy that prioritizes for review 
the item whose expected recall probability is closest to a 
threshold T, with T of .33 being best over a range of con-
ditions. Note that with T greater than 0, DASH’s student-
ability parameter, Ds, influences the relative prioritization 
of items.

A threshold-based scheduler is also justified by Bjork’s 
(1994) notion of desirable difficulty, which suggests that 
material should be restudied as it is on the verge of being 
forgotten. This qualitative prescription for study maps 
naturally into a threshold-based policy, assuming one has 
a model like DASH that can accurately estimate retrieval 
probability.
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Supplementary Online Materials (SOM-R)

Improving students’ long-term knowledge retention

through personalized review

Robert Lindsey, Je↵ Shroyer, Harold Pashler, Michael Mozer

Materials

The instructor provided 409 Spanish-English words and phrases, covering 10 chapters of material. The
material came from the textbook ¡Ven Conmigo! Adelante, Level 1a, of which every student had a copy.
Rather than treating minor variants of words and phrases as distinct and learned independently, we formed
clusters of highly related words and phrases which were assumed to roughly form an equivalence class; i.e.,
any one is representative of the cluster. Included in the clustering were (1) all conjugations of a verb, whether
regular or irregular; (2) masculine, feminine, and plural forms of a noun, e.g., la prima and el primo and los

primos for cousin; and (3) thematic temporal relations, e.g., el martes and los martes for Wednesday (or on
Wednesday) and on Wednesdays, respectively.

The 409 words and phrases were reassembled into 221 clusters. Following terminology of the intelligent
tutoring community, we refer to a cluster as a knowledge component or KC. However, in the main article
we used the term item as a synonym to avoid introducing unnecessary jargon. The course organization was
such that all variants of a KC were introduced in a single chapter. During practice trials, colt randomly
drew one variant of a KC.

For each chapter, KCs were assigned to the three scheduling conditions for each student in order to satisfy
three criteria: (1) each KC occurred equally often in each condition across students, (2) each condition was
assigned the same number of KCs for each student, and (3) the assignments of each pair of KCs were
independent across students. Although these three counterbalancing criteria could not be satisfied exactly
because the total number of items in a chapter and the total number of students were outside our control,
the first two were satisfied ±1, and the third served as the objective of an assignment-optimization procedure
that we ran.

Procedure

In each colt session, students began with a study-to-proficiency stage with material from only the current
chapter. This phase involved a drop-out procedure which began by sequentially presenting items from the
current chapter in randomly ordered retrieval-practice trials. After the set of items from the current chapter
had been presented, items that the student translated correctly were dropped from the set, trial order was
re-randomized, and students began another pass through the reduced set. Once all items from the current
chapter had been correctly translated, students proceeded to a review stage where material from any chapter
that had been introduced so far could be presented for study.

The review stage lasted until the end of the session. During the review stage, items from any of the
chapters covered so far in the course were eligible for study. Review was handled by one of three schedulers,
each of which was responsible for a random one-third of the items from each chapter, assigned on a per-
student basis. During review, the three schedulers alternated in selecting items for practice. Each selected
from among the items assigned to it, ensuring that all items had equal opportunity and that all schedulers
were matched for number of review trials o↵ered to them.
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Quizzes were administered through colt using retrieval-practice trials. From a student’s perspective,
the only di↵erence between a quiz trial and a typical study trial was that quiz trials displayed the phrase
“quiz question” above them. From an experimental perspective, the quiz questions are trials selected by
neither the review schedulers nor the study-to-proficiency procedure. The motivation for administering the
quizzes on colt was to provide more data to constrain the predictions of our statistical model.

The two cumulative exams followed the same procedure as the end-of-chapter quizzes, except that no
corrective feedback was given after each question. Each exam tested half of the KCs from each chapter in
each condition, and KCs appeared in only one exam or the other. KCs were assigned randomly to exams
per student. Each exam was administered over the Wednesday-Thursday split of class periods, allowing
the students up to 90 minutes per exam. The semester calendar is presented in detail in the Supporting
Information, along with the distribution of KCs by chapters.

Participants

Participants were eighth graders (median age 13) at a suburban Denver middle school. A total of 179
students—82 males and 97 females—were divided among six class periods of a third-semester Spanish course
taught by a single instructor. Every class period met on Mondays, Tuesdays, and Fridays for 50 minutes.
Half of the class periods met on Wednesdays and the other half on Thursdays for 90 minues. The end-of-
semester cumulative exam was taken by 172 students; the followup exam four weeks later was taken by 176
students. Two students were caught cheating on the end-of-semester exam and were not included in our
analyses.

In seventh grade Spanish 1 and 2, these same students had used commercial flashcard software for
optional at-home vocabulary practice. Like colt, that software was preloaded with the chapter-by-chapter
vocabulary for the course. Unlike colt, that software required students to select the chapter that they
wished to study. Because review was scheduled by the students themselves and because students had weekly
quizzes, students used the software almost exclusively to learn the current chapter’s material.

From the students’ perspective, colt was simply a replacement for the software they had been using
and a substitute for pencil-and-paper quizzes. Students were not aware of the details of our experimental
manipulation, beyond the notion that the software would spend some portion of study time reviewing older
vocabulary items.

Students occasionally missed COLT sessions due to illness or other absences from class. They were
permitted to make up practice sessions (but not weekly graded quizzes) at home if they chose to. They were
also permitted to use colt at home for supplemental practice (see SOM-U for details). As a result, there
was significant variability in total usage of COLT from one student to the next. All students are included in
our analyses as long as they took either of the cumulative exams.

The instructor who participated in our experiment is a veteran of 22 years of teaching Spanish as a
foreign language and has a Master’s degree in education. To prevent bias, the instructor was aware only of
the experiment’s general goal. In previous years, the instructor had given students pencil-and-paper quizzes
at the end of each chapter and had also dedicated some class time to the use of paper-based flashcards. colt
replaced both those activities.

2

DOI:10.1177/0956797613504302



Supplementary Online Materials (SOM-U)

Improving students’ long-term knowledge retention

through personalized review

Robert Lindsey, Je↵ Shroyer, Harold Pashler, Michael Mozer

Abstract

These supplementary online materials provides additional details concerning the experiment and

modeling reported in the main article. The materials are divided into three parts. In part 1, we give

additional details about the experimental design and methods. In part 2, we present additional analyses

of the experiment results. In part 3, we describe the statistical modeling methodology used throughout

the experiment in the personalized review condition.

Experimental Methods

Software

For the experiment, we developed a web-based flashcard tutoring system, the Colorado Optimized Language
Tutor or COLT. Students participating in the study were given anonymous user names and passwords with
which they could log in to COLT. Upon logging in, students are taken to a web page showing how many
flashcards they have completed on the website, how many flashcards they have correctly answered, and a
Begin Studying button.

When students click the Begin Studying button, they are taken to another web page which presents
English-Spanish flashcards through retrieval-practice trials. At the start of a retrieval-practice trial, students
are prompted with a cue—an English word or phrase. Students then attempt to type the corresponding
target—the Spanish translation—after which they receive feedback (Fig. S1). The feedback consists of the
correct translation and a change to the screen’s background color: the tint shifts to green when a response
is correct and to red when it is incorrect. This form of study exploits the testing e↵ect : when students are
tested on material and can successfully recall it, they will remember it better than if they had not been
tested (Roediger & Karpicke, 2006). Translation was practiced only from English to Spanish because of
approximate associative symmetry and the benefit to students from their translating in the direction of the
less familiar orthography (Kahana & Caplan, 2002; Schneider, Healy, & Bourne, 2002).

Trials were self-paced. Students were allowed as much time as they needed to type in a response and
view feedback. However, students were prevented from advancing past the feedback screen in less than three
seconds to encourage them to attend to the feedback. Except on the final exams, students had the option of
clicking a button labeled I don’t know when they could not formulate a response. If they clicked it, the trial
was recorded as an incorrect response and the student received corrective feedback as usual. The instructor
encouraged students to guess instead of using the button.

COLT provided a simple means of entering diacritical marks through a button labeled Add Accent. When
a student clicked this button, the appropriate diacritical mark was added to the letter next to the text cursor.

Many stimuli had multiple acceptable translations. If a student produced any of one them, his or her
response was judged correct. A response had to have exactly the correct spelling and have the appropriate
diacritical marks to be scored as correct, per the instructor’s request. Capitalization and punctuation were
ignored in scoring a response.
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Figure S1: Interface to COLT. Left figure shows the start of a retrieval-practice trial. Right figure shows
consequence of an incorrect response.

Implementation

COLT consisted of a front end and a back end. The front end was the website students used to study,
which we programmed specifically for this experiment. It was written in a combination of HTML, PHP, and
Javascript. Whenever a student submitted an answer in a retrieval practice trial on the website, the response
was immediately sent via AJAX to a MySQL database where it was recorded. Database queries were then
executed to determine the next item to present to the student, and the chosen item was transmitted back to
the student’s web browser. Because responses were saved after every trial, students could simply close their
browser when they were finished studying and would not lose their progress.

A separate back-end server continually communicated with the front-end server’s database. It continually
downloaded all data recorded on the website, ran our statistical model to compute posterior expectations
of recall probability on each student-KC conditioned on the data recorded until then, and then uploaded
the predictions to the front-end database via Python scripts. Thus, whenever an item needed to be chosen
by the personalized-spaced scheduler, the scheduler queried the database and selected the item with the
appropriate current predicted mean recall probability.

The amount of time it took to run the model’s inference algorithm increased steadily as the amount of
data recorded increased. It ranged from a few seconds early in the experiment to half an hour late in the
semester, by which point we had recorded nearly 600,000 trials. In the future, the inference method could
easily be changed to a sequential Monte Carlo technique in order for it to scale to larger applications. The
posterior inference algorithm was written in C++. In the event of a back-end server failure, the front-end
was programmed to use the most recently computed predictions in a round-robin fashion, cycling through
material in an order prioritized by the last available model predictions. On at least three occasions, the
back-end server crashed and was temporarily o✏ine.

The front-end server was rented from a private web-hosting company, and the back-end server was a
dedicated quad-core machine located in our private laboratory space on the campus of the University of
Colorado at Boulder. We used two servers in order to separate the computationally demanding inference
algorithm from the task of supplying content to the students’ web browsers. This division of labor ensured
that the students’ interactions with the website were not sluggish.
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Textbook Section Day of Study # Words & Phrases # KCs # KCs on Quiz

Chapter 1 Introduced 4-1 1 99 25 24
Chapter 2 Introduced 4-1 8 46 22 22
Chapter 3 Introduced 4-2 15 26 26 25
Chapter 4 Introduced 4-3 21 30 16 16
Chapter 5 Introduced 5-1 42 28 18 18
Chapter 6 Introduced 5-2 49 62 17 15
Chapter 7 Introduced 5-2 56 31 16 16
Chapter 8 Introduced 5-3 63 14 14 12
Chapter 9 Introduced 5-3 74 24 24 21
Chapter 10 Introduced 6-1 84 49 43 -
Cumulative Exam 1 - 89-90 - 112 -
Cumulative Exam 2 - 117-118 - 109 -

Table S 1: Calendar of events throughout the semester.

Semester Calendar

The course proceeded according to the calendar in Table S1. The table shows the timeline of presentation
of 10 chapters of material and the cumulative end-of-semester exams, along with the amount of material
associated with each chapter. The amount of material is characterized in terms of both the number of unique
words or phrases (column 4) and the number of KCs (column 5).

The course was organized such that in-class introduction of a chapter’s material was coordinated with
practice of the same material using COLT. Typically, students used COLT during class time for three
20-30 minute sessions each week, with exceptions due to holiday schedules or special classroom activities.
New material was typically introduced in COLT on a Friday, followed by additional practice the following
Tuesday, followed by an end-of-chapter quiz on either Wednesday or Thursday. In addition to the classroom
sessions, students were allowed to use COLT at their discretion from home. Each session at home followed
the same sequence as the in-class sessions. Figure S2 presents pseudocode outlining the selection of items
for presentation within each session.

The quizzes were administered on chapters 1-9 and counted toward the students’ course grade. On each
quiz, the instructor chose the variants of a KC that would be tested. For all but the chapter 8 quiz, the
instructor selected material only from the current chapter. The chapter 8 quiz had material from chapters
7 and 8. Quizzes typically tested most of the KCs in a chapter (column 6 of Table S1).

Two cumulative final exams were administered following introduction of all 10 chapters. Cumulative
exam 1 occurred around the end of the semester; cumulative exam 2 occurred four weeks later, following an
intersemester break. Students were not allowed to use COLT between semesters.

Experimental Results: Additional Analyses

The amount of use of COLT varied by chapter due to competing classroom activities, the amount of material
introduced in each chapter, the number of class days devoted to each chapter, and the amount of at-home
use of COLT. Fig. S3 presents the median number of retrieval practice trials undergone by students, broken
down by chapter and response type (correct, incorrect, and “I don’t know”) and by in-class versus at-home
use of COLT.

Fig. S4 graphs the proportion correct recall on the two final exams by class section and review scheduler.
The class sections are arranged in order from best to worst performing. An Analysis of Variance (ANOVA)
was conducted on each exam with the dependent variable being proportion recalled on the exam and with
three factors: class period, scheduler (massed, generic spaced, personalized spaced), and chapter of course
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% Study to Proficiency Phase

Let c the current chapter

Let x the set of KCs in chapter c

While x is not empty and the student has not quit

Let y  a random permutation of x

For each KC i in y

Execute a retrieval practice trial on i

If the student answered correctly

Remove i from x

% Review Phase

Let m {MASSED, GENERIC, PERSONALIZED}
Let z  a random permutation of m

Let k  0

Until the student quits

Let w  the set of all items assigned to scheduler zk for the student

If zk = MASSED
Let i the KC in w and in chapter c that has been least recently studied by the student

Else If zk = GENERIC
If c > 0

Let i  the KC in w and in chapter c � 1 that has been least recently studied by the
student

Else

Let i the KC in w and in chapter c that has been least recently studied by the student

Else zk = PERSONALIZED
Let i  the KC in w and in any of chapters 1 . . . c whose current posterior mean recall
probability for the student is closest to the desirable di�culty level d

Execute a retrieval practice trial on i

Set k = (k + 1) modulo 3

Figure S2: Pseudocode showing the sequence of steps that each student undergoes in a study session in
the experiment. Students begin in a study-to-proficiency phase on material from the chapter currently
being covered in class. If students complete the study-to-proficiency phase, they proceed to a review phase.
During the review phase, trials alternate between schedulers so that each scheduler receives an equal number
of review trials. The graded end-of-chapter quizzes did not follow this pseudocode and instead presented the
same sequence of instructor-chosen retrieval practice trials to all students, ensuring that all students saw the
same questions and had them in the same order.
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Figure S3: Median number of study trials undergone while each chapter was being covered in class. In the
left panel, the number is broken down by whether the student responded correctly, responded incorrectly, or
clicked “I don’t know.” In the right panel, the number is broken down by whether the trial happened on a
weekday during school hours or not. Chapter 8 has few trials because it was covered in class only the day
before a holiday break and the day after it.

(1-10). The main e↵ect of scheduler is highly reliable in both exams (exam 1: F (2, 328) = 52.3, p < .001;
exam 2: F (2, 340) = 55.1, p < .001); as reported in the primary article, the personalized-spaced scheduler
outperforms the two control schedulers. The main e↵ect of class period is significant in both exams (exam 1:
F (5, 164) = 6.77, p < .001; exam 2: F (5, 170) = 9.72, p < .001): some sections perform better than others.
A scheduler ⇥ chapter interaction is observed (exam 1: F (18, 2952) = 8.90, p < .001; F (9, 1530) = 29.67,
p < .001), as one would expect from Fig. 4: the scheduler has a larger influence on retention for the early
chapters in the semester. The scheduler ⇥ period interaction is not reliable (exam 1: F (10, 328) = 1.44,
p = .16; exam 2: F (10, 340) = 1.36, p = .20), nor is the three-way scheduler ⇥ period ⇥ chapter interaction
(exam 1: F (90, 2952) < 1; exam 2: F (90, 3060) < 1).

Figure S6 splits Figure 2b from the main article into performance separately on the end-of-semester exam
and the exam administered 28 days later. As the ANOVAs in the previous paragraph suggest, the qualitative
pattern of results is similar across the two exams. Note that Figure 2b includes only students who took both
exams, whereas Figure S6 shows students who took either exam. Only a few students missed each exam.

Fig. S5 shows the mean quiz scores on each chapter for the three conditions. Except for the chapter 8
quiz, all quizzes were on only the current chapter. Ignore chapter 8 for the moment, and also ignore chapter 1
because the three conditions were indistinguishable the first week of the semester. An ANOVA was conducted
with the dependent variable being proportion correct on a quiz and with the chapter number (2-7, 9) as
a factor. Only the 156 students who took all seven of these quizzes were included. The main e↵ect of
review scheduler is significant (F (2, 310) = 11.8, p < .001): the massed scheduler does best on the quizzes—
89.4% versus 87.2% and 88.1% for the generic and personalized spaced schedulers—because it provided
the largest number of study trials on the quizzed chapter. The main e↵ect of the chapter is significant
(F (6, 930) = 49.0, p < .001), and the scheduler ⇥ chapter interaction is not reliable (F (12, 1860) = 1.56,
p = .096). The simultaneous advantage of the massed condition on immediate tests (the chapter quizzes)
and the spaced conditions on delayed tests (the final exams) is consistent with the experimental literature
on the distributed-practice e↵ect.
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Figure S4: Scores on cumulative exams 1 and 2 for each class period. Each group of bars is a class period.
The class periods are presented in rank order by their mean Exam 1 score.
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Figure S5: End-of-chapter quiz scores by chapter. Note that the chapter 8 quiz included material from
chapter 7, but all the other quizzes had material only from the current chapter. There was no chapter 10
quiz.

Returning to the chapter 8 quiz, which we omitted from the previous analysis, it had the peculiarity
that the instructor chose to include material mostly from chapter 7. Because the generic-spaced condition
focused review on chapter 7 during chapter 8, it fared the best on the week 8 quiz (generic spaced 76.1%,
personalized spaced 67.5%, massed 64.2%; F (2, 336) = 14.4, p < .001).

Modeling

Other models that consider time

A popular methodology that does consider history of study is Bayesian knowledge tracing (Corbett &
Anderson, 1995). Although originally used for modeling procedural knowledge acquisition, it could just as
well be used for other forms of knowledge. However, it is based on a simple two-state model of learning which
makes the strong assumptions that forgetting curves are exponential and decay rates are independent of the
past history of study. The former is inconsistent with current beliefs about long-term memory (Wixted &
Carpenter, 2007), and the latter is inconsistent with empirical observations concerning spacing e↵ects (Pavlik
& Anderson, 2005). Knowledge tracing’s success is likely due to its use in modeling massed practice, and
therefore it has not had to deal with variability in the temporal distribution of practice or the long-term
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Figure S6: Mean score on each of the two exams as a function of the number of days that had passed since
the material was introduced. The two exams show similar results by scheduler and chapter.

retention of skills.

Hierarchical Distributional Assumptions

Bayesian models have a long history in the intelligent tutoring community (Corbett & Anderson, 1995;
Koedinger & MacLaren, 1997; Martin & van Lehn, 1995). In virtually all such work, parameters of these
models are fit by maximum likelihood estimation, meaning that parameters are found that make the obser-
vations have high probability under a model. However, if the model has free parameters that are specific
to the student and/or KC, fitting the parameters independently of one another can lead to overfitting. An
alternative estimation procedure, hierarchical Bayesian inference, is advocated by statisticians and machine
learning researchers to mitigate overfitting. In this approach, parameters are treated as random variables
with hierarchical priors. We adopt this approach in dash, using the following distributional assumptions:

↵s ⇠ Normal(µ↵,�
2
↵)

(µ↵,�
�2
↵ ) ⇠ Normal-Gamma(µ(↵)

0 ,

(↵)
0 , a

(↵)
0 , b

(↵)
0 )

�i ⇠ Normal(µ�,�
2
� )

(µ�,�
�2
� ) ⇠ Normal-Gamma(µ(�)

0 ,

(�)
0 , a

(�)
0 , b

(�)
0 )

(1)

where the Normal-Gamma distribution has parameters µ0,0, a0, b0. Individual ability parameters ↵s are
drawn independently from a normal distribution with unknown population-wide mean µ↵ and variance �2

↵.
Similarly, individual di�culty parameters �i are drawn independently from a normal distribution with un-
known population-wide mean µ� and variance �2

� . When the unknown means and variances are marginalized
via the conjugacy of the Normal distribution with a Normal-Gamma prior, the parameters of one individual
student or item become tied to the parameters of other students or items (i.e., are no longer independent).
This lends statistical strength to the predictions of individuals with little data associated with them, which
would otherwise be underconstrained. The weights �w and  w are independently distributed with improper
priors: p(�w) / constant, p( w) / constant.

Gibbs-EM Inference Algorithm

Inference in dash consists of calculating the posterior distribution over recall probability for all student-
KC pairs at the current time given all data observed up until then. In this section, we present a flexible
algorithm for inference in dash models that is readily applicable to variants of the model (e.g., dash[mcm]
and dash[act-r]). For generality, we write the probability of a correct response in the kth trial of a KC i

for a student s in the form

P (Rsik = 1 | ↵s, �i, t1:k, r1:k�1,✓) = �(↵s � �i + h✓(ts,i,1:k, rs,i,1:k�1)) (2)
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where �(x) ⌘ [1 + exp(�x)]�1 is the logistic function, ts,i,1:k are the times at which trials 1 through k

occurred, rs,i,1:k�1 are the binary response accuracies on trials 1 through k � 1. h✓ is a model-specific
function that summarizes the e↵ect of study history on recall probability; it is governed by parameters
✓ ⌘ {✓1, ✓2, . . . , ✓M} where M is the number of parameters. The dash model described in the main text is
defined as

h✓ =
W�1
X

w=0

✓2w+1 log(1 + csi,w+1) + ✓2w+2 log(1 + nsi,w+1) (3)

where the summation is over W time windows.
Given an uninformative prior over ✓, the optimal hyperparameters ✓⇤ are the ones that maximizes the

marginal likelihood of the data

✓⇤ = argmax
✓

ZZ

P (r|↵, �,✓)p(↵)p(�) d↵ d� (4)

Though this is intractable to compute, we can use an EM algorithm to search for ✓⇤. An outline of the
inference algorithm is as follows

1. Initialize ✓(0) and set i = 1

2. Iteration i

• E-step: Draw N samples
n

↵(`)
, �(`)

oN

`=1
from p(↵, � | r,✓(i�1)) using a Gibbs sampler

• M-step: Find

✓(i) = argmax
✓

1

N

N
X

`=1

logP (r,↵(`)
, �(`)|✓) (5)

3. i i+ 1, go to 2 if not converged.

Following these steps, ✓(i) will reach a local optimum to the marginal likelihood. Each ✓(i) is guaranteed to
be a better set of hyperparameters than ✓(i�1).

E-Step. The E-step involves drawing samples from p(↵, � | r,✓(i�1)) via Markov chain Monte Carlo
(MCMC). We performed inference via Metropolis within Gibbs sampling. This MCMC algorithm is appro-
priate because drawing directly from the conditional distributions of the model parameters is not feasible.
The algorithm requires iteratively taking a Metropolis-Hastings step from each of the conditional distribu-
tions of the model. These are

p(↵s | ↵¬s, �,✓, r) / p(↵s | ↵¬s)
Q

i,k
P (rsik | ↵s, �i,✓)

p(�i | �¬i,↵,✓, r) / p(�i | �¬i)
Q

s,k
P (rsik | ↵s, �i,✓)

(6)

where ↵¬s denotes all ability parameters excluding student s’s and �¬i denotes all di�culty parameters
excluding item i’s. Both p(↵s | ↵¬s) and p(�i | �¬i) are non-standard t-distributions. We have left the
dependence of these distributions on the model’s hyperparameters implicit. The products are over the data
likelihood of student-item-trials a↵ected by a change in the parameter in question (e.g., a change in ↵s a↵ects
the likelihood of all trials undergone by s).

M-Step. Let S be the number of students, I be the number of items, and nsi be the number of trials
undergone by student s on item i. By assumption, the hyperparameters of the normal-gamma distributions
are not part of ✓. Thus, the M-step is equivalent to finding the hyperparameters which maximize the
expectation of the data log-likelihood,

✓(i) = argmax
✓

1

N

N
X

`=1

logP (r | ↵(`)
, �(`),✓) (7)
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For convenience, denote L(`) ⌘ logP (r|↵(`)
, �(`),✓), �(`) = a

(`)
s � d

(`)
i + h, and use the shorthand h ⌘

h✓(ts,i,1:k, rs,i,1:k�1). We have

L(`) =
S
X

s=1

I
X

i=1

nsi
X

k=1

rsik�
(`) � log

⇣

1 + e

�(`)
⌘

(8)

We can solve for ✓(i) by function optimization techniques. We used Matlab’s fminunc function which
exploits the gradient and hessian of L(`). The gradient is given by

@L(`)

@✓j
=

S
X

s=1

I
X

i=1

nsi
X

k=1

(rsik � �(�(`)))
@h

@✓j
(9)

for all j 2 1 . . .M . The hessian is given by

@

2L(`)

@✓z✓j
=

S
X

s=1

I
X

i=1

nsi
X

k=1

(rsik � �(�(`)))
@

2
h

@✓z@✓j
� �(�(`))(1� �(�(`))) @h

@✓z

@h

@✓j
(10)

for all z 2 1 . . .M, j 2 1 . . .M .

Model Comparison And Evaluation

The models were trained on all data up to a given point in timetask on the 597, 990 retrieval practice trials
COLT recorded across the semester-long experiment. (These trials include the quizzes and material assigned
to all three scheduling conditions.)

We divided these time-ordered trials into contiguous segments with each segment containing 1% of the
trials. We then tested each model’s ability to predict a segment n given segments 1 . . . n�1 as training data,
for n 2 {2 . . . 100}. We scored each model’s across-segment average prediction quality using cross entropy1

and mean per-trial prediction error2. The former method more strongly penalizes heldout trials for which
the model assigned low probability to the observed recall event.

Because the amount of at-home COLT usage was largely self-determined, the number of trials undergone
throughout the semester varied greatly from student to student. Because students who study much more
than their peers will tend to be over-represented in the training and test data, they are generally the
easiest to predict. However, models should provide good predictions regardless of how much a student
studies. Therefore, we report results for a normalized version of the two error metrics in which each student
contributes equally to the reported value. We calculated the mean error metric across heldout trials for each
student in the test segment, then averaged across students. Thus, each student’s mean contributed equally
to the overall error metric.

• Baseline Model. As a baseline, we created a model which predicts that recall probability in a heldout
trial for a student is the proportion of correct responses that student has made in the training data.

• act-r. Pavlik and Anderson (Pavlik & Anderson, 2005, 2008) extended the act-r memory model to
account for the e↵ects of temporally distributed study; we will refer to their model as act-r. The
model includes parameters similar to the ability and di�culty factors in irt that characterize individual
di↵erences among students and among KCs. Further, the model allows for parameters that characterize
each student-KC pair. Whereas dash is fully specified by eight parameters,3 the number of free
parameters in the act-r model increases multiplicatively with the size of the student pool and amount
of study material. To fit the data recorded in this experiment, the model requires over forty thousand

1
Cross entropy is calculated as the negative of the mean per-trial log2-likelihood.

2
Letting p̂ be the expected recall probability and r 2 {0, 1} be the recall event, we define prediction error of a trial as

(1� p̂)r p̂1�r

3
The eight model parameters are the parameters of the two normal-gamma priors, which we set to the reference prior.
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free parameters, and there are few data points per parameter. Fitting such a high-dimensional and
weakly constrained model is an extremely challenging problem. Pavlik and Anderson had the sensible
idea of inventing simple heuristics to adapt the parameters as the model is used. We found that these
heuristics did not fare well for our experiment. Therefore, in our simulation of act-r, we eliminated
the student-KC specific parameters and used Monte Carlo maximum likelihood estimation, which is
a search method that repeatedly iterates through all the model parameters, stochastically adjusting
their values so as to increase the data log-likelihood.4

• irt. We created a hierarchical Bayesian version of the Rasch Item-Response Theory model with the
same distributional assumptions over ↵ and � as made in dash. We will refer to this model as irt. It
corresponds to the assumption that h✓ = 0 in Equation 2.

• dash[act-r]. We experimented with a version of dash which does not have a fixed number of time
windows, but instead—like act-r—allows for the influence of past trials to continuously decay ac-
cording to a power-law. Using the dash likelihood equation in Equation 2, the model is formalized
as

h✓ = c log(1 +
X

k0<k

mrk0 t
�d
k0 ) (11)

where the four hyperparameters are c ⌘ ✓1, m0 ⌘ ✓2, m1 ⌘ ✓3, d ⌘ ✓4. We will refer to this model as
dash[act-r] because of its similarity to act-r. Like dash, it is a synthesis of data-driven and theory-
based models for predicting student recall over time. This formalism ensures that recall probability
is non-zero on the first trial of a student-KC, which is necessary in our application because students
are expected to have prior experience with the material before using COLT. The parameter h is split
in two: a value h1 for when the student responded correctly in a trial, r(k0) = 1, and a value h0 for
when the student responded incorrectly, r(k0) = 0. This gives each trace a di↵erent initial strength
depending on response accuracy.

• dash[mcm]. Motivated by the Multiscale Context Model (MCM), a model of the spacing e↵ect we
developed which has a fixed set of continuously, exponentially decaying memory traces (Mozer, Pashler,
Cepeda, Lindsey, & Vul, 2009), we experimented with a version of dash which has a fixed number of
continuously decaying windows. The model assumes that the counts nsiw and csiw are incremented at
each trial and then decay over time at a window-specific exponential rate ⌧w. Formally,

h✓ =
W�1
X

w=0

✓2w+1 log(1 + c̃si,w+1(t)) + ✓2w+2 log(1 + ñsi,w+1(t)) (12)

where
ñ

(k)
siw = 1 + ñ

(k�1)
siw exp(� tk�tk�1

⌧w
) c̃

(k)
siw = rsik + c̃

(k�1)
siw exp(� tk�tk�1

⌧w
) (13)

We determined the decay rates by deduction. Three desired qualitative properties of the exponential
half-half of each window are

– The smallest half-life should be about 30 minutes, roughly the time between COLT prediction

updates. Thus, t(1/2)1 = .0208 and so ⌧1 = .0301.

– The largest half-life should be about the length of the experiment. Thus, t

(1/2)
W = 90 and so

⌧W = 129.8426.

4
Note that the act-r model assumes that the base level activation b is given by b ⌘ ↵s � �i +�si, where the student abiliity

↵s and KC di�culty �i combine with a student-KC parameter �si. Because having one parameter per student-KC leads to

extreme overfitting, we set all �si = 0. We estimated missing �i values by averaging across the di�culty parameter of all KCs

with training data. We bounded the model predictions to lie on [.001, .999] to keep the cross-entropy well-defined. The model

ordinarily can assign zero probability to recall events, hence does not always have a finite log-likelihood.
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– The half-lives should be exponentially increasing. It is important to be able to di↵erentiate
between, for example, whether a trial is 1 or 2 days old. Di↵erentiating between, for example,

trials that are 60 vs. 61 days old is less important. Thus, we want t

(1/2)
w = ct

(1/2)
w�1 where c is a

constant.

Given these constraints and because we want to have W = 5 windows as in dash, we can solve for
the decay rates of each window as ⌧ 1:W = {0.0301, 0.2434, 1.9739, 16.0090, 129.8426}. Like dash and
dash[act-r], dash[mcm] is a synthesis of data-driven and theory-based models for predicting student
recall over time.

For the Bayesian models—irt, dash, dash[act-r], and dash[mcm]—we collected 200 posterior samples
during each E-step after a 100 iteration burn-in. The MCMC sampler generally mixed quickly, which allowed
us to have such a small burn-in. To reduce autocorrelation, we used every other sample. The Gibbs-EM
algorithm generally converged to a solution within 3-6 iterations. For act-r, we ran 1500 iterations of the
stochastic hill-climbing algorithm and kept the maximum likelihood solution.
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