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Teaching needs a different theory

Learning a threshold classifier in 1D

passive learning (xi, yi)
iid∼ p, risk ≈ O( 1

n)

active learning risk ≈ 1
2n

taught: n = 2. Teaching dimension [Goldman and Kearns 1995]
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Teaching dimension 6= curriculum learning [Bengio et al.
2009]?
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More to the story

Fail Pass

The master card

56% human teachers started at the boundary.
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A refined framework for teaching

Three actors:

World: p(x, y | θ∗), loss function `(f(x), y)

Learner: Bayesian.

I prior over Θ (θ∗ ∈ Θ), likelihood p(x, y | θ)
I maintains posterior p(θ | data) by Bayesian update
I makes prediction f(x | data) using the posterior

Teacher:

I clairvoyant, knows everything above
I can teach only by giving (x, y) to the learner
I goal: choose the smallest teaching set D = (x, y)1:n to minimize the

learner’s future loss
Eθ∗ [`(f(x | D), y)]

I if the future loss approaches Bayes risk, D is a teaching set and n is
the (generalized) teaching dimension

I may have computational limitations
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Case study on graspability and lines

Unify “curriculum learning” and “teaching at the boundary” both as
greedy (learner) risk minimization

Key difference: dimension of X

I graspability: d large.
e.g., squirrel = Boolean vector ( graspable, shy, store supplies for the winter, is not

poisonous, has four paws, has teeth, has two ears, has two eyes, is beautiful, is

brown, lives in trees, rodent, doesn’t herd, doesn’t sting, drinks water, eats nuts,

feels soft, fluffy, gnaws on everything, has a beautiful tail, has a large tail, has a

mouth, has a small head, has gnawing teeth, has pointy ears, has short paws, is

afraid of people, is cute, is difficult to catch, is found in Belgium, is light, is not a

pet, is not very big, is short haired, is sweet , jumps, lives in Europe, lives in the

wild, short front legs, small ears, smaller than a horse, soft fur, timid animal, can’t

fly, climbs in trees, collects nuts, crawls up trees, eats acorns, eats plants, does not

lay eggs ... )

I lines: d = 1.
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Problem setting

World: p(x) = Unif[0, 1]d, py=1|x = 1(x1≥ 1
2), 0-1 loss

Learner:

I axis-parallel version space V
I Gibbs classifier f(x) ≡ ŷ ∼ p(y | x,D)

Teacher:

I ideally match irrelevant dimensions ⇒ n = 2, doesn’t match human

teacher behaviors
I let’s limit the teacher’s power:

F pool-based teaching x1, . . . ,xn ∼ unif[0, 1]d

F only pays attention to the target dimension
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After the first two teaching items
if hypothesis f = x·1 ≥ θ1 selected from dim 1, error=|θ1 − 1

2 |

ab 1/2 1θ10

1

if from dim 2, error=1
2

x12

1/2 10

1

x22

θ2

The learner’s risk

R =
1

|V |

(∫ a

b
|θ1 −

1

2
|dθ1 +

d∑
k=2

∫ max(x1k,x2k)

min(x1k,x2k)

1

2
dθk

)
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Risk minimization

The teacher chooses two items with dim1= a, b to minimize R. (The
computational limitation assumption)

Trade off:

I b− a too small: learner frequently picks f in irrelevant dimensions ⇒
large error

I b− a too large: learner picks very wrong f in the relevant dimension
⇒ large error
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Risk minimization

Theorem

The risk R is minimized by

a∗ =

√
c2 + 2c− c+ 1

2
b∗ = 1− a∗

where c ≡
∑d

k=2 |x1k − x2k| is the version subspace size in irrelevant
dimensions.

ab 10

1

x12

1/2 10

1

x22

C
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d decides where to start teaching

|x1k − x2k| ∼ Beta(1, 2) for k = 2, . . . , d (order statistics)

c ≡
∑d

k=2 |x1k −x2k| is the sum of d− 1 Beta(1, 2) random variables.

Corollary

When d→∞, the minimizer of R is a∗ = 1, b∗ = 0. (curriculum)
When d = 1, the minimizer of R is a∗ → 1

2−, b
∗ → 1

2+
. (boundary)

Matches graspability and lines
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d also decides convergence toward boundary

Version subspace Vk survives t teaching items if the items are linearly
separable in dimension k

This happens with probability 2(
t
t0

) where t0 is the number of positive

items

If Vk does survive, its size ∼ Beta(1, t) (order statistics)
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Teaching items should approach decision boundary

Theorem

Let the teaching sequence contain t0 negative labels and t− t0 positive
ones. Then the version space in dim k has size |Vk| = αkβk, where

αk ∼ Bernoulli
(
2/
(

t
t0

)
, 1− 2/

(
t
t0

))
βk ∼ Beta(1, t)

independently for k = 2 . . . d. Consequently, E(c) = 2(d−1)(
t
t0

)
(1+t)

.
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Comparing theory to behaviors

On the “graspability” task with assumed d’s:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

iteration t

|V
1|

 

 

d=1000
d=100
d=12
d=2

On the “lines” task, theory predicts |V1| at minimum in iteration 2
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Conclusion

A general teaching framework

Case studies match human teacher behaviors on graspability and lines

I sequential risk minimization
I small d: boundary; large d: curriculum

Open questions:

I optimal teaching strategy beyond the special cases?
I can we use this theory to improve human learners?
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Backup slides
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Graspability Strategy 1: “decision boundary” (0% subjects)

None
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Strategy 2: “curriculum learning” (48% subjects)
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Strategy 3: “linear” (42% subjects)
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Strategy 4: “positive only” (10% subjects)
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Line strategy 1: “decision boundary” (56% subjects)
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Strategy 2: “curriculum learning” (19% subjects)
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Strategy 3: “linear” (25% subjects)
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Strategy 4: “positive only” (0% subjects)

None
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Comparing the two experiments

strategy boundary curriculum linear positive

“graspability” (n = 31) 0% 48% 42% 10%
“lines” (n = 32) 56% 19% 25% 0%

(Wisconsin) A Computational Teaching Theory 25 / 26



The hidden dimensionality

Humans represent objects by X ⊆ Rd, d� 1.

e.g., squirrel = Boolean vector ( graspable, shy, store supplies for the
winter, is not poisonous, has four paws, has teeth, has two ears, has
two eyes, is beautiful, is brown, lives in trees, rodent, doesn’t herd,
doesn’t sting, drinks water, eats nuts, feels soft, fluffy, gnaws on
everything, has a beautiful tail, has a large tail, has a mouth, has a
small head, has gnawing teeth, has pointy ears, has short paws, is
afraid of people, is cute, is difficult to catch, is found in Belgium, is
light, is not a pet, is not very big, is short haired, is sweet , jumps,
lives in Europe, lives in the wild, short front legs, small ears, smaller
than a horse, soft fur, timid animal, can’t fly, climbs in trees, collects
nuts, crawls up trees, eats acorns, eats plants, does not lay eggs ... )

“Graspability” is probably a 1D subspace in X
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