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Automated teaching 
machines

• Automated teaching machines, a.k.a. 
intelligent tutoring systems (ITS), offer the 
ability to personalize instruction to the 
individual student.

• ITS offer some of the benefits of 1-on-1 
human tutoring at a fraction of the cost.
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History of automated teaching
• Automated teaching has a 50+ year history:

• 1960s-70s: Stanford researchers (e.g., Atkinson) 
applied control theory to optimize the learning 
process for “flashcard”-style vocabulary learning.
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History of automated teaching
• Automated teaching has a 50+ year history:

• 1980s-90s: John Anderson at CMU started the 
“cognitive tutor” movement
to teach complex skills, e.g.:

• Algebra

• Geometry

• Computer programming
Algebra Cognitive Tutor
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History of automated teaching
• Automated teaching has a 50+ year history:

• 2000s-present: cognitive tutors were enhanced 
with more sophisticated graphics and sound.

• Applications of reinforcement learning to ITS.

Wayang Outpost 
math tutor
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Limited sensors
• Over their 50+ year history, one notable feature 

about ITS is the limited sensors they use, 
usually consisting of:

• Keyboard

• Mouse

• Touch screen
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Sensors
• In contrast, human tutors consider the student’s:

• Speech

• Body posture

• Facial expression
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Sensors
• In contrast, human tutors consider the student’s:

• Speech

• Body posture

• Facial expression

• It is possible that automated tutors could become 
more effective if they used richer sensory 
information.
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Affect-sensitive 
automated teachers

• A hot topic in the ITS community is affect-
sensitive automated teaching systems.

• “Affect-sensitive”: use rich sensors to sense and 
respond to the student’s affective state.

• “Affective state”:

• Student’s motivation, engagement, frustration, 
confusion, boredom, etc.
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Affect-sensitive 
automated teachers

• Developing an affect-sensitive ITS can be divided 
into 2 computational problems:

• Perception: how to recognize affective states 
automatically using affective sensors.

• E.g., how to map image pixels from a webcam 
into a estimate of the student’s engagement.
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Affect-sensitive 
automated teachers

• Developing an affect-sensitive ITS can be divided 
into 2 computational problems:

• Perception: how to recognize affective states 
automatically using affective sensors.

• E.g., how to map image pixels from a webcam 
into a estimate of the student’s engagement.

• Control: how to use affective state estimates 
to teach more effectively.
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Perception problem
• Tremendous progress has been made in machine 

learning & vision during last 15 years.

• Real-time automatic face detectors are 
commonplace.

• Facial expression recognition is starting to 
become practical.
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Control problem
• Much less research has addressed how students’ 

affective state estimates should influence the 
teacher’s decisions.
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Control problem
• Much less research has addressed how students’ 

affective state estimates should influence the 
teacher’s decisions.

• Thus far, the approaches have been rule-based:

• If student looks frustrated, then:
Say: “That was frustrating. Let’s move to 
something easier.”

(Wayang Outpost Tutor -- Woolf, et al. 2009)
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Control problem
• So far there is little empirical evidence that affect-

sensitivity is beneficial.

• Comparison of affect-sensitive to affect-blind  
computer literacy tutor (“AutoTutor”):

Learning gainsLearning gains

Aff.-Sens. Aff.-Blind

Day 1 0.249 0.389

Day 2 0.407 0.377

D’Mello, et al. 2010

Affect-sensitive tutor 
was less effective on 

day 1.
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Control problem
• Even if rules can be devised for a few scenarios, it 

is unlikely that this approach will scale up:

• Multiple sensors, high bandwidth, varying 
timescales, etc.
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Control problem
• Even if rules can be devised for a few scenarios, it 

is unlikely that this approach will scale up:

• Multiple sensors, high bandwidth, varying 
timescales, etc. 

• Instead, a formal computational framework for 
decision-making may be useful.
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• Stochastic optimal control (SOC) theory may provide 
such a framework.

• SOC provides:

• Mathematics to define teaching as an optimization 
problem.

• Computational tools to solve the optimization 
problem.

Stochastic optimal control
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• SOC has well-known computational difficulties:

• Finding exact solutions to SOC problems is usually 
intractable.

• More research is needed on how to find 
approximately optimal control policies for 
automated teaching problems.

• Since the 1960s, a variety of machine learning and 
reinforcement learning methods have been 
developed for finding approximately optimal 
solutions.

Stochastic optimal control
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SOC-based ITS
• In this talk, I will describe one approach to building an 

ITS for language acquisition using approximate 
methods from SOC.

• Our work draws inspiration from Rafferty, 
Brunskill, Griffiths, and Shafto (2011).

• I also describe how an SOC-based automated 
teacher naturally uses affective observations when 
they are available.

• No ad-hoc rules are necessary.
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Teaching word meanings 
from visual examples

ontbyt
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Teaching word meanings 
from visual examples

ontbyt
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Teaching word meanings 
from visual examples

ontbyt
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Teaching word meanings 
from visual examples

ontbyt (breakfast)
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Teaching word meanings 
from visual examples

• This is the learning approach used in Rosetta Stone 
language software.
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• We wish to teach the meanings of a set of words.

• Each word can mean any one of a set of concepts.

• We have a set of example images.

• At each timestep t, the automated teacher can:

• Teach word j using image k

• Ask student a question about word j

• Give the student a test on all the words in the set

• Teacher’s goal: help student pass the test as quickly 
as possible.

Teaching task
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Teaching task as SOC problem
• We pose this teaching task as a SOC problem.

• We use model-based control:

• We develop probabilistic models of how the student 
learns, and how she responds to questions asked by the 
teacher.

• We collect data of human students to estimate model 
parameters.

• Once model is learned, we can optimize the automated 
teacher using simulation.
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Student model

• We model the student as a Bayesian learner, in 
the manner of Nelson, Tenenbaum and Movellan 
(2007) for concept learning and Rafferty, et al. (2011) 
for concept teaching.

• Reduces amount of data needed to fit the model.
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C1

Y1

A11 A1n...

W1 Wn...

Timestep 1 Timestep t

Ct

Yt

At1 Atn...

...

Student has a belief P(c | y) about what concept the 
teacher was trying to convey with the image.

Student model
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C1

Y1

A11 A1n...

W1 Wn...

Timestep 1 Timestep t

Ct

Yt

At1 Atn...

...

After t timesteps the student updates her belief:

Student model

mtj
.
= P (wj | y1:t, a1q1 , . . . , atqt)
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• Since a perfectly Bayesian learner is unrealistic 
(Nelson and Cottrell 2007), we “soften” the 
model by introducing a “belief update strength” 
variable βt ∈ (0,1]:

• βt specifies how much the student updates her 
belief at time t.

• βt may be related to the student’s level of 
“engagement” in the learning task.

Student inference
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• For ask and test actions:

• If student is asked to define the meaning 
of word j, she responds using probability 
matching according to mtj.

• Probability matching is a popular response 
model in psychology (e.g., Movellan and 
McClelland, 2000).

Student responses
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• Let us now consider the problem from the 
automated teacher’s perspective...

Teacher model
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Problem formulation using SOC
• State St:

• Student’s knowledge mt of the words’ meanings 
as well as the belief update strength βt.
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Problem formulation using SOC
• State St:

• The state is assumed to be “hidden” from the 
teacher because the state is inside the student’s 
brain.

St
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Problem formulation using SOC
• Action Ut:

• Teach word j with image k

• Ask word j

• Test

St

Ut
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Problem formulation using SOC
• Action Ut:

• Ut and St jointly determine the student’s next 
state St+1 according to the transition dynamics
given by the student learning model.

St St+1

Ut

......
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Problem formulation using SOC
• Observation Ot:

• When the teacher asks a question, it receives a 
response (“observation”) from the student.

• Ot is determined by St and Ut according to the 
student response model.

St St+1

Ut

Ot

......
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Problem formulation using SOC
• Belief Bt:

• The teacher maintains a belief
bt ≐ P(st | o1:t-1, u1:t-1) over the student’s state 
given the history of actions and observations up 
to time t.

St St+1

Ut

Ot

......
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Problem formulation using SOC
• Belief Bt: update from time t to time t+1:

St St+1

Ut

Ot

......

P (st+1 | o1:t, u1:t)

/
Z

P (st+1 | st, ut)P (ot | st, ut)P (st | o1:t�1, u1:t�1)dst
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Problem formulation using SOC
• Belief Bt: update from time t to time t+1:

St St+1

Ut

Ot

......

Prior beliefStudent 
response 
likelihood

Student learning 
dynamics

Posterior beliefP (st+1 | o1:t, u1:t)

/
Z

P (st+1 | st, ut)P (ot | st, ut)P (st | o1:t�1, u1:t�1)dst

Saturday, December 8, 12



Problem formulation using SOC
• Belief Bt:

• Since St itself is a probability distribution, Bt is a 
probability distribution over probability 
distributions.

• We approximate Bt using a finite set of particles.

St St+1

Ut

Ot

......
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Problem formulation using SOC
• Reward function r(s,u):

• Teacher may prefer certain states, or certain 
state+action combinations,
over others.
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Problem formulation using SOC
• Control policy π:

• The teacher chooses its action at time t 
according to the control policy π.

• π maps the teacher’s belief bt about what the 
student knows, into an action ut.
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Problem formulation using SOC
• Control policy π:

• Different policies are better than others, as 
expressed by their value V:

where τ is the length of the teaching session, 
measured in # of teacher’s actions.

V (⇡)
.
= E

"
⌧X

t=1

r(St, Ut) | ⇡
#
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Problem formulation using SOC
• Control policy π:

• Different policies are better than others, as 
expressed by their value V:

• An optimal policy π* is a policy that maximizes V:

⇡⇤ .
= argmax

⇡
V (⇡)

V (⇡)
.
= E

"
⌧X

t=1

r(St, Ut) | ⇡
#
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Computing policies

• Finding π* exactly is intractable.

• Instead, we find an approximately optimal policy 
using policy gradient to maximize V(π) in 
simulation using the student model.
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Experiment
• We created a vocabulary of 10 words from 

an artificial language:

Teaching Language to a Bayesian Student by Image Association

Word Meaning
duzetuzi man
fota woman
nokidono boy
mininami girl
pipesu dog
mekizo cat
xisaxepe bird
botazi rabbit
koto eat
notesabi drink

Table 1: List of words and associated meanings taught during a word learning experiment.

to 1 and can thus be used as a reasonable estimate of P (c | k) for each concept and image
combination.

Next, we estimated the time costs and student model parameters from 42 subjects
from the Amazon Mechanical Turk. The subjects for this parameter estimation phase were
taught with one of three possible teaching policies described below: a RandomWordTeacher,
a HandCraftedTeacher, and OptimizedTeacher. (The parameters of the teachers during this
data collection phase were set by hand.) Based on these pilot subjects, we computed the
average time costs to be c(teach) = 10.74, c(ask) = 7.53, and c(test) = 106.46 seconds,
respectively. For simplicity, we assumed ↵t,�t were constant across the learning session for
each student.

Finally, we conducted policy gradient on the stochastic logistic policy’s weight vectors
using the costs and parameters estimated in the previous step. We set the time horizon
⌧ = 500 and the learning rate to 0.005. In practice, we found that the choice for the learning
rate was important – if it was too high, then policy gradient descent sometimes converged
to a nonsensical solution such as never testing the student at all. We executed gradient
descent for 400 iterations. We call the resultant policy the OptimizedTeacher.

9.1 How the OptimizedTeacher behaves

The parameter matrix {wu}u2U , concatenated row-wise into a matrix, is shown in Figure
5. For a vocabulary of n = 10 words there are 21 rows – one “teach” and “ask” action for
each word, plus a “test” action. g(j) represents the goodness of the student’s belief about
word j as estimated by the teacher’s particles. At run-time, each vector wu is multiplied
(inner-product) by the feature vector xt computed from the teacher’s particles, which in
turn gives a scalar proportional to the probability of executing action u under the policy.
In the figure, dark colors represent low weights, and light colors represent high weights.
First, notice that the “bias” feature (last column) for the “test” action (last row) is very
dark, i.e., has a very low weight – this means that the teacher tends not to execute “test”
actions very often. In addition, notice that the “uncertainty” feature for “test” is also quite

21
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Experiment
• We collected a set of images from Google Image 

Search:
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Experiment
• To estimate student model parameters as well as 

time costs of each action (teach, ask, test), we 
collected data from human subjects.

• Given the student model and time costs, we 
used policy gradient to compute π so as to 
minimize the expected time the student needs 
to pass the test.

• This control policy constitutes the 
“SOCTeacher”.
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Experiment

• We conducted an experiment on 90 
subjects from the Amazon Mechanical Turk.

• Dependent variable: time to pass the test.
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Experimental conditions
1. SOCTeacher

2. HeuristicTeacher

• Select a word randomly at each round, and teach it 
using an image sampled according to P(c | y).

• Test every p rounds     (p was optimized in simulation).
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Results

OptimizedTeacher HandCraftedTeacher RandomWordTeacher
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TimeCost(SOCTeacher) is 24% less than 
TimeCost(HeuristicTeacher) (p < 0.01).

SOCTeacher HeuristicTeacher
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Affect while learning
• In pilot exploration of students’ affect, we found that 

students were usually engaged in the task.
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Affect while learning
• There were, however, occasional moments of non-

engagement.
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How affect could be used
• Suppose that the student’s face image zt is 

correlated with the student’s belief update 
strength βt according to P(zt | βt):

• How can this “affective sensor” measurement be 
used to teach better?
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How affect could be used
• In an SOC-based automated teacher, the 

teacher’s belief update simply gains an additional 
term:

• The “affective observation” greatly constrains the 
teacher’s belief of the student’s knowledge.

• Amended belief update emerges naturally from 
probability theory -- no need for ad-hoc rules.

Affective observation

P (st+1 | o1:t, u1:t)

/
Z

P (st+1 | st, ut)P (ot | st, ut)P (zt | �t)P (st | o1:t�1, u1:t�1)dst
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Summary

• While stochastic optimal control brings 
with it significant computational challenges, 
approximate solution methods can be used 
to create practical ITS.

• SOC provides a principled method of 
incorporating affective sensor readings into 
the teaching process.
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Thank you
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