CSCI 5417 Information Retrieval Systems

Jim Martin

Lecture 20 11/3/2011

Today

- Finish PageRank
- HITs
- Start ML-based ranking

PageRank Sketch

- The pagerank of a page is based on the pagerank of the pages that point at it.
 - Roughly

$$Pr(P) = \sum_{in \in P} \frac{Pr(in)}{V(in)}$$

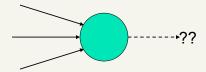
11/11/11 CSCI 5417 - IR 3

PageRank scoring

- Imagine a browser doing a random walk on web pages:
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- "In the steady state" each page has a long-term visit rate - use this as the page's score
 - Pages with low rank are pages rarely visited during a random walk

Not quite enough

- The web is full of dead-ends. Pages that are pointed to but have no outgoing links
 - Random walk can get stuck in such deadends
 - Makes no sense to talk about long-term visit rates in the presence of dead-ends.



11/11/11 CSCI 5417 - IR 5

Teleporting

- At a dead end, jump to a random web page
- At any non-dead end, with probability 10%, jump to a random web page
 - With remaining probability (90%), go out on a random link.
 - 10% a parameter (call it alpha)

Result of teleporting

- Now you can't get stuck locally.
- There is a long-term rate at which any page is visited
- How do we compute this visit rate?
 - Can't directly use the random walk metaphor

11/11/11 CSCI 5417 - IR 7

State Transition Probabilities

We're going to use the notion of a transition probability. If we're in some particular state, what is the probability of going to some other particular state from there.

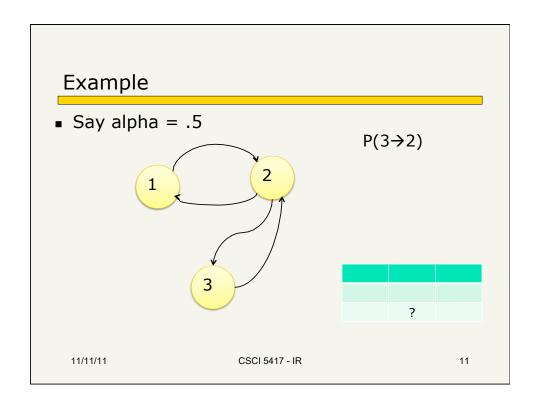
If there are n states (pages) then we need an $n \times n$ table of probabilities.

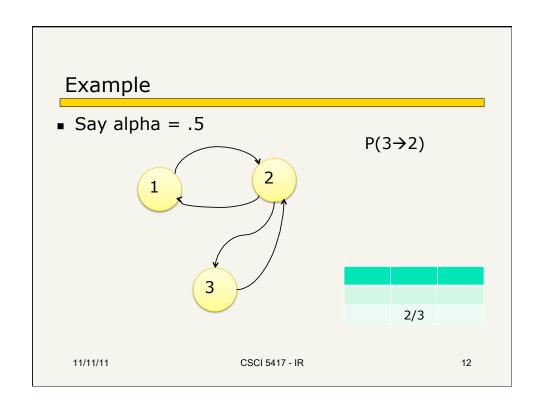
Markov Chains

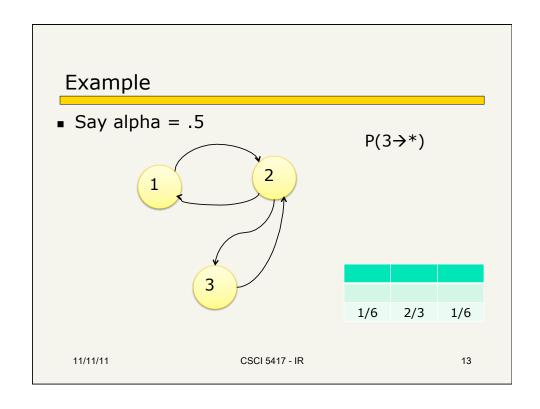
- So if I'm in a particular state (say the start of a random walk)
- And I know the whole n x n table
- Then I can compute the probability distribution over all the next states I might be in in the next step of the walk...
- And in the step after that
 - And the step after that

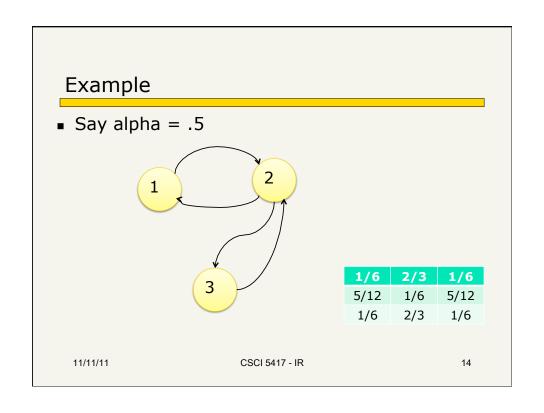
11/11/11 CSCI 5417 - IR 9

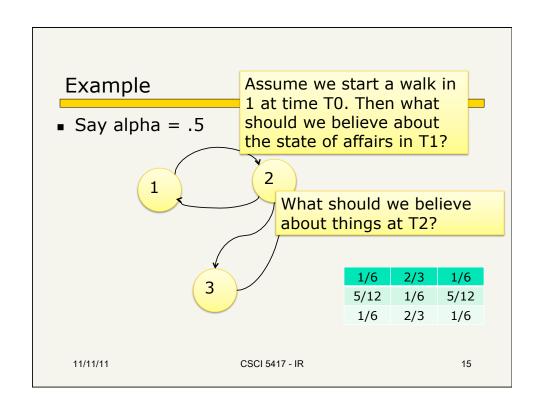
Example Say alpha = .5 11/11/11 CSCI 5417 - IR 10

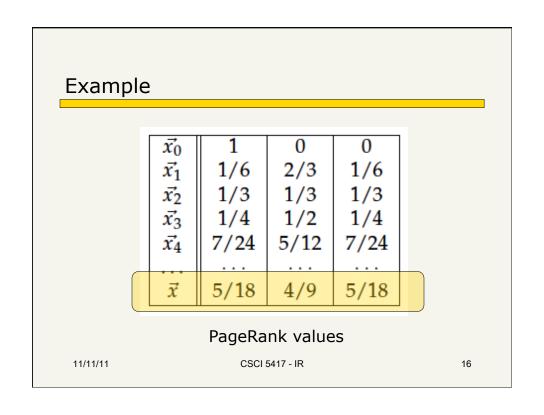












More Formally

- A probability (row) vector $x = (x_1, ..., x_N)$ tells us where the random walk is at any point. (0 0 0 ... 1 ... 0 0
- Examp 1 2 3 ... i ... N- N- N
- More generally: the random walk is on the page i with probability x_i .
- (0.0 0.0 0.0 ... 0.2 ... 0.0 0.0 0.0) 5 1 1 5 3 1 2 3 ... i ... N-2 N-1 N
- $\Sigma x_i = 1$

1,

Change in probability vector

• If the probability vector is $\vec{x} = (x_1, ..., x_N)$, at this step, what is it at the next step?

Change in probability vector

- If the probability vector is $\vec{x} = (X_1, ..., X_N)$, at this step, what is it at the next step?
- Recall that row i of the transition probability matrix P tells us where we go next from state i.

19

Change in probability vector

- If the probability vector is $\vec{x} = (x_1, ..., x_N)$, at this step, what is it at the next step?
- Recall that row i of the transition probability matrix P tells us where we go next from state i.
- So from \vec{x} , our next state is distributed as $\vec{x}P$.

21

Steady state in vector notation

• The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.

Steady state in vector notation

- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.
 - Use π to distinguish it from the notation for the probability vector x.)

23

Steady state in vector notation

- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.
 - Use π to distinguish it from the notation for the probability vector x.)
- π is the long-term visit rate (or PageRank) of page *i*.

Steady state in vector notation

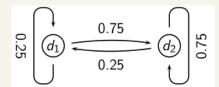
- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.
 - Use π to distinguish it from the notation for the probability vector x.)
- π is the long-term visit rate (or PageRank) of page *i*.
- So we can think of PageRank as a very long vector one entry per page.

25

Steady-state distribution: Example

Steady-state distribution: Example

What is the PageRank / steady state in this example?



27

Steady-state distribution: Example

Steady-state distribution: Example

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

29

Steady-state distribution: Example

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
$t_0 t_1$	0.25	0.75	0.25	0.75

Steady-state distribution: Example

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
$t_0 t_1$	0.25 0.25	0.75 0.75	0.25	0.75

PageRank vector = $\pi = (\pi_1, \pi_2) = (0.25, 0.75)$

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

3:

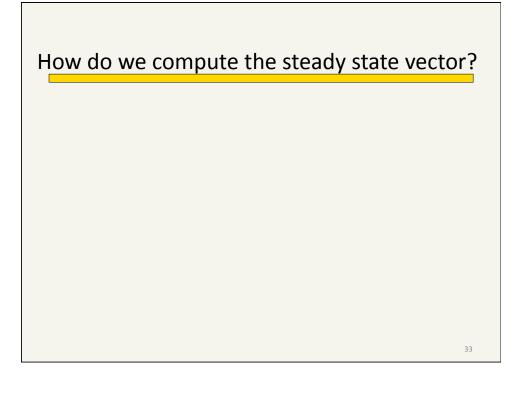
Steady-state distribution: Example

	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
$t_0 t_1$	0.25 0.25	0.75 0.75	0.25 (conve	0.75 rgence)

PageRank vector = $\pi = (\pi_1, \pi_2) = (0.25, 0.75)$

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$



• In other words: how do we compute PageRank?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...

35

How do we compute the steady state vector?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!

37

How do we compute the steady state vector?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$.

39

How do we compute the steady state vector?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$.
- $\vec{\pi}$ is the principal left eigenvector for P ...

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$.
- $\vec{\pi}$ is the principal left eigenvector for P ...
 - That is, π is the left eigenvector with the largest eigenvalue.

4:

One way of computing the PageRank $\vec{\pi}$

• Start with any distribution \vec{x} , e.g., uniform distribution

43

One way of computing the PageRank $\vec{\pi}$

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.

45

One way of computing the PageRank $\vec{\pi}$

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of P until convergence.

47

One way of computing the PageRank $\vec{\pi}$

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of P until convergence.
- This is called the power method.

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of P until convergence.
- This is called the power method.
- Recall: regardless of where we start, we eventually reach the steady state $\vec{\pi}$.

49

One way of computing the PageRank $\bar{\pi}$

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of *P* until convergence.
- This is called the power method.
- Recall: regardless of where we start, we eventually reach the steady state $\vec{\pi}$.
- Thus: we will eventually reach the steady state.

Power method: Example

51

Power method: Example

What is the PageRank / steady state in this example?

$$\begin{array}{cccc}
\bigcirc & & & & & \\
\bigcirc & & & & & \\
\downarrow & &$$

Computing PageRank: Power Example

Or	nputing	; PageRa	nk: Pow	er Exam	ple	
	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$				
			$P_{11} = 0.1$ $P_{21} = 0.3$			
				$P_{22} = 0.7$	→ →	
t_0	0	1			= _⊸ xP	
t_1					= ₋ xP ²	
t_2					$= xP^3$	
t_3					= ₋ xP ⁴	
t _₽	(d.) = P	.(d.) * P.	$+ P_{t-1}(d_2)$, P	= xP∞	
P_{t}^{t}	$L(d_1) = P_{t-1}$	$P_{1}(d_{1}) * P_{11}$	$P_{t-1}(d_2) + P_{t-1}(d_2)$	* P ₂₂		

Cor	Computing PageRank: Power Example							
	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$						
			$P_{11} = 0.1$ $P_{21} = 0.3$		→ →			
t ₀ t ₁ t ₂ t ₃	0 0.3	1 0.7	0.3	0.7	$= xP$ $= xP^{2}$ $= xP^{3}$ $= xP^{4}$			
			$+ P_{t-1}(d_2) + P_{t-1}(d_2)$		= xP∞	56		

Computing PageRank: Power Example								
	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$						
			$P_{11} = 0.1$ $P_{21} = 0.3$		→ →			
t ₀ t ₁ t ₂ t ₃	0 0.3	1 0.7	0.3	0.7 0.76	$=_{x}P$ $=_{x}P^{2}$ $=_{x}P^{3}$ $=_{x}P^{4}$ \vdots $=_{x}P^{\infty}$			
			$\frac{1}{1} + P_{t-1}(d_2) + P_{t-1}(d_2)$		1 2 22	57		

C	Computing PageRank: Power Example								
		X_1 $P_t(d_1)$	X_2 $P_t(d_2)$						
				$P_{11} = 0.1$ $P_{21} = 0.3$		→ →			
	0	0	1	0.3	0.7	= ₋ xP			
	1	0.3	0.7	0.24	0.76	= ₋ xP ²			
	2 3	0.24	0.76			$= xP^3$ $= xP^4$			
t	∙₽.	$(d_1) = P_2$	$_{t-1}(d_1) * P_{11}$	$\begin{vmatrix} + P_{k,1}(d_2) \end{vmatrix}$) * P ₂₁	 = xP∞			
			$\frac{1}{t-1}(d_1) * P_{12}$				58		

Cor	nputing	g PageRa	nk: Pow	er Exam	nple	
	X_1 $P_t(d_1)$	x_2 $P_t(d_2)$				
			$P_{11} = 0.1$ $P_{21} = 0.3$		→	
t_0	0	1	0.3	0.7	-,xP	-
t_1	0.3	0.7	0.24	0.76	= ₋ xP ²	
t_2	0.24	0.76	0.252	0.748	$= xP^3$	
t ₃					=_xP ⁴	
			$+ P_{t-1}(d_2)$		= xP∞	
P_{t}	$(d_2) = P_{t-1}$	$P_{11}(d_1) * P_{12}$	$_{t} + P_{t-1}(d_{2})$	* P ₂₂		59

C	Computing PageRank: Power Example								
		X_1 $P_t(d_1)$	x_2 $P_t(d_2)$						
				$P_{11} = 0.1$ $P_{21} = 0.3$					
					$P_{22} = 0.7$	→ →			
	t_0	0	1	0.3	0.7	= ₋ xP			
	$t_{\scriptscriptstyle 1}$	0.3	0.7	0.24	0.76	=_xP ²			
	t_2	0.24	0.76	0.252	0.748	$= xP^3$			
	t_3	0.252	0.748			= ₋ xP ⁴			
	t _₽	(d.) = P.	$P_{11}(d_1) * P_{11}$	$\begin{vmatrix} + P_{-1}(d_2) \end{vmatrix}$, P.,	= xP∞			
			$P_{11}(d_1) * P_{12}$				60		

Cor	nputin	g PageRa	nk: Pow	er Exan	nple	
	X_1 $P_t(d_1)$	X_2 $P_t(d_2)$				
			$P_{11} = 0.1$ $P_{21} = 0.3$	P ₁₂ = 0.9		
				$P_{22} = 0.7$	→ →	
to	0	1	0.3	0.7	= _⊸ xP	-
t_1	0.3	0.7	0.24	0.76	= ₋ xP ²	
t_2	0.24	0.76	0.252	0.748	$= xP^3$	
t_3	0.252	0.748	0.2496	0.7504	= _⊸ xP ⁴	
tೄ	(d.) = P	$P_{1-1}(d_1) * P_{11}$	$+ P \cdot (d)$) * P	= xP∞	
		$P_{1-1}(d_1) * P_{12}$				61

C	Computing PageRank: Power Example								
		X_1 $P_t(d_1)$	X_2 $P_t(d_2)$						
				$P_{11} = 0.1$ $P_{21} = 0.3$					
					$P_{22} = 0.7$	→ →			
	t_0	0	1	0.3	0.7	= ₋ xP			
	t_1	0.3	0.7	0.24	0.76	= ₋ xP ²			
	t_2	0.24	0.76	0.252	0.748	$= xP^3$			
	t_3	0.252	0.748	0.2496	0.7504	= ₋ xP ⁴			
	t∌	(d.) = P	$_{t-1}(d_1) * P_{11}$	 + P .(d \	. . P	= xP∞			
			$P_{1-1}(d_1) * P_{11}$				62		

Coi	mputing	; PageRa	nk: Pow	er Exam	nple	
	X_1 $P_t(d_1)$	x_2 $P_t(d_2)$				
			$P_{11} = 0.1$ $P_{21} = 0.3$			
				P ₂₂ = 0.7	→ →	
t_0	0	1	0.3	0.7	= _⊸ xP	
t_1	0.3	0.7	0.24	0.76	= _→ xP ²	
t_2	0.24	0.76	0.252	0.748	$= xP^3$	
t_3	0.252	0.748	0.2496	0.7504	=_xP ⁴	
t∌	0.25 = P	. (9,35, P.	$\Big _{+ P_{t-1}(d_2)}$	* Pa.	= xP∞	
			$+ P_{t-1}(d_2)$			63

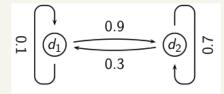
C	Computing PageRank: Power Example							
		X_1 $P_t(d_1)$	X_2 $P_t(d_2)$					
				$P_{11} = 0.1$ $P_{21} = 0.3$				
					P ₂₂ = 0.7	→ →		
	t_0	0	1	0.3	0.7	= _⊸ xP		
	t_1	0.3	0.7	0.24	0.76	= ₋ xP ²		
	t_2	0.24	0.76	0.252	0.748	$= xP^3$		
	t_3	0.252	0.748	0.2496	0.7504	= _⊸ xP ⁴		
	t₽	0,25_ p	(0, 75 p	$\left \begin{array}{c} 0.25 \\ P_{t-1}(d_2) \end{array} \right $	0. Z 5	= xP∞		
	·	· 1/		$+ P_{t-1}(d_2)$	21	'	64	

	X_1 $P_t(d_1)$	x_2 $P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$		
			21	$P_{22} = 0.7$	→ →
t_0	0	1	0.3	0.7	= _⊸ xP
$t_{\scriptscriptstyle 1}$	0.3	0.7	0.24	0.76	= _→ xP ²
t_2	0.24	0.76	0.252	0.748	$= xP^3$
t_3	0.252	0.748	0.2496	0.7504	= ₋ xP ⁴
		\rightarrow			
t∞	0.25	0.75	0.25	0.75	= xP∞

65

Power method: Example

What is the PageRank / steady state in this example?



• The steady state distribution (= the PageRanks) in this example are 0.25 for d_1 and 0.75 for d_2 .

PageRank summary

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute $\vec{\pi}$
 - $\vec{\pi}_i$ is the PageRank of page *i*.
- Query processing
 - Retrieve pages satisfying the query
 - Rank them by their PageRank
 - Return reranked list to the user

67

PageRank issues

- Real surfers are not random surfers.
 - Examples of nonrandom surfing: back button, bookmarks, directories, tabs, search, interruptions
 - → Markov model is not a good model of surfing.
 - But it's good enough as a model for our purposes.
- Simple PageRank ranking produces bad results for many pages.

How important is PageRank?

- Frequent claim: PageRank is the most important component of Google's web ranking
- The reality:
 - There are several components that are at least as important: e.g., anchor text, phrases, proximity, tiered indexes ...
 - Rumor has it that PageRank in his original form (as presented here) now has a negligible impact on ranking!
 - However, variants of a page's PageRank are still an essential part of ranking.
 - Adressing link spam is difficult and crucial.

69

Break

 Today's colloquium is relevant to the current material

Machine Learning for ad hoc IR

- We've looked at methods for ranking documents in IR using factors like
 - Cosine similarity, inverse document frequency, pivoted document length normalization, Pagerank, etc.
- We've looked at methods for classifying documents using supervised machine learning classifiers
 - Naïve Bayes, kNN, SVMs
- Surely we can also use such machine learning to rank the documents displayed in search results?

11/11/11 CSCI 5417 - IR 71

Why is There a Need for ML?

- Traditional ranking functions in IR used a very small number of features
 - Term frequency
 - Inverse document frequency
 - Document length
- It was easy to tune weighting coefficients by hand
 - And people did
 - But you saw how "easy" it was on HW1

Why is There a Need for ML

- Modern systems especially on the Web use a large number of features:
 - Log frequency of query word in anchor text
 - Query term proximity
 - Query word in color on page?
 - # of images on page
 - # of (out) links on page
 - PageRank of page?
 - URL length?
 - URL contains "~"?
 - Page edit recency?
 - Page length?
- The New York Times (2008-06-03) quoted Amit Singhal as saying Google was using over 200 such features.

11/11/11 CSCI 5417 - IR 73

Using ML for ad hoc IR

- Well classification seems like a good place to start
 - Take an object and put it in a class
 - With some confidence
 - What do we have to work with in terms of training data?
 - Documents
 - Queries
 - Relevance judgements

Using Classification for ad hoc IR

- Collect a training corpus of (q, d, r) triples
 - Relevance r is here binary
 - Documents are represented by a feature vector
 - Say 2 features just to keep it simple
 - Cosine sim score between doc and query
 - Note this hides a bunch of "features" inside the cosine (tf, idf, etc.)
 - Minimum window size around query words in the doc
 - Train a machine learning model to predict the class r of each document-query pair
 - Where class is relevant/non-relevant
 - Then use classifier confidence to generate a

 11/11/Fanking CSCI 5417 IR 75

Training data

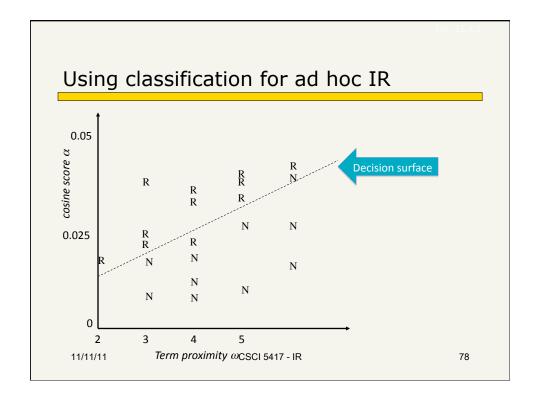
example	docID	query	cosine score	ω	judgment
Φ_1	37	linux operating system	0.032	3	relevant
Φ_2	37	penguin logo	0.02	4	nonrelevant
Φ_3	238	operating system	0.043	2	relevant
Φ_4	238	runtime environment	0.004	2	nonrelevant
Φ_5	1741	kernel layer	0.022	3	relevant
Φ_6	2094	device driver	0.03	2	relevant
Φ_7	3191	device driver	0.027	5	nonrelevant

Using classification for ad hoc IR

 A linear scoring function on these two features is then

$$Score(d, q) = Score(a, \omega) = aa + b\omega + c$$

- And the linear classifier is Decide relevant if $Score(d, q) > \theta$
- ... just like when we were doing text classification



More Complex Cases

- We can generalize this to classifier functions over more features
- We can use any method we have for learning the linear classifier weights

11/11/11 CSCI 5417 - IR 79

An SVM Classifier for IR [Nallapati 2004]

- Experiments:
 - 4 TREC data sets
 - Comparisons done with Lemur, another stateof-the-art open source IR engine (LM)
 - Linear kernel normally best or almost as good as quadratic kernel
 - 6 features, all variants of tf, idf, and tf.idf scores

An SVM Classifier for IR [Nallapati 2004]

Train \ Test		Disk 3	Disk 4-5	WT10G (web)
Disk 3	LM	0.1785	0.2503	0.2666
	SVM	0.1728	0.2432	0.2750
Disk 4-5	LM	0.1773	0.2516	0.2656
	SVM	0.1646	0.2355	0.2675

- At best, the results are about equal to LM
 - Actually a little bit below

11/11/11 CSCI 5417 - IR 81

An SVM Classifier for IR [Nallapati 2004]

- Paper's advertisement: Easy to add more features
- Especially for specialized tasks
 - Homepage finding task on WT10G:
 - Baseline LM 52% success@10, baseline SVM 58%
 - SVM with URL-depth, and in-link features: 78% S@10

Problem

- The ranking in this approach is based on the classifier's confidence in its judgment
- It's not clear that that should directly determine a ranking between two documents
 - That is, it gives a ranking of confidence not a ranking of relevance
 - Maybe they correlate, maybe not

11/11/11 CSCI 5417 - IR 83

Learning to Rank

- Maybe classification isn't the right way to think about approaching ad hoc IR via ML
- Background ML
 - Classification problems
 - Map to a discrete unordered set of classes
 - Regression problems
 - Map to a real value
 - Ordinal regression problems
 - Map to an *ordered* set of classes

Learning to Rank

- Assume documents can be totally ordered by relevance given a query
 - These are totally ordered: $d_1 < d_2 < ... < d_1$
 - This is the ordinal regression setup
- Assume training data is available consisting of document-query pairs represented as feature vectors ψ_i and a relevance ranking between them
- Such an ordering can be cast as a set of pair-wise judgements, where the input is a pair of results for a single query, and the class is the relevance ordering relationship between them

11/11/11 CSCI 5417 - IR 85

Learning to Rank

- But assuming a total ordering across all docs is a lot to expect
 - Think of all the training data
- So instead assume a smaller number of categories
 C of relevance exist
 - These are totally ordered: $c_1 < c_2 < ... < c_1$
 - Definitely rel, relevant, partially, not relevant, really really not relevant... Etc.
 - Indifferent to differences within a category
- Assume training data is available consisting of document-query pairs represented as feature vectors ψ_i and relevance ranking based on the categories *C*

Experiments

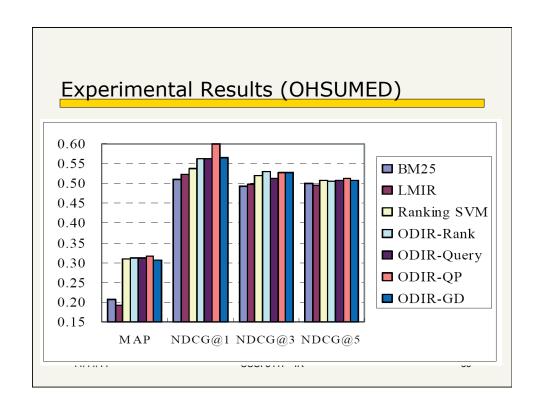
Based on the LETOR test collection (Cao et al)

- An openly available standard test collection with pregenerated features, baselines, and research results for learning to rank
 - OHSUMED, MEDLINE subcollection for IR
 - 350,000 articles
 - 106 queries
 - 16,140 query-document pairs
 - 3 class judgments: Definitely relevant (DR), Partially Relevant (PR), Non-Relevant (NR)

11/11/11 CSCI 5417 - IR 87

Experiments

- OHSUMED (from LETOR)
- Features:
 - 6 that represent versions of tf, idf, and tf.idf factors
 - BM25 score (*IIR* sec. 11.4.3)
 - A scoring function derived from a probabilistic approach to IR, which has traditionally done well in TREC evaluations, etc.



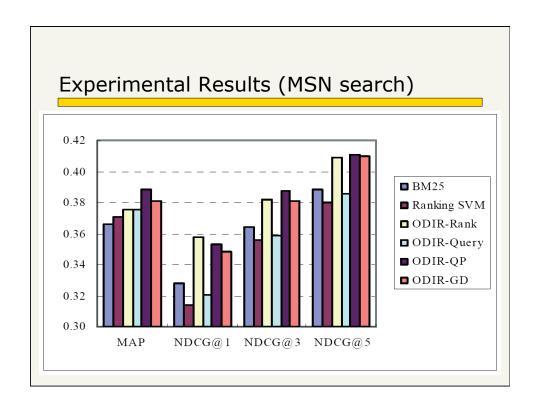
MSN Search

- Second experiment with MSN search
- Collection of 2198 queries
- 6 relevance levels rated:

Definitive 8990Excellent 4403Good 3735

Fair 20463Bad 36375

Detrimental 310



Limitations of Machine Learning

- Everything that we have looked at (and most work in this area) produces *linear* models of features by weighting different base features
- This contrasts with most of the clever ideas of traditional IR, which are nonlinear scalings and combinations of basic measurements
 - log term frequency, idf, pivoted length normalization
- At present, ML is good at weighting features, but not at coming up with nonlinear scalings
 - Designing the basic features that give good signals for ranking remains the domain of human creativity

Summary

- Machine learned ranking over many features now easily beats traditional hand-designed ranking functions in comparative evaluations
- And there is every reason to think that the importance of machine learning in IR will only increase in the future.