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Today
[

= Finish PageRank
s HITs
= Start ML-based ranking




PageRank Sketch
[

» The pagerank of a page is based on the
pagerank of the pages that point at it.

= Roughly
Pr(in
Pr(P) = 3 )
inEPV(ln)
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PageRank scoring
[

= Imagine a browser doing a random walk on
web pages: 13

» Start at a random page — 1@

» At each step, go out of the current page
along one of the links on that page,
equiprobably

= "In the steady state” each page has a
long-term visit rate - use this as the page’s
score

» Pages with low rank are pages rarely visited

during a random walk
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Not quite enough
[

= The web is full of dead-ends. Pages that
are pointed to but have no outgoing links

= Random walk can get stuck in such dead-
ends

» Makes no sense to talk about long-term visit
rates in the presence of dead-ends.

——————— 77
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Teleporting
[

» At a dead end, jump to a random web page

= At any non-dead end, with probability 10%,
jump to a random web page

» With remaining probability (90%), go out on
a random link.

» 10% - a parameter (call it alpha)
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Result of teleporting
[

= Now you can’t get stuck locally.

= There is a long-term rate at which any
page is visited

= How do we compute this visit rate?

= Can't directly use the random walk
metaphor
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State Transition Probabilities
[

We're going to use the notion of a transition
probability. If we're in some particular
state, what is the probability of going to
some other particular

state from there.

If there are n states (pages)
then we need an n x n table
of probabilities.

11/11/11 CSCI 5417 - IR 8




Markov Chains
[

» So if I'm in a particular state (say the start
of a random walk)

= And I know the whole n x n table

= Then I can compute the probability
distribution over all the next states I might
be in in the next step of the walk...

= And in the step after that
» And the step after that
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Example
[

= Say alpha = .5
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Example
[

= Say alpha = .5

/\ P(3>2)
1 2
P S
. ]
?
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Example
[
» Say alpha = .5
/\ P(3>2)
1 2
- ]
S 2/3
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Example
[

= Say alpha = .5

P(3>*)

2
3
1/6 2/3 1/6
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Example
[
» Say alpha = .5
C
.~
3

11/11/11
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5/12 1/6  5/12
1/6 2/3 1/6




Example Assume we start a walk in
l 1 at time TO. Then what =

= Say alpha = .5 should we believe about
the state of affairs in T17?
N
1 2

<~ What should we believe
about things at T2?

1/6 2/3 1/6
. / /6 23 Y

5/12 1/6 5/12
1/6 2/3 1/6

Example
[
o 1 0 0
5 |l 176 | 273 | 176
ol 13 | 1/3 | 1/3
ol 174 | 172 | 1/4
& |l 7/24 | 5712 | 7/24
[ % | 5/18 | 4/9 | 5/18 ]

PageRank values
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More Formally

- A probability (row) vector x = (x;, ..., Xp)
tells us where the random walk is at any

point. ¢ o 0 0 .. 1 .. 0 O 0 )
Exampl 1 2 3 .. i .. N-N- N
2 1

More generally: the random walk is on the
page / with probability x;.

( 00 00 0.0 .. 0.2 .. 0.0 0.0 0.0 )
5 1 1 5 3
1 3 i .. N-2 N-1 N
2x; =1

Clhange in probability vector

= |f the probability vectoris x = (X; , ..., Xy), at this step,
what is it at the next step?




Clhange in probability vector

= |f the probability vectoris x = (X; , ..., Xy), at this step,
what is it at the next step?

= Recall that row i of the transition probability matrix P tells
us where we go next from state .

Clhange in probability vector

= |f the probability vector is x = (xy, ..., X,), at this step, what
is it at the next step?

= Recall that row i of the transition probability matrix P tells
us where we go next from state i.

= So from x, our next state is distributed as xP.
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Steady state in vector notation
[

21

Steady state in vector notation
[

= The steady state in vector notation is simply a vector
Tt = (71, 7Ty, ..., TTy) Of probabilities.
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Steady state in vector notation
[

= The steady state in vector notation is simply a vector
Tt = (71, 7Ty, ..., TTy) Of probabilities.
= Usemtto distingyish it from the notation for the
probability vector x.)

Steady state in vector notation
[

= The steady state in vector notation is simply a vector
Tt = (71, 7Ty, ..., TTy) Of probabilities.

= Use mt to distinguish it from the notation for the
probability vector x.)

= g is the long-term visit rate (or PageRank) of page i.
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Steady state in vector notation
[

= The steady state in vector notation is simply a vector
Tt = (71, 7Ty, ..., TTy) Of probabilities.

= Use nt to distinguish it from the notation for the
probability vector x.)

= g is the long-term visit rate (or PageRank) of page i.

= So we can think of PageRank as a very long vector — one
entry per page.

Slteady-state distribution: Example
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Slteady-state distribution: Example

= What is the PageRank / steady state in this example?

0.75
3| @——@|5

27

Slteady-state distribution: Example

28
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Slteady-state distribution: Example

X1 X3
P(d,)  P«(d))

P,, =0.25 P,,=0.75
P,, = 0.25 P,, =0.75

ty|0.25 0.75

P.(dy) = P.4(dy) * Py + Pey(dy) = Py
Pt(dz) = Pt-l(dl) x Py + Pt-1(d2) * Py,

29

Slteady-state distribution: Example

Xy X3
P(d,)  P«(d,)

P,, =0.25 P,,=0.75
P,, = 0.25 P,, =0.75

t,|0.25  0.75 |0.25 0.75
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Slteady-state distribution: Example

X1 X2
P(d,)  P(d,)
P,, =025 P, =0.75
P,, = 0.25 P,, =0.75
t,10.25 0.75 0.25 0.75
t,|0.25  0.75

PageRank vector = & = (%, m,) = (0.25, 0.75)

P(d;) = P.1(dy) « Pyy + Pry(dy) « Py
P.(d,) = P.1(dy) * P, + Pry(dy) = Py,

Slteady-state distribution: Example

Xy X
P(d,)  Py(dy)
P, =0.25 Py, =0.75
pP,, =0.25 P,, =0.75
t,10.25 0.75 0.25 0.75
t,]0.25 0.75 (convergence)

PageRank vector = & = (%, m,) = (0.25, 0.75)

Pt(dl) = Pt-l(dl) « Py + Pt-1(d2) * Pyy
Pt(dz) = Pt-l(dl) x Py + Pt-1(dz) *« Py,

16



How do we compute the steady state vector?
[ ]

How do we compute the steady state vector?
[ ]

= |n other words: how do we compute PageRank?
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How do we compute the steady state vector?
[ ]

= |n other words: how do we compute PageRank?

= Recall: 7 = (,, 7y, ..., ) is the PageRank vector, the vector of
steady-state probabilities ...

How do we compute the steady state vector?
[ ]

= |n other words: how do we compute PageRank?

Recall: t = (my, m,, ..., 7wy) is the PageRank vector, the vector of
steady-state probabilities ...

= ... and if the distribution in this step is x, then the distribution in
the next step is xP.
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How do we compute the steady state vector?
[

l

In other words: how do we compute PageRank?

Recall: 7t = (,, 7y, ..., ) is the PageRank vector, the vector of
steady-state probabilities ...

... and if the distribution in this step is x, then the distribution in
the next step is xP.

But 7t is the steady state!

How do we compute the steady state vector?
[ ]

In other words: how do we compute PageRank?

Recall: t = (my, m,, ..., 7wy) is the PageRank vector, the vector of
steady-state probabilities ...

... and if the distribution in this step is x, then the distribution in
the next step is xP.

But 7t is the steady state!

So:m=mP
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?

How do we compute the steady state vector
[

l

= |n other words: how do we compute PageRank?

= Recall: 7 = (,, 7y, ..., ) is the PageRank vector, the vector of
steady-state probabilities ...

= ... and if the distribution in this step is x, then the distribution in

the next step is xP.
= Butmis the steady state!
= So:m=mP

= Solving this matrix equation gives us .

How do we compute the steady state vector?
[ ]

= |n other words: how do we compute PageRank?

= Recall: ¥ = (my, m,, ..., 7wy) is the PageRank vector, the vector of
steady-state probabilities ...

= ... and if the distribution in this step is x, then the distribution in

the next step is xP.
= But 7 is the steady state!
= So:m=mP
= Solving this matrix equation gives us .
= g is the principal left eigenvector for P ...

40
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How do we compute the steady state vector?
[ ]

= |n other words: how do we compute PageRank?

= Recall: 7 = (,, 7y, ..., ) is the PageRank vector, the vector of
steady-state probabilities ...

= ... and if the distribution in this step is x, then the distribution in
the next step is xP.

= Butmis the steady state!

= So:m=mP

= Solving this matrix equation gives us .
= 7 is the principal left eigenvector for P ...

= That is, 7t is the left eigenvector with the largest eigenvalue.

Qne way of computing the PageRank 7

21



Qne way of computing the PageRank 7

= Start with any distribution x, e.g., uniform distribution

Qne way of computing the PageRank 7

= Start with any distribution x, e.g., uniform distribution

= After one step, we're at xP.

44
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Qne way of computing the PageRank 7

Start with any distribution x, e.g., uniform distribution

After one step, we're at xP.

After two steps, we’re at xP2.

Qne way of computing the PageRank 7

Start with any distribution x, e.g., uniform distribution

After one step, we're at xP.

After two steps, we’re at xP2.

After k steps, we’re at xPk.

46
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Qne way of computing the PageRank 7

Start with any distribution x, e.g., uniform distribution
After one step, we're at xP.

After two steps, we’re at xP2.

After k steps, we’re at xPk.

Algorithm: multiply X by increasing powers of P until
convergence.

Qne way of computing the PageRank 7

Start with any distribution x, e.g., uniform distribution
After one step, we're at xP.

After two steps, we’re at xP2.

After k steps, we’re at xPk.

Algorithm: multiply X by increasing powers of P until
convergence.

This is called the power method.

48
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Qne way of computing the PageRank 7

Start with any distribution x, e.g., uniform distribution
= After one step, we’re at xP.

= After two steps, we're at xP2.

= After k steps, we’re at xPk.

= Algorithm: multiply;( by increasing powers of P until
convergence.

= This is called the power method.

= Recall: regardless of where we start, we eventually reach the
steady state .

Qne way of computing the PageRank 7

Start with any distribution x, e.g., uniform distribution
= After one step, we're at xP.

= After two steps, we're at xP2.

= After k steps, we’re at xPk.

= Algorithm: multiply; by increasing powers of P until
convergence.

= This is called the power method.

= Recall: regardless of where we start, we eventually reach the
steady state .

= Thus: we will eventually reach the steady state.

50
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P[ower method: Example

51

P[ower method: Example

= What is the PageRank / steady state in this example?

o
—

0.9
@=——@|5

52
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Clomputing PageRank: Power Example

Qompuﬁng PageRank: Power Example

—
X1 X5
P.(d,) P.(d,)
P,, = 0.3 0.9
Py = -
0.7 .
t |0 1 =_XP
tl = _XxP?
G = xP3
G =_xP*
t = yp®
Pt(dl) = Pt-l(dl) « Pyl + Pt-1(d2) * Pyy X
Pt(dz) = Pt-l(dl) « Py + Pt-1(d2) * Py, =
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Qompuﬁng PageRank: Power Example

—
X1 X2
Pi(d,) Pi(d)
P,, = 0.3 0.9
Py = -
0.7 -
t, |0 1 0.3 0.7 = xP
t =_xP?
t2 = XP3
G =_xP*
t - = xp®
Pi(dy) = Pey(dy) = Pyy' + Pry(dy) * Py
Pi(d;) = Pi1(dy) = Py + Py(dy) = Poy ”
Computing PageRank: Power Example
{ —
X1 X2
PUdy)  Py(dy)
P,, = 0.3 0.9
Py = -
0.7 -
t, |0 1 0.3 0.7 = xP
t, |0.3 0.7 = xP2
G = xP3
G =_xP*
t - = xp®
Pi(dy) = Pey(dy) = Pyy' + Pey(dy) * Py

P(d,) = P1(dy) « P1y + Pry(dy) * Py

56
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Qompuﬁng PageRank: Power Example

p—
X1 X2
Pi(d,) Pi(d)
P,, = 0.3 0.9
Py = -
0.7 -
t, |0 1 0.3 0.7 = xP
t, 0.3 0.7 0.24 0.76 | =xpP2
t2 = XP3
G =_xP*
t - = xp®
Pi(dy) = Pey(dy) = Pyy' + Pry(dy) * Py
Pi(d;) = Pi1(dy) = Py + Py(dy) = Poy
Computing PageRank: Power Example
{ p—
X1 X2
Pi(d,) Pi(dy)
P,, = 0.3 0.9
Py = -
0.7 -
t, |0 1 0.3 0.7 = xP
t, 0.3 0.7 0.24 0.76  |=xP?
t, |0.24 0.76 = xP3
t3 =_XxP*
t _ = XP*
Pi(dy) = Pey(dy) = Pyy' + Pey(dy) * Py

P(d,) = P1(dy) « P1y + Pry(dy) * Py

58
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Qompuﬁng PageRank: Power Example

_ 1
Xy X3
Pi(d,) Pi(d,)
P,, = 0.3 0.9
Py = -
0.7 .
ty, |0 1 0.3 0.7 = xP
t, 0.3 0.7 0.24 0.76 | =xP2
t, |0.24 0.76  |0.252  0.748 |= xP3
G =_xP*
t - = xp®
Pt(dl) - Pt-l(dl) s 'D11 + Pt-l(dZ) W P21
P(d;) = P.4(dy) = Py + P 1(d3) = Py £
Computing PageRank: Power Example
f _ 1
Xy X3
P(d))  Pi(d))
P,, = 0.3 0.9
Py = -
0.7 .
ty, |0 1 0.3 0.7 = xP
t, 0.3 0.7 0.24 0.76 | =xP2
t, |0.24 0.76  |0.252  0.748 |= xP3
t, |0.252  0.748 = xp*
t _ = XP*
Pt(dl) - Pt-l(dl) 2 Pll + Pt-l(dZ) g P21

P(d,) = P1(dy) « P1y + Pry(dy) * Py
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Qompuﬁng PageRank: Power Example

P(d,) = P1(dy) « P1y + Pry(dy) * Py

_ 1
Xy X3
Pi(d,) Pi(d,)
P,, = 0.3 0.9
Py, = -
0.7 .
ty, |0 1 0.3 0.7 = xP
t, 0.3 0.7 0.24 0.76 | =xP2
t, |0.24 0.76  |0.252  0.748 |= xP3
t; |0.252  0.748 |0.2496  0.7504 |=_xP*
t - = xp®
Pt(dl) - Pt-l(dl) s 'D11 + Pt-l(dZ) W P21
P(d;) = P.4(dy) = Py + P 1(d3) = Py eL
Computing PageRank: Power Example
[
Xy X3
P.(d,) P.(d,)
P,, = 0.3 0.9
Py = -
0.7 .
ty, |0 1 0.3 0.7 = xP
t, 0.3 0.7 0.24 0.76  |=xP?
t, |0.24 0.76  |0.252  0.748 |= xP3
t; |0.252  0.748 |0.2496  0.7504 |=.xP*
t - = xp®
Pt(dl) - Pt-l(dl) 2 Pll + Pt-l(dZ) g P21
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Qompuﬁng PageRank: Power Example

X4 X5
P.(d,) P.(d>)
P,; =0.1 Py, =
P,, = 0.3 0.9
Py, = -
0.7 -
t, | O 1 0.3 0.7 =_xP
t; 0.3 0.7 0.24 0.76 = _XxP?
t, 10.24 0.76 0.252 0.748 = xP3
t; 10.252 0.748 0.2496 0.7504 |=_xP?4
tPt(%1%5= P t-1(9f17)5* P14 = xP”

+ Py(dy) « Py
Pt(dz) = Pt-l(dl) x Py + Pt-1(dz) *« Py,

Qompuﬁng PageRank: Power Example

X1 X3
P(d,) P(d,)
P,y =0.1 Py, =
P,, = 0.3 0.9
Py, = -
0.7 "
t, |10 1 0.3 0.7 =_xP
t; 0.3 0.7 0.24 0.76 = _XxP?
t, 10.24 0.76 0.252 0.748 = xP3
t; 10.252 0.748 0.2496 0.7504 |=_xP4
tPt(%lz)5= Pt-l(%17)5* P14 9-'2F5t_1(d2) 9 251 = xP”

P(d,) = P1(dy) « P1y + Pry(dy) * Py
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Qompuﬁng PageRank: Power Example

X1 X3
P.(d,) P.(d>)
P;,; =0.1 Py, =
P,, =0.3 0.9
Py, = -
0.7 -
ty | O 1 0.3 0.7 =XP
t; |0.3 0.7 0.24 0.76 = _XxP?
t, [0.24 0.76 0.252 0.748 = xP3
t; | 0.252 0.748 0.2496 0.7504 |=_xP?4
t. 0.25 0.75 0.25 0.75 = XP®

65

P[ower method: Example

= What is the PageRank / steady state in this example?

0.9
Fl@=——@|3

= The steady state distribution (= the PageRanks) in this

example are 0.25 for d, and 0.75 for d,.

33



PlageRank summary

= Preprocessing
= Given graph of links, build matrix P
= Apply teleportation
* From modified matrix, compute
= 7, is the PageRank of page i.
= Query processing
= Retrieve pages satisfying the query
= Rank them by their PageRank
= Return reranked list to the user

67

P[ageRank issues

= Real surfers are not random surfers.

= Examples of nonrandom surfing: back button, bookmarks,
directories, tabs, search, interruptions

= - Markov model is not a good model of surfing.
= Butit’s good enough as a model for our purposes.
= Simple PageRank ranking produces bad results for many pages.

34



I-llow important is PageRank?

= Frequent claim: PageRank is the most important component of
Google’s web ranking

= The reality:

= There are several components that are at least as important: e.g.,
anchor text, phrases, proximity, tiered indexes ...

= Rumor has it that PageRank in his original form (as presented here)
now has a negligible impact on ranking!

= However, variants of a page’s PageRank are still an essential part of
ranking.

= Adressing link spam is difficult and crucial.

69

Break
[

= Today’s colloguium is relevant to the
current material

11/11/11 CSCI 5417 - IR 70

35



Machine Learning for ad hoc IR
[ ]

» We've looked at methods for ranking documents in
IR using factors like
= Cosine similarity, inverse document frequency, pivoted

document length normalization, Pagerank, etc.

= We've looked at methods for classifying
documents using supervised machine learning
classifiers
= Naive Bayes, kNN, SVMs

= Surely we can also use such machine learning to
rank the documents displayed in search results?

111111 CSCI 5417 - IR 7

Why is There a Need for ML?
[

l

= Traditional ranking functions in IR used a very
small number of features

= Term frequency
» Inverse document frequency
= Document length

= It was easy to tune weighting coefficients by
hand

= And people did

» But you saw how “easy” it was on HW1

11/11/11 CSCI 5417 - IR 72
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Why is There a Need for ML
[

» Modern systems - especially on the Web - use a
large number of features:
» Log frequency of query word in anchor text

Query term proximity

Query word in color on page?

# of images on page

# of (out) links on page

PageRank of page?

URL length?

URL contains “~"?

Page edit recency?
= Page length?

= The New York Times (2008-06-03) quoted Amit
Singhal as saying Google was using over 200 such

features.
11/11/11 CSCI 5417 - IR 73

Using ML for ad hoc IR
[

= Well classification seems like a good place
to start

» Take an object and put it in a class
« With some confidence

= What do we have to work with in terms of

training data?

= Documents
= Queries
» Relevance judgements

11/11/11 CSCI 5417 - IR 74




Using Classification for ad hoc IR
[

= Collect a training corpus of (g, d, r) triples
» Relevance r is here binary

» Documents are represented by a feature vector
» Say 2 features just to keep it simple
= Cosine sim score between doc and query
=« Note this hides a bunch of “features” inside the
cosine (tf, idf, etc.)
= Minimum window size around query words in the doc
= Train a machine learning model to predict the
class r of each document-query pair
» Where class is relevant/non-relevant

= Then use classifier confidence to generate a
11/11/ﬁanking CSCI 5417 - IR 75

Training data
[

example docID query cosine score w j|udgment
D 37 linux operating system 0.032 3 relevant

D, 37 penguin logo 0.02 4 nonrelevant
P3 238 operating system 0.043 2 relevant

Dy 238 runtime environment 0.004 2 nonrelevant
D5 1741 kernel layer 0.022 3 relevant

Dy 2094 device driver 0.03 2 relevant

Dy 3191 device driver 0.027 5 nonrelevant

11/11/11 CSCI 5417 - IR 76
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Using classification for ad hoc IR
[

= A linear scoring function on these two
features is then

Score(d, g) = Score(a, w) = aa + bw + ¢
= And the linear classifier is
Decide relevant if Score(d, g) > 6

= ... just like when we were doing text
classification

111111 CSCI 5417 - IR

7

Using classification for ad hoc IR
[

0.05
3
g R R Decision surface
@ R R N
g R
3 R R
o -
Q
0.025 R 7 N N
' R .~ R
N
R N N
N N
N N
0
2 3 4 5
11/11/11 Term proximity wCsCl 5417 - IR
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More Complex Cases
[

= We can generalize this to classifier functions

over more features

= We can use any method we have for learning

the linear classifier weights

111111 CSCI 5417 - IR
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An SVM Classifier for IR [nallapati 2004]
I

= Experiments:
» 4 TREC data sets

= Comparisons done with Lemur, another state-

of-the-art open source IR engine (LM)

» Linear kernel normally best or almost as good

as quadratic kernel

= 6 features, all variants of tf, idf, and tf.idf
scores

11/11/11 CSCI 5417 - IR

80
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An SVM Classifier for IR [Nallapati 2004]
I

Disk 3 LM 0.1785 0.2503  0.2666

SVM 0.1728  0.2432  0.2750

Disk 4-5 LM 0.1773 0.2516  0.2656

SVM 0.1646  0.2355  0.2675

= At best, the results are about equal to
LM

= Actually a little bit below

111111 CSCI 5417 - IR 81

An SVM Classifier for IR [nallapati 2004]
I

» Paper’s advertisement: Easy to add
more features

» Especially for specialized tasks

» Homepage finding task on WT10G:

» Baseline LM 52% success@10, baseline SVM
58%

» SVM with URL-depth, and in-link features:
78% S@10

11/11/11 CSCI 5417 - IR 82
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Problem
[

= The ranking in this approach is based on
the classifier's confidence in its judgment
= It's not clear that that should directly
determine a ranking between two
documents
» That is, it gives a ranking of confidence not
a ranking of relevance
» Maybe they correlate, maybe not

111111 CSCI 5417 - IR 83

Learning to Rank
[

= Maybe classification isn’t the right way to
think about approaching ad hoc IR via ML

= Background ML
= Classification problems
« Map to a discrete unordered set of classes
= Regression problems
» Map to a real value
= Ordinal regression problems
« Map to an ordered set of classes

11/11/11 CSCI 5417 - IR 84
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Learning to Rank
[

= Assume documents can be totally ordered by
relevance given a query
= These are totally ordered: d; < d, < ... < d
= This is the ordinal regression setup

= Assume training data is available consisting of
document-query pairs represented as feature
vectors y; and a relevance ranking between them

= Such an ordering can be cast as a set of pair-wise
judgements, where the input is a pair of results
for a single query, and the class is the relevance
ordering relationship between them

111111 CSCI 5417 - IR 85

Learning to Rank
[

l

= But assuming a total ordering across all docs is a lot
to expect
= Think of all the training data

= So instead assume a smaller number of categories
C of relevance exist
= These are totally ordered: ¢; < ¢, < ... < g

« Definitely rel, relevant, partially, not relevant, really
really not relevant... Etc.

« Indifferent to differences within a category
= Assume training data is available consisting of
document-query pairs represented as feature
vectors y; and relevance ranking based on the
categories C

11/11/11 CSCI 5417 - IR 86
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Experiments
Based on the LETOR test collection (Cao et al)
I

= An openly available standard test collection with
pregenerated features, baselines, and research
results for learning to rank
= OHSUMED, MEDLINE subcollection for IR

350,000 articles

106 queries

16,140 query-document pairs

3 class judgments: Definitely relevant (DR), Partially
Relevant (PR), Non-Relevant (NR)
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Experiments
[

= OHSUMED (from LETOR)
s Features:

» 6 that represent versions of tf, idf, and tf.idf
factors
= BM25 score (IIR sec. 11.4.3)

» A scoring function derived from a probabilistic
approach to IR, which has traditionally done well in
TREC evaluations, etc.
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|Experimental Results (OHSUMED)

0.60
0.55 @ BM25
0.50 B LMIR
0.45 O Ranking SVM
0.40 )
O ODIR-Rank

0.35
0.30 B ODIR-Query
0.25 O ODIR-QP
0.20 B ODIR-GD
0.15

MAP NDCG@1 NDCG@3 NDCG@5

MSN Search
[

= Second experiment with MSN search
= Collection of 2198 queries
= 6 relevance levels rated:

= Definitive 8990
= Excellent 4403
= Good 3735
» Fair 20463
= Bad 36375

Detrimental 310

11/11/11 CSCI 5417 - IR 90

45



Experimental Results (MSN search)
[

D BM25

B Ranking SVM
0O ODIR-Rank
0O ODIR-Query
B ODIR-QP

D ODIR-GD

MAP NDCG@1 NDCG@3 NDCG@5

Limitations of Machine Learning
[

= Everything that we have looked at (and most work in
this area) produces linear models of features by

weighting different base features

» This contrasts with most of the clever ideas of
traditional IR, which are nonlinear scalings and

combinations of basic measurements

» log term frequency, idf, pivoted length normalization
= At present, ML is good at weighting features, but not

at coming up with nonlinear scalings

= Designing the basic features that give good signals for
ranking remains the domain of human creativity

11/11/11 CSCI 5417 - IR

92

46



Summary
[

= Machine learned ranking over many features now
easily beats traditional hand-designed ranking
functions in comparative evaluations

= And there is every reason to think that the
importance of machine learning in IR will only
increase in the future.
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