
1

CSCI 5417
Information Retrieval Systems

Jim Martin!

Lecture 19
11/1/2011

Today

  Crawling
  Start on link-based ranking

2

11/11/11 CSCI 5417 - IR 3

Updated crawling picture

URLs crawled
and parsed

Unseen Web

Seed
Pages

URL frontier

Crawling thread

11/11/11 CSCI 5417 - IR 4

URL frontier

  URL frontier contains URLs that have
been discovered but have not yet been
explored (retrieved and analyzed for
content and more URLs)
  Can include multiple URLs from the same

host
  Must avoid trying to fetch them all at the

same time
  Even from different crawling threads

  Must try to keep all crawling threads busy

3

11/11/11 CSCI 5417 - IR 5

Robots.txt

  Protocol for giving spiders (“robots”)
limited access to a website, originally
from 1994

  Website announces its request on
what can(not) be crawled
  For a URL, create a file URL/
robots.txt

  This file specifies access restrictions

11/11/11 CSCI 5417 - IR 6

Robots.txt example

  No robot should visit any URL starting with
"/yoursite/temp/", except the robot called
“searchengine":

User-agent: *
Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

4

11/11/11 CSCI 5417 - IR 7

Processing steps in crawling

  Pick a URL from the frontier
  Fetch the document at the URL
  Parse the document

  Extract links from it to other docs (URLs)
  Check if document has content already

seen
  If not, add to indexes

  For each extracted URL
  Ensure it passes certain URL filter tests
  Check if it is already in the frontier

(duplicate URL elimination)

E.g., only crawl .edu,
obey robots.txt, etc.

Which one?

11/11/11 CSCI 5417 - IR 8

Basic crawl architecture

WWW

Fetch

DNS

Parse

Content
seen?

Doc
FP’s

Dup
URL
elim

URL
set

URL Frontier

URL
filter

robots
filters

5

11/11/11 CSCI 5417 - IR 9

DNS (Domain Name Server)

  A lookup service on the internet
  Given a URL, retrieve its IP address
  Service provided by a distributed set of

servers – thus, lookup latencies can be high
(even seconds)

  Common implementations of DNS lookup
are blocking: only one outstanding request
at a time

  Solutions
  DNS caching
  Batch DNS resolver – collects requests and

sends them out together

11/11/11 CSCI 5417 - IR 10

Parsing: URL normalization

  When a fetched document is parsed, some of the
extracted links are relative URLs
  en.wikipedia.org/wiki/Main_Page has a relative link to
 /wiki/Wikipedia:General_disclaimer which is the
same as the absolute URL
en.wikipedia.org/wiki/Wikipedia:General_disclaimer

  Must expand such relative URLs

  URL shorteners (bit.ly, etc) are a new problem

6

11/11/11 CSCI 5417 - IR 11

Content seen?

  Duplication is widespread on the web

  If the page just fetched is already in the index,
do not further process it

  This is verified using document fingerprints or
shingles

11/11/11 CSCI 5417 - IR 12

Filters and robots.txt

  Filters – regular expressions for URL’s
to be crawled/not

  Once a robots.txt file is fetched from a
site, need not fetch it repeatedly
  Doing so burns bandwidth, hits web

server
  Cache robots.txt files

7

11/11/11 CSCI 5417 - IR 13

Duplicate URL elimination

  Check to see if an extracted+filtered
URL has already been put into to the
URL frontier
  This may or may not be needed based on

the crawling architecture

11/11/11 CSCI 5417 - IR 14

Distributing the crawler

  Run multiple crawl threads, under
different processes – potentially at
different nodes
  Geographically distributed nodes

  Partition hosts being crawled into
nodes

8

Overview: Frontier

11/11/11 CSCI 5417 - IR 15

URL Frontier (discovered,
but not yet crawled sites)

Crawler threads request URLs
to crawl

Crawlers provide discovered URLs
(subject to filtering)

11/11/11 CSCI 5417 - IR 16

URL frontier: two main considerations

  Politeness: do not hit a web server too
frequently

  Freshness: crawl some sites/pages more
often than others
  E.g., pages (such as News sites) whose

content changes often
These goals may conflict each other.

9

11/11/11 CSCI 5417 - IR 17

Politeness – challenges

  Even if we restrict only one thread to
fetch from a host, it can hit it
repeatedly

  Common heuristic: insert time gap
between successive requests to a host
that is >> time for most recent fetch
from that host

Overview: Frontier

11/11/11 CSCI 5417 - IR 18

URL Frontier (discovered,
but not yet crawled sites)

Crawler threads request URLs
to crawl

Crawlers provide discovered URLs
(subject to filtering)

10

Back queue selector

B back queues:
Unexplored URLs from a single host on each

Crawl thread requesting URL

URL Frontier: Mercator scheme

Biased front queue selector
Back queue router

Prioritizer

K front queues

URLs

Sec. 20.2.3

Mercator URL frontier

  URLs flow in from the top into the
frontier

  Front queues manage prioritization
  Back queues enforce politeness
  Each queue is FIFO

Sec. 20.2.3

11

11/11/11 CSCI 5417 - IR 21

Explicit and implicit politeness

  Explicit politeness: specifications from
webmasters on what portions of site
can be crawled
  robots.txt

  Implicit politeness: even with no
specification, avoid hitting any site too
often

Front queues

  Prioritizer assigns each URL an
integer priority between 1 and K
  Appends URL to corresponding queue

  Heuristics for assigning priority
  Refresh rate sampled from previous

crawls
  Application-specific (e.g., “crawl news

sites more often”)

Sec. 20.2.3

12

Front queues

Prioritizer

1 K

Biased front queue selector
Back queue router

Sec. 20.2.3

Biased front queue selector

  When a back queue requests URLs
(in a sequence to be described):
picks a front queue from which to
pull a URL

  This choice can be round robin biased
to queues of higher priority, or some
more sophisticated variant

Sec. 20.2.3

13

Back queues

Biased front queue selector
Back queue router

Back queue selector

1 B

Heap

Sec. 20.2.3

Back queue invariants

  Each back queue is kept non-empty
while the crawl is in progress

  Each back queue only contains URLs
from a single host
  Maintain a table from hosts to back

queues

Sec. 20.2.3

14

Back queue heap

  One entry for each back queue
  The entry is the earliest time te at

which the host corresponding to the
back queue can be hit again

  This earliest time is determined from
  Last access to that host
  Any time heuristic we choose

Sec. 20.2.3

Back queue processing

  A crawler thread seeking a URL to crawl:
  Extracts the root of the heap
  Fetches URL at head of corresponding back

queue q (look up from table)
  Checks if queue q is now empty – if so, pulls a

URL v from front queues
  If there’s already a back queue for v’s host,

append v to q and pull another URL from front
queues, repeat

  Else add v to q

  When q is non-empty, create heap entry for it

Sec. 20.2.3

15

11/11/11 CSCI 5417 - IR 29

Back Queue Management

  Each back queue corresponds to a given
host

  When a crawler thread wants a URL to
process we want to get it from the host
that has been bothered least recently

  So we need a way to quickly get at the
least recently visited host and a way to
update that structure as hosts are added,
deleted, and accessed
  Hence the heap

11/11/11 CSCI 5417 - IR 30

Back Queue Management

  When a thread retrieves the last URL from
a back queue it has to do additional work

  It visits the front queues based on the
priority scheme and retrieves a URL
  If it is a URL from a host that is already

assigned to a back queue then it adds that
URL to the right queue AND returns to the
front queue for another

  If it corresponds to a host not currently in
the back queues then it adds it to the queue
that it had emptied

16

11/11/11 CSCI 5417 - IR 31

Missing From the Pictures

  We better be indexing the documents. Not
just storing the URLs
  If we’re caching ala google then we need to

store the docs as well.

  And we had better be constructing a
connectivity graph as we go along
  To facilitate what we’re going to do next

Break

  Nearly done with readings from the book.
Current material is from Chapter 20 and 21.

  Then we’re going back to Ch. 15; Section
15.4

  To support the material in Ch 15 I’m going to
add some videos from the Stanford ML class.
Basically 2 or 3 days worth

  And I’ll post the reading for the Topic Models
stuff.

11/11/11 CSCI 5417 - IR 32

17

Break

  For those of you who want to get started
  Go to ml-class.org

  Video Lectures
  Watch the videos in Sections II, IV and VI

  Basically equiv to 3 of our classes

11/11/11 CSCI 5417 - IR 33

11/11/11 CSCI 5417 - IR 34

The Web as a Directed Graph

Assumption 1: A hyperlink between pages denotes
 author perceived relevance (quality signal)

Assumption 2: The anchor text of a hyperlink
 describes the target page (textual context)

Page A
hyperlink Page B Anchor

18

11/11/11 CSCI 5417 - IR 35

Anchor Text

  For a query like tesla we would like it to return the
Tesla home page first. But...
  Tesla’s home page is mostly graphical (I.e., low term

count)
  So use anchor text to augment

www.teslamotors.com

“tesla roadster” “teslamotors.com” “Tesla info

A million pieces of
anchor text with “ibm”
send a strong signal

11/11/11 CSCI 5417 - IR 36

Indexing Anchor Text

  Can sometimes have unexpected side
effects - e.g., french military spoof

  Can index anchor text with less (or more)
weight
  Globally across all incoming links
  Or as a function of the quality of the page

the link is coming from

19

11/11/11 CSCI 5417 - IR 37

Traditional Citation Analysis

  Citation frequency
  Citation impact ratings (of journals and

authors)
  Used in tenure decisions

  Bibliographic coupling frequency
  Articles that co-cite the same articles are

related

  Citation indexing
  Who is author cited by? (Garfield [Garf72])

11/11/11 CSCI 5417 - IR 38

Web Link-Based Versions

  Two methods based on citation analysis
literature

  PageRank
  Page and Brin -> Google

  HITs
  Kleinberg

20

11/11/11 CSCI 5417 - IR 39

PageRank Sketch

  The pagerank of a page is based on the
pagerank of the pages that point at it.
  Roughly

€

Pr(P) =
Pr(in)
V (in)in∈P

∑

11/11/11 CSCI 5417 - IR 40

PageRank scoring

  Imagine a browser doing a random walk on
web pages:
  Start at a random page
  At each step, go out of the current page

along one of the links on that page,
equiprobably

  “In the steady state” each page has a
long-term visit rate - use this as the page’s
score
  Pages with low rank are pages rarely visited

during a random walk

1/3
1/3
1/3

21

11/11/11 CSCI 5417 - IR 41

Not quite enough

  The web is full of dead-ends. Pages that
are pointed to but have no outgoing links
  Random walk can get stuck in such dead-

ends
  Makes no sense to talk about long-term visit

rates in the presence of dead-ends.

??

11/11/11 CSCI 5417 - IR 42

Teleporting

  At a dead end, jump to a random web page
  At any non-dead end, with probability 10%,

jump to a random web page
  With remaining probability (90%), go out on

a random link.
  10% - a parameter (call it alpha)

22

11/11/11 CSCI 5417 - IR 43

Result of teleporting

  Now you can’t get stuck locally.
  There is a long-term rate at which any

page is visited
  How do we compute this visit rate?

  Can’t directly use the random walk
metaphor

State Transition Probabilities

We’re going to use the notion of a transition
probability. If we’re in some particular
state, what is the probability of going to
some other particular
 state from there.

If there are n states (pages)
then we need an n x n table
of probabilities.

11/11/11 CSCI 5417 - IR 44

23

Markov Chains

  So if I’m in a particular state (say the start
of a random walk)

  And I know the whole n x n table
  Then I can compute the probability

distribution over all the next states I might
be in in the next step of the walk...

  And in the step after that
  And the step after that

11/11/11 CSCI 5417 - IR 45

  Say alpha = .5

Example

11/11/11 CSCI 5417 - IR 46

1

3

2

24

  Say alpha = .5

Example

11/11/11 CSCI 5417 - IR 47

1

3

2

?

P(32)

  Say alpha = .5

Example

11/11/11 CSCI 5417 - IR 48

1

3

2

2/3

P(32)

25

  Say alpha = .5

Example

11/11/11 CSCI 5417 - IR 49

1

3

2

1/6 2/3 1/6

P(3*)

  Say alpha = .5

Example

11/11/11 CSCI 5417 - IR 50

1

3

2

1/6 2/3 1/6

5/12 1/6 5/12

1/6 2/3 1/6

26

  Say alpha = .5

Example

11/11/11 CSCI 5417 - IR 51

1

3

2

1/6 2/3 1/6

5/12 1/6 5/12

1/6 2/3 1/6

Assume we start a walk in
1 at time T0. Then what
should we believe about
the state of affairs in T1?

What should we believe
about things at T2?

Example

11/11/11 CSCI 5417 - IR 52

PageRank values

27

11/11/11 CSCI 5417 - IR 53

Pagerank summary

  Preprocessing:
  Given graph of links, build matrix P.
  From it compute the page rank for each

page.

  Query processing:
  Retrieve pages meeting query using the

usual methods we’ve discussed
  Rank them by their pagerank
  Order is query-independent

