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CSCI 5417 
Information Retrieval Systems 

Jim Martin!

Lecture 19 
11/1/2011 

Today 

  Crawling 
  Start on link-based ranking 
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Updated crawling picture 

URLs crawled 
and parsed 

Unseen Web 

Seed 
Pages 

URL frontier 

Crawling thread 
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URL frontier 

  URL frontier contains URLs that have 
been discovered but have not yet been 
explored (retrieved and analyzed for 
content and more URLs) 
  Can include multiple URLs from the same 

host 
  Must avoid trying to fetch them all at the 

same time 
  Even from different crawling threads 

  Must try to keep all crawling threads busy 
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Robots.txt 

  Protocol for giving spiders (“robots”) 
limited access to a website, originally 
from 1994 

  Website announces its request on 
what can(not) be crawled 
  For a URL, create a file URL/
robots.txt 

  This file specifies access restrictions 
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Robots.txt example 

  No robot should visit any URL starting with 
"/yoursite/temp/", except the robot called 
“searchengine":  

User-agent: * 
Disallow: /yoursite/temp/  

User-agent: searchengine 

Disallow:  
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Processing steps in crawling 

  Pick a URL from the frontier 
  Fetch the document at the URL 
  Parse the document 

  Extract links from it to other docs (URLs) 
  Check if document has content already 

seen 
  If not, add to indexes 

  For each extracted URL 
  Ensure it passes certain URL filter tests 
  Check if it is already in the frontier 

(duplicate URL elimination) 

E.g., only crawl .edu, 
obey robots.txt, etc. 

Which one? 
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Basic crawl architecture 
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URL 
filter 

robots 
filters 
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DNS (Domain Name Server) 

  A lookup service on the internet 
  Given a URL, retrieve its IP address 
  Service provided by a distributed set of 

servers – thus, lookup latencies can be high 
(even seconds) 

  Common implementations of DNS lookup 
are blocking: only one outstanding request 
at a time 

  Solutions 
  DNS caching 
  Batch DNS resolver – collects requests and 

sends them out together 
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Parsing: URL normalization 

  When a fetched document is parsed, some of the 
extracted links are relative URLs 
  en.wikipedia.org/wiki/Main_Page has a relative link to  
 /wiki/Wikipedia:General_disclaimer which is the 
same as the absolute URL 
en.wikipedia.org/wiki/Wikipedia:General_disclaimer 

  Must expand such relative URLs 

  URL shorteners (bit.ly, etc) are a new problem 
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Content seen? 

  Duplication is widespread on the web 

  If the page just fetched is already in the index, 
do not further process it 

  This is verified using document fingerprints or 
shingles 
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Filters and robots.txt  

  Filters – regular expressions for URL’s 
to be crawled/not 

  Once a robots.txt file is fetched from a 
site, need not fetch it repeatedly 
  Doing so burns bandwidth, hits web 

server 
  Cache robots.txt files 
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Duplicate URL elimination 

  Check to see if an extracted+filtered 
URL has already been put into to the 
URL frontier 
  This may or may not be needed based on 

the crawling architecture 
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Distributing the crawler 

  Run multiple crawl threads, under 
different processes – potentially at 
different nodes 
  Geographically distributed nodes 

  Partition hosts being crawled into 
nodes 
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Overview: Frontier 
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URL Frontier (discovered, 
but not yet crawled sites) 

Crawler threads request URLs 
to crawl 

Crawlers provide discovered URLs 
(subject to filtering) 
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URL frontier: two main considerations 

  Politeness: do not hit a web server too 
frequently 

  Freshness: crawl some sites/pages more 
often than others 
  E.g., pages (such as News sites) whose 

content changes often 
These goals may conflict each other. 
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Politeness – challenges 

  Even if we restrict only one thread to 
fetch from a host, it can hit it 
repeatedly 

  Common heuristic: insert time gap 
between successive requests to a host 
that is >> time for most recent fetch 
from that host 

Overview: Frontier 
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URL Frontier (discovered, 
but not yet crawled sites) 

Crawler threads request URLs 
to crawl 

Crawlers provide discovered URLs 
(subject to filtering) 
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Back queue selector 

B back queues: 
Unexplored URLs from a single host on each 

Crawl thread requesting URL 

URL Frontier: Mercator scheme 

Biased front queue selector 
Back queue router 

Prioritizer 

K front queues 

URLs 

Sec. 20.2.3 

Mercator URL frontier 

  URLs flow in from the top into the 
frontier 

  Front queues manage prioritization 
  Back queues enforce politeness 
  Each queue is FIFO 

Sec. 20.2.3 
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Explicit and implicit politeness 

  Explicit politeness: specifications from 
webmasters on what portions of site 
can be crawled 
  robots.txt 

  Implicit politeness: even with no 
specification, avoid hitting any site too 
often 

Front queues 

  Prioritizer assigns each URL an 
integer priority between 1 and K 
  Appends URL to corresponding queue 

  Heuristics for assigning priority 
  Refresh rate sampled from previous 

crawls 
  Application-specific (e.g., “crawl news 

sites more often”) 

Sec. 20.2.3 
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Front queues 

Prioritizer 

1 K 

Biased front queue selector 
Back queue router 

Sec. 20.2.3 

Biased front queue selector 

  When a back queue requests URLs 
(in a sequence to be described): 
picks a front queue from which to 
pull a URL 

  This choice can be round robin biased 
to queues of higher priority, or some 
more sophisticated variant 

Sec. 20.2.3 
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Back queues 

Biased front queue selector 
Back queue router 

Back queue selector 

1 B 

Heap 

Sec. 20.2.3 

Back queue invariants 

  Each back queue is kept non-empty 
while the crawl is in progress 

  Each back queue only contains URLs 
from a single host 
  Maintain a table from hosts to back 

queues 

Sec. 20.2.3 
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Back queue heap 

  One entry for each back queue 
  The entry is the earliest time te at 

which the host corresponding to the 
back queue can be hit again 

  This earliest time is determined from 
  Last access to that host 
  Any time heuristic we choose 

Sec. 20.2.3 

Back queue processing 

  A crawler thread seeking a URL to crawl: 
  Extracts the root of the heap 
  Fetches URL at head of corresponding back 

queue q (look up from table) 
  Checks if queue q is now empty – if so, pulls a 

URL v from front queues 
  If there’s already a back queue for v’s host, 

append v to q and pull another URL from front 
queues, repeat 

  Else add v to q 

  When q is non-empty, create heap entry for it 

Sec. 20.2.3 
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Back Queue Management 

  Each back queue corresponds to a given 
host 

  When a crawler thread wants a URL to 
process we want to get it from the host 
that has been bothered least recently 

  So we need a way to quickly get at the 
least recently visited host and a way to 
update that structure as hosts are added, 
deleted, and accessed  
  Hence the heap  
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Back Queue Management 

  When a thread retrieves the last URL from 
a back queue it has to do additional work 

  It visits the front queues based on the 
priority scheme and retrieves a URL 
  If it is a URL from a host that is already 

assigned to a back queue then it adds that 
URL to the right queue AND returns to the 
front queue for another 

  If it corresponds to a host not currently in 
the back queues then it adds it to the queue 
that it had emptied 
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Missing From the Pictures 

  We better be indexing the documents. Not 
just storing the URLs 
  If we’re caching ala google then we need to 

store the docs as well. 

  And we had better be constructing a 
connectivity graph as we go along 
  To facilitate what we’re going to do next 

Break 

  Nearly done with readings from the book. 
Current material is from Chapter 20 and 21. 

  Then we’re going back to Ch. 15; Section 
15.4 

  To support the material in Ch 15 I’m going to 
add some videos from the Stanford ML class.  
Basically 2 or 3 days worth 

  And I’ll post the reading for the Topic Models 
stuff. 
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Break 

  For those of you who want to get started 
  Go to ml-class.org 

  Video Lectures 
  Watch the videos in Sections II, IV and VI 

  Basically equiv to 3 of our classes 
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The Web as a Directed Graph 

Assumption 1: A hyperlink between pages denotes  
      author perceived relevance (quality signal) 

Assumption 2: The anchor text of a hyperlink   
 describes the target page (textual context) 

Page A 
hyperlink Page B Anchor 
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Anchor Text 

  For a query like tesla we would like it to return the 
Tesla home page first. But... 
  Tesla’s home page is mostly graphical (I.e., low term 

count) 
  So use anchor text to augment 

www.teslamotors.com 

“tesla roadster”  “teslamotors.com” “Tesla info 

A million pieces of 
anchor text with “ibm” 
send a strong signal 
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Indexing Anchor Text 

  Can sometimes have unexpected side 
effects - e.g., french military spoof 

  Can index anchor text with less (or more) 
weight 
  Globally across all incoming links 
  Or as a function of the quality of the page 

the link is coming from 
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Traditional Citation Analysis 

  Citation frequency 
  Citation impact ratings (of journals and 

authors) 
  Used in tenure decisions 

  Bibliographic coupling frequency 
  Articles that co-cite the same articles are 

related  

  Citation indexing 
  Who is author cited by? (Garfield [Garf72]) 
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Web Link-Based Versions 

  Two methods based on citation analysis 
literature 

  PageRank 
  Page and Brin -> Google 

  HITs 
  Kleinberg 
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PageRank Sketch 

  The pagerank of a page is based on the 
pagerank of the pages that point at it. 
  Roughly 

€ 

Pr(P) =
Pr(in)
V (in)in∈P

∑
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PageRank scoring 

  Imagine a browser doing a random walk on 
web pages: 
  Start at a random page 
  At each step, go out of the current page 

along one of the links on that page, 
equiprobably 

  “In the steady state” each page has a 
long-term visit rate - use this as the page’s 
score 
  Pages with low rank are pages rarely visited 

during a random walk 

1/3 
1/3 
1/3 
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Not quite enough 

  The web is full of dead-ends. Pages that 
are pointed to but have no outgoing links 
  Random walk can get stuck in such dead-

ends 
  Makes no sense to talk about long-term visit 

rates in the presence of dead-ends. 

?? 
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Teleporting 

  At a dead end, jump to a random web page 
  At any non-dead end, with probability 10%, 

jump to a random web page 
  With remaining probability (90%), go out on 

a random link. 
  10% - a parameter (call it alpha) 
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Result of teleporting 

  Now you can’t get stuck locally. 
  There is a long-term rate at which any 

page is visited  
  How do we compute this visit rate? 

  Can’t directly use the random walk 
metaphor 

State Transition Probabilities 

We’re going to use the notion of a transition 
probability. If we’re in some particular 
state, what is the probability of going to 
some other particular 
 state from there. 

If there are n states (pages) 
then we need an n x n table 
of probabilities.  
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Markov Chains 

  So if I’m in a particular state (say the start 
of a random walk) 

  And I know the whole n x n table 
  Then I can compute the probability 

distribution over all the next states I might 
be in in the next step of the walk... 

  And in the step after that  
  And the step after that 
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  Say alpha = .5 

Example 
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1 

3 

2 
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  Say alpha = .5 

Example 
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1 

3 

2 

? 

P(32) 

  Say alpha = .5 

Example 
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1 

3 

2 

2/3 

P(32) 
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  Say alpha = .5 

Example 
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1 

3 

2 

1/6 2/3 1/6 

P(3*) 

  Say alpha = .5 

Example 
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1 

3 

2 

1/6 2/3 1/6 

5/12 1/6 5/12 

1/6 2/3 1/6 
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  Say alpha = .5 

Example 
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1 

3 

2 

1/6 2/3 1/6 

5/12 1/6 5/12 

1/6 2/3 1/6 

Assume we start a walk in 
1 at time T0. Then what 
should we believe about 
the state of affairs in T1? 

What should we believe 
about things at T2? 

Example 
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PageRank values 
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Pagerank summary 

  Preprocessing: 
  Given graph of links, build matrix P. 
  From it compute the page rank for each 

page. 

  Query processing: 
  Retrieve pages meeting query using the 

usual methods we’ve discussed 
  Rank them by their pagerank 
  Order is query-independent 


