CSCI 5417
Information Retrieval Systems

Jim Martin

Lecture 18
10/27/2011

Today
[

s Start on web search

Brief History of Web Search

l

» Early keyword-based engines
» Altavista, Excite, Infoseek, Inktomi, Lycos ca.
1995-1997

= Sponsored search ranking:

« WWWW (1994) (Colorado/McBryan) ->
Goto.com (morphed into Overture.com —
Yahoo! - ??7?)

» Your search ranking depended on how much
you paid

» Auction for keywords: casino was an

expensive keyword!
11/11/11 CSCI 5417 - IR 3

Brief history
[

» 1998+: Link-based ranking introduced by Google
= Perception was that it represented a fundamental
improvement over existing systems
= Great user experience in search of a business model
= Meanwhile Goto/Overture’s annual revenues were
nearing $1 billion
= Google adds paid-placement “ads” to the side,
distinct from search results
= 2003: Yahoo follows suit
= acquires Overture (for paid placement)
« and Inktomi (for search)

11/11/11 CSCI 5417 - IR 4

Web search basics

L * Web spider\\
Y /=N
/ >
g/

>

The Web

1111111 - -
Indexes Ad indexes

User Needs
[

= Need [Brod02, RL0O4]

= Informational - want to learn about something (~40% /
65%) Low hemoglobin

= Navigational - want to go to that page (~25% / 15%)
United Airlines

= Transactional - want to do something (web-mediated)
(~35% / 20%)

« Access a service Seattle weather
» Downloads Mars surface images
» Shop Canon S410
= Gray areas
= Find a good hub Car rental Brazil

» Exploratory search “see what’s there”

11/11/11 CSCI 5417 - IR 6

How far do people look for
results?

“When you perform a search on a search engine and don't find what you are looking for, at what
point do you typically either revise your search, or move on to another search engine? (Select one)”

W After reviewing the first few
12% 16% entries

M After reviewing the first
page

O After reviewing the first 2
pages

@ After reviewing the first 3
pages

20%

27% B After reviewing more than 3
pages

(Source: iprospect.com WhitePaper_2006_SearchEngineUserBehavior.pdf)
11/11/11 CSCI 5417 - IR 7

Users’ empirical evaluation of
results
[

= Quality of pages varies widely
= Relevance is not enough
= Other desirable qualities

» Content: Trustworthy, diverse, non-duplicated, well
maintained

= Web readability: display correctly & fast
« No annoyances: pop-ups, etc
= Precision vs. recall
= On the web, recall seldom matters

= What matters
= Precision at 1? Precision at k?

» Comprehensiveness — must be able to deal with
obscure queries

» Recall matters when the number of matches is very small

11/11/11 CSCI 5417 - IR 8

Users’ empirical evaluation of

engines
[

= Relevance and validity of results
= UI - Simple, no clutter, error tolerant
= Trust - Results are objective
= Coverage of topics for polysemic queries
= Pre/Post process tools provided
= Mitigate user errors (auto spell check, search assist,...)
= Explicit: Search within results, more like this, refine ...
= Anticipative: related searches, suggest, instant search
= Deal with idiosyncrasies
= Web specific vocabulary
» Impact on stemming, spell-check, etc
= Web addresses typed in the search box

111111

CSCI 5417 - IR 9

The Web as a Document Collection
[

N

-

The Web

11/11/11

No design/co-ordination

Distributed content creation, linking,
democratization of publishing

Content includes truth, lies, obsolete
information, contradictions ...
Unstructured (text, html, ...), semi-
structured (XML, annotated photos),
structured (Databases)...

Scale much larger than previous text
collections ... but corporate records are
catching up

Growth - slowed down from initial
“volume doubling every few months”
but still expanding

Content can be dynamically generated

CSCI 5417 - IR 10

Web search engine pieces

l

= Spider (a.k.a. crawler/robot) - builds corpus
= Collects web pages recursively

« For each known URL, fetch the page, parse it, and extract new
URLs

=« Repeat
= Additional pages from direct submissions & other sources

= The indexer - creates inverted indexes
= Usual issues wrt which words are indexed, capitalization,
support for Unicode, stemming, support for phrases,
language issues, etc.
= Query processor - serves query results

= Front end - query reformulation, word stemming,
capitalization, optimization of Booleans, phrases,
wildcards, spelling, etc.

= Back end - finds matching documents and ranks them

111111 CSCI 5417 - IR 11

Search Engine: Three sub-problems

1. Match ads to query/context IR
2. Generate and Order the ads
3. Pricing on a click-through Econ

= (]

“YREIOO! SEARCH i S

A= ———_——

11/11/11

The trouble with search ads...
[

= They cost real money.

s Search Engine Optimization:

= "Tuning” your web page to rank highly in
the search results for select keywords

» Alternative to paying for placement
» Thus, intrinsically a marketing function

= Performed by companies, webmasters
and consultants (“Search engine
optimizers”) for their clients

= Some perfectly legitimate, some very
shady

111111 CSCI 5417 - IR

Basic crawler operation
[

» Begin with known “seed” pages
= Fetch and parse them
» Extract URLs they point to
» Place the extracted URLs on a queue
» Fetch each URL on the queue and repeat

11/11/11 CSCI 5417 - IR

Crawling picture
[

URLs crawled
and parsed

Unseen Web

Web

111111

Simple picture — complications
[

» Effective Web crawling isn’t feasible with one
machine

= All of the above steps need to be distributed
= Even non-malicious pages pose challenges
= Latency/bandwidth to remote servers vary
= Webmasters’ stipulations
« How “deep” should you crawl a site’s URL hierarchy?
= Site mirrors and duplicate pages
= Malicious pages
= Spam pages
= Spider traps - incl dynamically generated
= Politeness — don't hit a server too often

11/11/11 CSCI 5417 - IR 16

What any crawler must do
[

= Be Polite: Respect implicit and
explicit politeness considerations for
a website

= Only crawl pages you're allowed to
» Respect robots. txt

= Be Robust: Be immune to spider
traps and other malicious behavior
from web servers

111111 CSCI 5417 - IR 17

What any crawler should do
[

= Be capable of distributed operation:
designed to run on multiple
distributed machines

= Be scalable: designed to increase the
crawl rate by adding more machines

» Performance/efficiency: permit full
use of available processing and
network resources

11/11/11 CSCI 5417 - IR 18

What any crawler should do
[

» Fetch important stuff first
» Pages with “higher quality”

= Continuous operation: Continue to fetch
fresh copies of a previously fetched
page

» Extensible: Adapt to new data formats,
protocols, etc.

111111 CSCI 5417 - IR 19

Updated crawling picture
[

URLs crawled j/
and parsed /@i e
‘/ K . Unseen Web

Seed
Pages .

AN

Crawlify§ thread

10

Break
[

= HW 3

» Currently the best F1 scores are
» .3988, .3955, .3918
» Lots of folks bunched between .2 and .25
« Some lower

= Scoring issue

« Some folks didn’t assign tags to all the docs

»« Makes computing an average F1 score
problematic

= What should the denominator be?

111111 CSCI 5417 - IR

21

Break
[

= Come to today’s colloquium

11/11/11 CSCI 5417 - IR

22

11

URL frontier
[

» Can include multiple pages from the
same host

= Must avoid trying to fetch them all at
the same time

= Must try to keep all crawling threads
busy

111111 CSCI 5417 - IR

23

Explicit and implicit politeness
[

= Explicit politeness: specifications from
webmasters on what portions of site
can be crawled

= robots.txt

s Implicit politeness: even with no
specification, avoid hitting any site too
often

11/11/11 CSCI 5417 - IR

24

12

Robots.txt
[

= Protocol for giving spiders (“robots”)
limited access to a website, originally
from 1994

= Website announces its request on
what can(not) be crawled

= For a URL, create a file URL/
robots.txt

» This file specifies access restrictions

111111 CSCI 5417 - IR 25

Robots.txt example
[

= No robot should visit any URL starting with
"/yoursite/temp/", except the robot called
“searchengine":

User—-agent: *
Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

11/11/11 CSCI 5417 - IR 26

13

A Web Document: Three views
[

How it relates to other web texts

= Links to it
= And the anchor texts
= What it links to

The document itself
= Content
= Language
= Structure

'How it relates to your current
index
= Is it already there
111111 = Is the content already there
= Is it the kind of stuff vou care about

Processing steps in crawling
[

= Pick a URL from the frontie@
» Fetch the document at the URL
= Parse the document

» Extract links from it to other docs (URLSs)

» Check if document has content already
seen

» If not, add to indexes E.g., only crawl .edu,
= For each extracted URL obey robots.txt, ete.

» Ensure it passes certain URL filter tests

» Check if it is already in the frontier
(duplicate URL elimination)
11/11/11 CSCI 5417 - IR 28

14

Basic crawl architecture
[

WWWwW

DNS

Fetch

<) N— 1
Doc obots URL
FP’s filters set
N—— e N—
Parse —
Content URL BEE
seen? filter)
elim

111111

URL Frontier

CSCI 5417 - IR

29

Lalsia

DNS (Domain Name Server)
[

l

= A lookup service on the internet
= Given a URL, retrieve its IP address
» Service provided by a distributed set of

servers - thus, lookup latencies can be high
(even seconds)

= Common implementations of DNS lookup
are blocking: only one outstanding request
at a time

= Solutions

» DNS caching

» Batch DNS resolver - collects requests and

11/11/11

sends them out together

CSCI 5417 - IR

30

15

i

l

Parsing: URL normalization
[

= When a fetched document is parsed, some of the
extracted links are relative URLs
« en.wikipedia.org/wiki/Main_Page has a relative link to
which is the

same as the absolute URL
en.wikipedia.org/wiki Wikipedia:General disclaimer

» Must expand such relative URLs
= URL shorteners (bit.ly, etc) are a new problem

31

111111 CSCI 5417 - IR

AN i

l

Content seen?
[

= Duplication is widespread on the web

» If the page just fetched is already in the index,
do not further process it

= This is verified using document fingerprints or
shingles

11/11/11 CSCI 5417 - IR 32

16

Enli

= Filters — regular expressions for URL's
to be crawled/not

= Once a robots.txt file is fetched from a
site, need not fetch it repeatedly

= Doing so burns bandwidth, hits web
server

» Cache robots.txt files

Filters and robots.txt
[

111111 CSCI 5417 - IR 33

Bilais

Duplicate URL elimination
[]

s Check to see if an extracted+filtered
URL has already been passed to the
frontier

11/11/11 CSCI 5417 - IR 34

17

Distributing the crawler
[

= Run multiple crawl threads, under
different processes - potentially at
different nodes

= Geographically distributed nodes

= Partition hosts being crawled into
nodes

111111 CSCI 5417 - IR

35

Overview: Frontier
[

Crawlers provide discovered URLs
(subject to filtering)

l

URL Frontier (discovered,
but not yet crawled sites)

Crawler threads requesting
URLs to crawl

11/11/11 CSCI 5417 - IR

36

18

i

URL frontier: two main considerations

l

» Politeness: do not hit a web server too
frequently

» Freshness: crawl some pages more often
than others

» E.g., pages (such as News sites) whose
content changes often

These goals may conflict each other.

(E.g., simple priority queue fails — many links
out of a page go to its own site, creating a
burst of accesses to that site.)

111111 CSCI 5417 - IR 37

Politeness - challenges
[

= Even if we restrict only one thread to
fetch from a host, can hit it repeatedly
» Common heuristic: insert time gap

between successive requests to a host
that is >> time for most recent fetch

from that host

11/11/11 CSCI 5417 - IR 38

19

URL Frontier: Mercator scheme
[

URILS

Prioritizer
IRERRERR NNy
K front queues

nm

Biased front queue selector
Back queue router

vvvvvvvvvvvv

B back queues:
Unexplored URLs from a single host on each

YYVVVVVVIVVVYY
Back queue selector

Crawl thread r%equesting URL

Mercator URL frontier
[

= URLs flow in from the top into the
frontier

= Front queues manage prioritization
= Back queues enforce politeness
= Each queue is FIFO

20

Front queues
[

]
Prioritizer

Biased front queue selector

Back queue router
!

Front queues
[

» Prioritizer assigns each URL an
integer priority between 1 and K

= Appends URL to corresponding queue
= Heuristics for assigning priority

= Refresh rate sampled from previous
crawls

» Application-specific (e.g., “crawl news
sites more often”)

21

Biased front queue selector
[

= When a back queue requests URLs

(in a sequence to be described):

picks a front queue from which to

pull a URL

s This choice can be round robin biased
to queues of higher priority, or some

more sophisticated variant

Back queues
[

Biased front queue selector
Back queue router

Back queue selector

e
Heap

}

22

Back queue invariants
[

= Each back queue is kept non-empty
while the crawl is in progress

= Each back queue only contains URLs
from a single host

= Maintain a table from hosts to back
queues

Back queue heap
[

= One entry for each back queue

= The entry is the earliest time ¢, at
which the host corresponding to the
back queue can be hit again

m This earliest time is determined from
» Last access to that host
= Any time heuristic we choose

23

Back queue processing
[

» A crawler thread seeking a URL to crawl:
» Extracts the root of the heap

» Fetches URL at head of corresponding back
gueue g (look up from table)

= Checks if queue g is now empty - if so, pulls a
URL v from front queues

» If there’s already a back queue for v’s host,
append v to g and pull another URL from front
gueues, repeat

» Elseadd vto g
= When g is non-empty, create heap entry for it

Number of back queues B
[

» Keep all threads busy while
respecting politeness

s Mercator recommendation: three
times as many back queues as
crawler threads

