CSCI 5417 Information Retrieval Systems

Jim Martin

Lecture 16 10/18/2011

Today

- Review clustering
 - K-means
- Review naïve Bayes
- Unsupervised classification
 - EM
 - Naïve Bayes/EM for text classification
- Topic models model intuition

K-Means

- Assumes documents are real-valued vectors.
- Clusters based on centroids (aka the center of gravity or mean) of points in a cluster, c:

$$\mu(\mathbf{c}) = \frac{1}{|c|} \sum_{\vec{x} \in c} \vec{x}$$

- Iterative reassignment of instances to clusters is based on distance to the current cluster centroids.
 - (Or one can equivalently phrase it in terms of similarities)

11/11/11 CSCI 5417 - IR 3

K-Means Algorithm

Select K random docs $\{s_1, s_2, \dots s_K\}$ as seeds. Until stopping criterion:

For each doc d_i :

Assign d_i to the cluster c_j such that $dist(d_i,\ s_i)$ is minimal.

For each cluster c_j $s_j = m(c_j)$

Termination conditions

- Several possibilities
 - A fixed number of iterations
 - Doc partition unchanged
 - Centroid positions don't change

Convergence

- Why should the K-means algorithm ever reach a fixed point?
 - A state in which clusters don't change.
- K-means is a special case of a general procedure known as the Expectation Maximization (EM) algorithm.
 - EM is known to converge.
 - Number of iterations could be large.
 - But in practice usually isn't

Naïve Bayes: Learning

- From training corpus, extract *Vocabulary*
- Calculate required $P(c_i)$ and $P(x_k \mid c_i)$ terms
 - For each c_j in C do
 - $docs_j \leftarrow$ subset of documents for which the target class is c_i

$$P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$$

- $Text_j \leftarrow \text{single document containing all } docs_j$
- for each word x_k in *Vocabulary*
 - n_k ← number of occurrences of x_k in $Text_i$

$$P(x_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \mid Vocabulary \mid}$$

Multinomial Model

```
TRAINMULTINOMIALNB(\mathbb{C}, \mathbb{D})

1 V \leftarrow \text{ExtractVocabulary}(\mathbb{D})

2 N \leftarrow \text{CountDocs}(\mathbb{D})

3 for each c \in \mathbb{C}

4 do N_c \leftarrow \text{CountDocsInClass}(\mathbb{D}, c)

5 prior[c] \leftarrow N_c/N

6 text_c \leftarrow \text{ConcatenateTextOfAllDocsInClass}(\mathbb{D}, c)

7 for each t \in V

8 do T_{ct} \leftarrow \text{CountTokensOfTerm}(text_c, t)

9 for each t \in V

10 do condprob[t][c] \leftarrow \frac{T_{ct}+1}{\sum_{t'}(T_{ct'}+1)}

11 return V, prior, condprob
```

CSCI 5417 - IR

Naïve Bayes: Classifying

- positions ← all word positions in current document which contain tokens found in *Vocabulary*
- Return c_{NB} , where

11/11/11

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} \mid c_{j})$$

Apply Multinomial

APPLYMULTINOMIALNB(\mathbb{C} , V, prior, condprob, d)

- 1 $W \leftarrow \text{ExtractTokensFromDoc}(V, d)$
- 2 for each $c \in \mathbb{C}$
- 3 **do** $score[c] \leftarrow log prior[c]$
- 4 for each $t \in W$
- 5 **do** score[c] += log cond prob[t][c]
- 6 **return** $\arg \max_{c \in \mathbb{C}} score[c]$

N.L	D.	F		Doc			Categor	У
เงล	ïve Bay	es Exa	mpi	{Chir	na, soccer	+	Sports	
Doc	Category			{Japa	an, baseba	ll}	Sports	
DOC D1				{base	eball, trad	e}	Sports	
	Sports			{Chir	China, trade}		Politics	
D2	Sports			{Japa	Japan, Japan, exports}		Politics	
D3	Sports							
D4	Politics							
	11-:	4 . IV	11 6			C. ID.	lini I	
D5	Politi Usin	g +1; \	/ =6	; S	ports =	= 6; Po	litics =	:
D5	Politi <mark>Usin</mark>	g +1; \	/ =6	; S	ports =	= 6; Po	litics =	•
D5	Politi Usin		/ =6 ts (.6)		ports =		litics =	
D5	Politi <mark>USIN</mark>				ports =		ics (.4)	
D5	Politi <mark>Usin</mark>	Spor	ts (.6)		ports =	Polit	ics (.4)	
D5	Politi <mark>Usin</mark>	Spor baseball	<mark>ts (.6)</mark> 3/12		ports =	Polit basebal	ics (.4) 1/11 2/11	
D5	Politi <mark>Usin</mark>	Spor baseball China	ts (.6) 3/12 2/12		ports =	Polit basebal China	ics (.4) 1/11 2/11	
D5	Politi <mark>Usin</mark>	Spor baseball China exports	ts (.6) 3/12 2/12 1/12		ports =	Polit basebal China exports	ics (.4) 1 1/11 2/11 2/11	

Naïve Bayes Example

- Classifying
 - Soccer (as a doc)
 - Soccer | sports = .167
 - Soccer | politics = .09Sports > Politics

11/11/11 CSCI 5417 - IR 13

Example 2

- Howa about?
 - Japan soccer
 - Sports
 - P(japan|sports)P(soccer|sports)P(sports)
 - .166 * .166* .6 = .0166
 - Politics
 - P(japan|politics)P(soccer|politics)P(politics)
 - **.** .27 * .09 *. 4 = .00972
 - Sports > Politics

Break

- No class Thursday; work on the HW
 - No office hours either.
- HW questions?
 - The format of the test docs will be same as the current docs minus the .M field which will be removed.
 - How should you organize your development efforts?

11/11/11 CSCI 5417 - IR 15

Sports (.6) Example 3 baseball 3/12 China 2/12 exports 1/12 What about? Japan 2/12 China trade soccer 2/12 trade 2/12 Sports Politics (.4) .166 * .166 * .6 = .0166baseball 1/11 **Politics** China 2/11 .1818 * .1818 * .4 = .0132exports 2/11 Japan 3/11 Again Sports > Politics 1/11 soccer trade 2/11

What if?

- What if we just have the documents but no class assignments?
 - But assume we do have knowledge about the number of classes involved
- Can we still use probabilistic models? In particular, can we use naïve Bayes?
 - Yes, via EM
 - Expectation Maximization

ΕM

- 1. Given some model, like NB, make up some class assignments randomly.
- Use those assignments to generate model parameters P(class) and P(word|class)
- 3. Use those model parameters to re-classify the training data.
- 4. Go to 2

Naïve Bayes Example (EM)

Doc	Category	
D1	?	
D2	?	
D3	?	
D4	?	
D5	?	

	-		mple (E	,		Cala	
Doc	Category		Doc	,			gory
D1	Sports		{China, so	-		Spor	
D2	Politics		{Japan, ba			Politi	-
D3	Sports		{baseball,	trade}		Spor	ts
D4	Politics		{China, tra	de}		Politi	cs
D5	Sports		{Japan, Jap	oan, expoi	rts}	Spor	ts
DJ	Sports						
		Spor	ts (.6)		P	olitic	s (.4)
		baseball	2/13		bas	eball	2/10
		China	2/13		Chi	na	2/10
		exports	2/13		exp	orts	1/10
		Japan	3/13		Japa		2/10
		soccer	2/13		SOC		1/10
		trade	2/13		trac		2/10

Topics

Doc	Category
{China, soccer}	Sports
{Japan, baseball}	Sports
{baseball, trade}	Sports
{China, trade}	Politics
{Japan, Japan, exports}	Politics

What's the deal with trade?

Topics

Doc	Category
{China ₁ , soccer ₂ }	Sports
${\rm \{Japan_1,\ baseball_2\}}$	Sports
{baseball ₂ , trade ₂ }	Sports
$\{China_1, trade_1\}$	Politics
{Japan ₁ , Japan ₁ , exports ₁ }	Politics

 $\{basketball_2, strike_3\}$

Topics

- So let's propose that instead of assigning documents to classes, we assign each word token in each document to a class (topic).
- Then we can some new probabilities to associate with words, topics and documents
 - Distribution of topics in a doc
 - Distribution of topics overall
 - Association of words with topics

11/11/11 CSCI 5417 - IR 25

Topics

- Example. A document like
 - {basketball₂, strike₃}

Can be said to be .5 about topic 2 and .5 about topic 3 and 0 about the rest of the possible topics (may want to worry about smoothing later.

For a collection as a whole we can get a topic distribution (prior) by summing the words tagged with a particular topic, and dividing by the number of tagged tokens.

Problem

- With "normal" text classification the training data associates a document with one or more topics.
- Now we need to associate topics with the (content) words in each document
- This is a semantic tagging task, not unlike part-of-speech tagging and word-sense tagging
 - It's hard, slow and expensive to do right

11/11/11 CSCI 5417 - IR 27

Topic modeling

- Do it without the human tagging
 - Given a set of documents
 - And a fixed number of topics (given)
 - Find the statistics that we need