## CSCI 5417 Information Retrieval Systems Jim Martin

Lecture 10 9/22/2011

## Today 9/22

- Finish LM-based IR
  - Language models in general
  - Smoothing
  - LM for ad hoc retrieval performance
- Project brainstorming

9/22/11 CSCI 5417 - IR 2

#### An Alternative to the VS Model

- Basic vector space model uses a geometric metaphor/framework for the ad hoc retrieval problem
  - One dimension for each word in the vocab
  - Weights are usually tf-idf based
- An alternative is to use a probabilistic approach
  - So we'll take a short detour into probabilistic language modeling

9/22/11 CSCI 5417 - IR 3

#### In General

- When you propose a probabilistic approach to problems like this you need to specify three things
  - 1. Exactly what you want to the model to be
  - 2. How you will acquire the parameters of that model
  - 3. How you will use the model operationally

9/22/11 CSCI 5417 - IR 4

#### Where we are

- In the LM approach to IR, we attempt to model the query generation process.
  - Think of a query as being generated from a model derived from a document (or documents)
- Then we rank documents by the probability that a query would be observed as a random sample from the respective document model.
- That is, we rank according to  $P(q \mid d)$ .
- Next: how do we compute P(q | d)?

5

## Stochastic Language Models

 Models probability of generating strings (each word in turn) in the language (commonly all strings over Σ). E.g., unigram model

#### Model M

| 0.2     | the   | the | man            | likes | the                         | woman        |  |
|---------|-------|-----|----------------|-------|-----------------------------|--------------|--|
| 0.1     | a     |     |                |       |                             |              |  |
| 0.01    | man   | 0.2 | 0.01           | 0.02  | 0.2                         | 0.01         |  |
| 0.01    | woman |     |                |       |                             |              |  |
| 0.03    | said  |     |                | m     | ultiply                     |              |  |
| 0.02    | likes |     |                |       |                             | = 0 00000008 |  |
| 9/22/11 |       | (   | CSCI 5417 - IR |       | $P(s \mid M) = 0.000000008$ |              |  |

## Stochastic Language Models

 Model probability of generating any string (for example, a query)

| Model M1 |              | Model M2     |          |          |                       |          |        |        |
|----------|--------------|--------------|----------|----------|-----------------------|----------|--------|--------|
| 0.2      | the          | 0.2          | the      | the      | class                 | pleaseth | won    | maiden |
| 0.0      | 1 class      | 0.0001       | class    | ——       | ——                    | ——       | yon    |        |
| 0.0      | 001 sayst    | 0.03         | sayst    | 0.2      | 0.01                  | 0.0001   | 0.0001 | 0.0005 |
| 0.0      | 001 pleaseth | 0.02         | pleaseth | 0.2      | 0.0001                | 0.02     | 0.1    | 0.01   |
| 0.0      | 001 yon      | 0.1          | yon      |          |                       |          |        |        |
| 0.0      | 005 maiden   | 0.01         | maiden   |          | D(   100)   D(   100) |          |        |        |
| 0.0      | 1 woman      | 0.0001 woman |          |          | P(s M2) > P(s M1)     |          |        |        |
| 9/22/11  |              | CSCI 5417    |          | 417 - IR | 17 - IR               |          |        | 7      |

# How to compute $P(q \mid d)$



 This kind of conditional independence assumption is often called a Markov model

$$P(q|M_d) = P(\langle t_1, \ldots, t_{|q|} \rangle | M_d) = \prod_{1 \leq k \leq |q|} P(t_k | M_d)$$

(|q|: length ofr q;  $t_k$ : the token occurring at position k in q)

This is equivalent to:

$$P(q|M_d) = \prod_{ ext{distinct term } t ext{ in } q} P(t|M_d)^{\mathrm{tf}_{t,q}}$$

•  $\mathsf{tf}_{t,q}$ : term frequency (# occurrences) of t in q

#### Unigram and higher-order models

P(••••)

$$= P(\bullet) P(\circ|\bullet) P(\bullet|\bullet\circ) P(\bullet|\bullet\circ\bullet)$$

- Unigram Language Models
  P( •) P( •) P( •) P( •)
- Easy. Effective!
- Bigram (generally, *n*-gram) Language Models

- Other Language Models
  - Grammar-based models (PCFGs), etc.
    - Probably not the first thing to try in IR

9/22/11 CSCI 5417 - IR

# Using Language Models for ad hoc Retrieval

- Each document is treated as (the basis for) a language model.
- Given a query q
- Rank documents based on P(d|q) via

$$P(d|q) = \frac{P(q|d)P(d)}{P(q)}$$



- P(q) is the same for all documents, so ignore
- P(d) is the prior often treated as the same for all d
  - But we can give a higher prior to "high-quality" documents
    - PageRank, click through, social tags, etc.
- P(q|d) is the probability of q given d.
  - So to rank documents according to relevance to q, rank according to  $P(q \mid d)$

# How to compute P(q | d)

 We will make the same conditional independence assumption as for Naive Bayes.

$$P(q|M_d) = P(\langle t_1, \ldots, t_{|q|} \rangle | M_d) = \prod_{1 \leq k \leq |q|} P(t_k | M_d)$$

(|q|: length ofr q;  $t_k$ : the token occurring at position k in q)

This is equivalent to:

$$P(q|M_d) = \prod_{ ext{distinct term } t ext{ in } q} P(t|M_d)^{\mathrm{tf}_{t,q}}$$

•  $\mathsf{tf}_{t,q}$ : term frequency (# occurrences) of t in q

11

## Parameter estimation

- Where do the parameters  $P(t|M_d)$ . come from?
- Start with simple counts (maximum likelihood estimates)

$$\hat{P}(t|M_d) = \frac{\operatorname{tf}_{t,d}}{|d|}$$

$$P(q|M_d) = \prod P(t|M_d)$$

|d|: length of document d;

 $\mathsf{tf}_{t,d}$ : # occurrences of term t in document d

#### Problem: Zero counts

• A single term t with  $P(t|M_d) = 0$  will make this

$$P(q|M_d) = \prod P(t|M_d)$$

zero.

- This would give a single term the power to eliminate an otherwise relevant document.
- For example, for query
  - "Michael Jackson top hits"
  - a document about "Jackson top songs" (but not using the word "hits") would have  $P(t|M_d) = 0$ . That's bad.

9/22/11 CSCI 5417 - IR 13

# **Smoothing**

- Key intuition: A non-occurring term is possible (even though it didn't occur). That is it's probability shouldn't be zero
- If it isn't zero what should it be? Remember that we're developing LMs for each document in a collection.

$$T = \sum_t \operatorname{cf}_t$$

- but no more likely than would be expected by chance in the collection.  $tf_{t,d}$
- the collection.

  Notation:  $M_c$ : the collection mod occurrence:  $\hat{P}(t|M_c)$  ie collection; the total number of tokens in the collection.

### **Smoothing**

- Fall back on using the probability of that term in the collection as whole.
- Notation:  $M_c$ : the collection model;  $cf_t$ : the number of occurrences of t in the collection;  $T = \sum_t cf_t$ : the total number of tokens in the collection.

$$\hat{P}(t|M_d) = \frac{\operatorname{tf}_{t,d}}{|d|}$$

• We will use  $\hat{P}(t|M_c)$  to "smooth" P(t|d) away from zero.

9/22/11 CSCI 5417 - IR 15

## Mixture model

- $P(t \mid d) = \lambda P(t \mid M_d) + (1 \lambda)P(t \mid M_c)$ 
  - Mixes the probability from the document with the general collection frequency of the word
- If a term in query occurs in a document we combine the two scores with differing weights
- If a term doesn't occur then its just the second factor
  - The P of the term in the collection discounted by  $(1 \lambda)$

### **Smoothing**

- High value of λ: "conjunctive-like" search tends to retrieve documents containing all query words.
- Low value of λ: more disjunctive, best for long queries
- Correctly setting  $\lambda$  is very important for good performance.

9/22/11 CSCI 5417 - IR 17

# Mixture model: Summary

$$P(q|d) \propto \prod_{1 \leq k \leq |q|} (\lambda P(t_k|M_d) + (1-\lambda)P(t_k|M_c))$$

- What we model: The user has a document in mind and generates the query from this document.
- The equation represents the probability that the document that the user had in mind was in fact this one.

# Example

- Collection:  $d_1$  and  $d_2$
- $d_1$ : Jackson was one of the most talented entertainers of all time
- $d_2$ : Michael Jackson anointed himself King of Pop
- Query q: Michael Jackson
- Use mixture model with  $\lambda = 1/2$
- $P(q | d_1) = [(0/11 + 1/18)/2] \cdot [(1/11 + 2/18)/2] \approx 0.003$
- $P(q|d_2) = [(1/7 + 1/18)/2] \cdot [(1/7 + 2/18)/2] \approx 0.013$
- Ranking:  $d_2 > d_1$

19

# Vector space (tf-idf) vs. LM

|                  | precision |        |        | significant? |
|------------------|-----------|--------|--------|--------------|
| Rec.             | tf-idf    | LM     | %chg   |              |
| 0.0              | 0.7439    | 0.7590 | +2.0   |              |
| 0.1              | 0.4521    | 0.4910 | +8.6   |              |
| 0.2              | 0.3514    | 0.4045 | +15.1  | *            |
| 0.4              | 0.2093    | 0.2572 | +22.9  | *            |
| 0.6              | 0.1024    | 0.1405 | +37.1  | *            |
| 0.8              | 0.0160    | 0.0432 | +169.6 | *            |
| 1.0              | 0.0028    | 0.0050 | +76.9  |              |
| 11-point average | 0.1868    | 0.2233 | +19.6  | *            |

The language modeling approach always does better in these experiments . . . . . . But the approach shows significant gains is at higher levels of recall.

## LMs vs. vector space model (1)

- LMs have some things in common with vector space models.
- Term frequency is clearly part of the model
  - But it not log-scaled as in VS
- Mixing document and collection frequencies has an effect similar to idf.
  - Terms rare in the general collection, but common in some documents will have a greater influence on the ranking.

21

#### Indri

- The INDRI search engine is partially based on this kind of language model notion.
   Along with some bayesian inference.
- INDRI was one of the search systems used in IBM's Watson (Jeopardy) system
  - Along with Lucene

9/22/11 CSCI 5417 - IR 22

