CSCI 5417
Information Retrieval Systems
Jim Martin

Lecture 9
9/20/2011

Today 9/20
[

= Where we are
= MapReduce/Hadoop

= Probabilistic IR
» Language models
= LM for ad hoc retrieval

9/22/11 CSCI 5417 - IR

Where we are...
[

Indexing

Basics of ad hoc retrieval

» Term weighting/scoring

9/22/11

= Cosine
Evaluation

CSCI 5417 - IR

Document classification
Clustering
Information extraction
Sentiment/Opinion mining

But First: Back to Distributed Indexing
[

-
A

assign.-{ Master [~---___gssign .
E g Postings

g-p

q-zZ

Crarser Gt

g-p

g-z

wn
o-gooo

=

wn

o o
o o
o o

o
o

g-p

q-z

9/22/11

CSCI 7000 - IR

| Cimene{ 5]

Huh?
[

= That was supposed to be an explanation of
MapReduce (Hadoop)...

= Maybe not so much...
» Here’s another try

MapReduce
[

= MapReduce is a distributed programming
framework that is intended to facilitate
applications that are

= Data intensive
= Parallelizable in a certain sense
= In @a commodity-cluster environment
= MapReduce is the original internal Google
model

= Hadoop is the open source version

Inspirations
[

= MapReduce elegantly and efficiently
combines inspirations from a variety of
sources, including
» Functional programming
» Key/value association lists
= Unix pipes

Functional Programming
[

= The focus is on side-effect free
specifications of input/output mappings

= There are various idioms, but map and
reduce are two central ones...

» Mapping refers to applying an identical
function to each of the elements of a list
and constructing a list of the outputs

» Reducing refers to receiving the elements of

a list and aggregating the elements
according to some function.

Python Map/Reduce
[

= Say you wanted to compute simple sum of
squares of a list of numbers n
w;
>>> z i=0
[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> z2 = map (lambda x: x**2, 1)

>>> 72

[1, 4, 9, 16, 25, 36, 49, 064, 81]

>>> reduce (lambda x,y: xt+y, z2)

285

>>> reduce (lambda x,y: x+y, map(lambda x: x**2, z))
285

Association Lists (key/value)
[

= The notion of association lists goes way back to
early lisp/ai programming. The basic idea is to
try to view problems in terms of sets of key/
value pairs.

=« Most major languages now provide first-class
support for this notion (usually via hashes on
keys)
= We've seen this a lot this semester
= Tokens and term-ids
Terms and document ids
Terms and posting lists
Docids and tf/idf values
Etc.

MapReduce
[

= MapReduce combines these ideas in the
following way

= There are two phases of processing

mapping and reducing. Each phase

consists of multiple identical copies of map

and reduce methods

» Map methods take individual key/value
pairs as input and return some function of
those pairs to produce a new key/value pair

= Reduce methods take key/<list of values>
pairs as input, and return some aggregate
function of the values as an answer.

Map Phase
l
Key/
rT]EiF) - value’
Key/ Key/
IZey/ P map — , value
= Wy Key’
L ey map valu:
& Key/ /
A Key/ / m) ey
ey
rT]EiF) | value’
Key'/
rT]EiF) ——- value’

Key’/
ma p = value’

Reduce Phase

[
, o
KeIZe/y’/ red U Ce Vaelze"
KelZé/y’/
ey, reduce vainer
Kelz’/ ”

ey’/ Key”/
—aa reduce o

Distribute "
by keys reduce LA
Key"/
reduce b

Sort by —

keys el cumlunt list
and T
collate

values .,

reduce "
Example
[

= Simple example used in all the tutorials
= Get the counts of each word type across a

bunch of docs
» Let’s assume each doc is a big long string

For map

Filenames are keys; content string is

values

: Term tokens are keys; values are 1's

For reduce

Terms tokens are keys, 1’s are values

Term types are keys, summed counts

are values

Key
Dumbo Example Value
[

def map (docid, contents):
for term in contents.split():
Ke :
Y yield term, 1 Value
def reduce (term, counts):
sum = 0
for count in counts:
sum = sum + count

yield term, sum

Hidden Infrastructure
[

» Partitioning the incoming data

= Hadoop has default methods

» By file, given a bunch of files
= <filename, contents>

« By line, given a file full of lines
= <line #, line>

= Sorting/collating the mapped key/values
= Moving the data among the nodes

» Distributed file system

« Don’'t move the data; just assign mappers/reducers
to nodes

Example 2
[

= Given our normal postings
» term -> list of (doc-id, tf) tuples

= Generate the vector length normalization for
each document in the index

=
+ Map
« Input: terms are keys, posting lists are values
+ Output: doc-ids are keys, squared weights are values

* Reduce
Input: doc-ids are keys, list of squared weights are values

» Output: doc-ids are keys, square root of the summed weights
are the values

};w

2
td

Example 2
[

def map (term, postings):
for post in postings:
yield post.docID(), post.weight () **

def reduce (docID, sgWeights):
sum = 0
for weight in sgWeights:
sum = sum + weight

yield docID, math.sqgrt (sum)

2

Break
[

» Thursday we’ll start discussion of projects.

So come to class ready to say something
about projects.

= Part 2 of the HW is due next Thursday

» Feel free to mail me updated results (R-
precisions) as you get them...

9/22/11 CSCI 5417 - IR 19

Probabilistic pproaches.
[

= The following is a mix of chapters 12 and

13.

= Only the material from 12 will be on the
quiz

9/22/11 CSCI 5417 - IR 20

10

An Alternative
[

» Basic vector space model uses a geometric
metaphor/framework for the ad hoc
retrieval problem
= One dimension for each word in the vocab
» Weights are usually tf-idf based

= An alternative is to use a probabilistic
approach

» So we'll take a short detour into
probabilistic language modeling

9/22/11 CSCI 5417 - IR 21

Using Language Models for ad hoc
Retrieval

Each document is treated as (the basis for) a language model.

Given a query g

Rank documents based on P(d|q) via

P(q|d)P(d)
P(q)

P(q) is the same for all documents, so ignore

P(dlq) =

P(d) is the prior — often treated as the same for all d
= But we can give a higher prior to “high-quality” documents
= PageRank, click through, social tags, etc.
P(qg|d) is the probability of g given d.

= So to rank documents according to relevance to g, rank
according to P(q|d)

22

11

Where we are
[

* In the LM approach to IR, we attempt to model the query
generation process.

= Think of a query as being generated from a model
derived from a document (or documents)

= Then we rank documents by the probability that a query
would be observed as a random sample from the
respective document model.

= That is, we rank according to P(q|d).
= Next: how do we compute P(qg|d)?

23

Stochastic Language Models
[

= Models probability of generating strings (each word
in turn) in the language (commonly all strings over
2). E.g., unigram model

Model M
0.2 h
the the man likes the woman
0.1 a
0.01 man 0.2 0.01 0.02 0.2 0.01
0.01 woman
0.03 said
0.02 lik
e P(s | M) = 0.00000008
. __9/22/11 CSCI15417 - IR 24

12

Models

Stochastic Language
[

= Model probability of generating any string
(for example, a query)

Model M2
0.2 the
0.0001 class
0.03 sayst
0.02 pleaseth
0.1 yon
0.01 maiden
0.0001 woman
9/22/11 CSCI 5

the class pleaseth yon maiden

0.2 0.0001 0.02 0.1 0.01

P(sM2) > P(sM1)

417 - IR 25

IHow to compute P(q|d)

called a Markov model

This kind of conditional independence assumption is often

P(qIMg) = P((t,.... tig)|Ma) = [P(txIMa)

1<k<|q|

(lq|:length ofr g; t, : the token occurring at position k in q)

= This is equivalent to:

P(q|My) = 1T P(t|My)tea
distinct term t in g

= tf, ,: term frequency (# occurrences) of tin g

26

13

So.... LMs for ad hoc Retrieval

l

s Use each individual document as the
corpus for a language model

= For a given query, assess P(q|d) for each
document in the collection

= Return docs in the ranked order of P(q|d)

= Think about how scoring works for this
model...
= Term at a time?

= Doc at a time?
9/22/11 CSCI 5417 - IR 27

Unigram and higher-order models
[

P(eoceoe)

" =P(e)P(o|e) P(e|ec)P(e|eoe)

» Unigram Language Models Easy.
P(e) P(o) P(e) P() Effective!

= Bigram (generally, n-gram) Language Models
P(e) P(o|le)P(e]c) P(e e)
= Other Language Models

= Grammar-based models (PCFGs), etc.
« Probably not the first thing to try in IR
9/22/11 CSCI 5417 - IR 28

14

Next time
[

» Lots of practical issues

= Smoothing

9/22/11

CSCI 5417 - IR

29

15

