
1

CSCI 5417
Information Retrieval Systems

Jim Martin!

Lecture 6
9/8/2011

CSCI 5417

Today 9/8

  Review basic Vector Space Model
  TF*IDF weighting
  Cosine scoring
  Ranked retrieval

  More efficient scoring/retrieval

2

CSCI 5417

Summary: tf x idf (or tf.idf)

  Assign a tf.idf weight to each term i in each document d

  Weight increases with the number of occurrences within a doc
  And increases with the rarity of the term across the whole corpus

)/log(,, tdtdt dfNtfw ×=

 termcontain that documents ofnumber the
documents ofnumber total

document in termoffrequency ,

tdf
N

dttf

t

dt

=

=

=

CSCI 5417

Real-valued Term Vectors

  Still Bag of words model
  Each is a vector in ℝM

  Here log-scaled tf.idf

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 13.1 11.4 0.0 0.0 0.0 0.0

Brutus 3.0 8.3 0.0 1.0 0.0 0.0

Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0

Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3

worser 1.2 0.0 0.6 0.6 0.6 0.0

3

CSCI 5417

Documents as Vectors

  Each doc j can now be viewed as a vector
of wf values, one component for each term

  So we have a vector space
  Terms are axes
  Docs live in this space
  Number of dimensions is the size of the

dictionary

  And for later…
  Terms (rows) are also vectors
  Docs are the dimensions

CSCI 5417

Intuition

Documents that are “close together” in the vector
space talk about the same things.

t1

d2

d1

d3

d4

d5

t3

t2

θ
φ

4

CSCI 5417

Cosine Similarity

  Distance between vectors d1 and d2
captured by the cosine of the angle x
between them.

t 1

d 2

d 1

t 3

t 2

θ

9/22/11 8

The Vector Space Model

Queries are just short documents
  Take the freetext query as short document
  Return the documents ranked by the

closeness of their vectors to the query
vector.

5

9/22/11 9

Cosine Similarity

Similarity between vectors d1 and d2
captured by the cosine of the angle x
between them.

t 1

d 2

d 1

t 3

t 2

θ

Why not Euclidean distance?

9/22/11 10

Cosine similarity

  Cosine of angle between two vectors
  The denominator involves the lengths of the

vectors.

∑∑
∑

==

==
⋅

=
M

i ki
M

i ji

M

i kiji

kj

kj
kj

ww

ww

dd
dd

ddsim
1

2
,1

2
,

1 ,,),(



Normalization

6

9/22/11 11

Normalized vectors

  For normalized vectors, the cosine is
simply the dot product:

kjkj dddd

⋅=),cos(

CSCI 5417

So...

  Basic ranked retrieval scheme is to
  Treat queries as vectors
  Compute the dot-product of the query with

all the docs
  Return the ranked list of docs for that

query.

7

But...

  What do we know about the document
vectors?

  What do we know about query vectors?

9/22/11 13

CSCI 5417

Scoring
(1) N documents. Each gets a score.

(2) Get the lengths
for later use (3) Iterate

over the
query terms

(6)
Accumulate
the scores for
each doc, a
term at a
time

(9) Normalize by
doc vector length

8

CSCI 5417

Scoring

Note

  That approach is know as term at a time
scoring... For obvious reasons

  An alternative is document at a time
scoring where
  First you do a Boolean AND or OR to derive

a candidate set of docs
  Then you loop over those docs scoring each

in turn by looping over the query terms

  Pros and cons to each one.

CSCI 5417

9

CSCI 5417

Speeding that up

  Two basic approaches...
  Optimize the basic approach by focusing on

the fact that queries are short and simple
  Make the cosines faster
  Make getting the top K efficient

  Give up on the notion of finding the best K
results from the total N

  That is, let’s approximate the top K and not worry
if we miss some docs that should be in the top K

CSCI 5417

More Efficient Scoring

  Computing a single cosine efficiently
  Choosing the K largest cosine values

efficiently.
  Can we do this without computing all

N cosines?
  Or doing a sort of N things

10

CSCI 5417

Efficient Cosine Ranking

  What we’re doing in effect: solving the
K-nearest neighbor problem for a query
vector

  In general, we do not know how to do
this efficiently for high-dimensional
spaces

  But it is solvable for short queries, and
standard indexes support this well

CSCI 5417

Special case – unweighted queries

  No weighting on query terms
  Assume each query term occurs only

once
  TF is 1
  Ignore IDF in the query weight

11

CSCI 5417

Faster cosine: unweighted query

CSCI 5417

Computing the K largest cosines:
selection vs. sorting

  Typically we want to retrieve the top K
docs (in the cosine ranking for the
query)
  not to totally order all docs in the

collection
  K << N

  Use a heap

12

Quiz

  Quiz 1 is September 27
  Chapters 1-4, 6-9, and 12 will be covered

  As of today you should have read Chapters
1-4, 6 and 7.

  I’ll provide relevant page ranges
  Material in the book not covered in class will

be on the quiz.

  Old quizzes are posted
  Try to work through them; mail me if you

get stuck

CSCI 5417

CSCI 5417

Approximation

  Cosine (-ish) scoring is still to
expensive. Can we avoid all this
computation?

  Yes, but may sometimes get it wrong
  a doc not in the top K may creep into

the list of K output docs
  And a doc that should be there isn’t there

  Not such a bad thing

13

CSCI 5417

Cosine Similarity is a Convenient Fiction

  User has a task and a query formulation
  Cosine matches docs to query
  Thus cosine is just a proxy for user

happiness
  If we get a list of K docs “close” to the

top K by cosine measure, we should be
ok

CSCI 5417

Generic approach

  Find a set A of contenders, with
  K < |A| << N
  A does not necessarily contain the top K, but

has many docs from among the top K
  Return the top K docs from set A

  Think of A as eliminating likely non-
contenders

14

CSCI 5417

Candidate Elimination

  Basic cosine algorithms consider all docs
containing at least one query term
  Because of the way we loop over the query

terms
  For each query term

  For each doc in that terms postings

  To cut down on this we could short-circuit
the outer loop or the inner loop or both

CSCI 5417

High-IDF Query Terms Only

  For a query such as catcher in the rye
  Only accumulate scores from catcher and

rye
  in and the contribute little to the scores and

don’t alter rank-ordering much

  Benefit:
  Postings of low-idf terms have many docs →

these (many) docs get eliminated from A

15

CSCI 5417

Docs containing many query terms

  For multi-term queries, only compute
scores for docs containing several of the
query terms
  Say, at least 3 out of 4
  Imposes a “soft conjunction” on queries

seen on web search engines (early Google)

  Easy to implement in postings traversal

CSCI 5417

3 of 4 query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

Antony 3 4 8 16 32 64 128

32

Scores only computed for docs8, 16 and 32.

16

CSCI 5417

Champion Lists

  Precompute for each dictionary term t, the
r docs of highest weight in t’s postings
  Call this the champion list for t

  AKA fancy list or top docs for t

  At query time, only compute scores for
docs in the champion list of some query
term
  Pick the K top-scoring docs from among

these

CSCI 5417

Early Termination

  When processing query terms look at them
in order of decreasing idf
  High idf terms likely to contribute most to

score

  As we update the score contribution from
each query term, stop if doc scores are
relatively unchanged

17

Next time

  Start on evaluation

CSCI 5417

