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Information Retrieval Systems 

Jim Martin!

Lecture 6 
9/8/2011 

CSCI 5417 

Today 9/8 

  Review basic Vector Space Model 
  TF*IDF weighting 
  Cosine scoring 
  Ranked retrieval 

  More efficient scoring/retrieval 
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Summary: tf x idf (or tf.idf) 

  Assign a tf.idf weight to each term i in each document d 

  Weight increases with the number of occurrences within a doc 
  And increases with the rarity of the term across the whole corpus 
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Real-valued Term Vectors 

  Still Bag of words model 
  Each is a vector in ℝM 

  Here log-scaled tf.idf 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 13.1 11.4 0.0 0.0 0.0 0.0

Brutus 3.0 8.3 0.0 1.0 0.0 0.0

Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0

Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3

worser 1.2 0.0 0.6 0.6 0.6 0.0
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Documents as Vectors 

  Each doc j can now be viewed as a vector 
of wf values, one component for each term 

  So we have a vector space 
  Terms are axes 
  Docs live in this space 
  Number of dimensions is the size of the 

dictionary 

  And for later… 
  Terms (rows) are also vectors 
  Docs are the dimensions 
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Intuition 

Documents that are “close together” in the vector 
space talk about the same things. 
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Cosine Similarity 

  Distance between vectors d1 and d2 
captured by the cosine of the angle x 
between them. 
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The Vector Space Model 

Queries are just short documents 
  Take the freetext query as short document 
  Return the documents ranked by the 

closeness of their vectors to the query 
vector. 
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Cosine Similarity 

Similarity between vectors d1 and d2 
captured by the cosine of the angle x 
between them. 
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Why not Euclidean distance? 
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Cosine similarity 

  Cosine of angle between two vectors 
  The denominator involves the lengths of the 

vectors. 
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Normalized vectors 

  For normalized vectors, the cosine is 
simply the dot product: 
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So... 

  Basic ranked retrieval scheme is to  
  Treat queries as vectors 
  Compute the dot-product of the query with 

all the docs 
  Return the ranked list of docs for that 

query. 
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But... 

  What do we know about the document 
vectors? 

  What do we know about query vectors? 

9/22/11 13 

CSCI 5417 

Scoring 
(1) N documents. Each gets a score. 

(2) Get the lengths 
for later use (3) Iterate 

over the 
query terms 

(6) 
Accumulate 
the scores for 
each doc, a 
term at a 
time 

(9) Normalize by 
doc vector length 
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Scoring 

Note 

  That approach is know as term at a time 
scoring... For obvious reasons 

  An alternative is document at a time 
scoring where 
  First you do a Boolean AND or OR to derive 

a candidate set of docs 
  Then you loop over those docs scoring each 

in turn by looping over the query terms 

  Pros and cons to each one. 

CSCI 5417 
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Speeding that up 

  Two basic approaches... 
  Optimize the basic approach by focusing on 

the fact that queries are short and simple 
  Make the cosines faster 
  Make getting the top K efficient 

  Give up on the notion of finding the best K 
results from the total N 

  That is, let’s approximate the top K and not worry 
if we miss some docs that should be in the top K 
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More Efficient Scoring 

  Computing a single cosine efficiently 
  Choosing the K largest cosine values 

efficiently. 
  Can we do this without computing all 

N cosines? 
  Or doing a sort of N things 
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Efficient Cosine Ranking 

  What we’re doing in effect: solving the 
K-nearest neighbor problem for a query 
vector 

  In general, we do not know how to do 
this  efficiently for high-dimensional 
spaces 

  But it is solvable for short queries, and 
standard indexes support this well 
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Special case – unweighted queries 

  No weighting on query terms 
  Assume each query term occurs only 

once 
  TF is 1 
  Ignore IDF in the query weight 
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Faster cosine: unweighted query 

CSCI 5417 

Computing the K largest cosines: 
selection vs. sorting 

  Typically we want to retrieve the top K 
docs (in the cosine ranking for the 
query) 
  not to totally order all docs in the 

collection 
  K << N 

  Use a heap 
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Quiz 

  Quiz 1  is September 27 
  Chapters 1-4, 6-9, and 12 will be covered 

  As of today you should have read Chapters 
1-4, 6 and 7. 

  I’ll provide relevant page ranges 
  Material in the book not covered in class will 

be on the quiz. 

  Old quizzes are posted 
  Try to work through them; mail me if you 

get stuck 
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Approximation 

  Cosine (-ish) scoring is still to 
expensive. Can we avoid all this 
computation? 

  Yes, but may sometimes get it wrong 
  a doc not in the top K may creep into 

the list of K output docs 
  And a doc that should be there isn’t there 

  Not such a bad thing 
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Cosine Similarity is a Convenient Fiction 

  User has a task and a query formulation 
  Cosine matches docs to query 
  Thus cosine is just a proxy for user 

happiness 
  If we get a list of K docs “close” to the 

top K by cosine measure, we should be 
ok 
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Generic approach 

  Find a set A of contenders, with  
  K < |A| << N 
  A does not necessarily contain the top K, but 

has many docs from among the top K 
  Return the top K docs from set A 

  Think of A as eliminating likely non-
contenders 
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Candidate Elimination 

  Basic cosine algorithms consider all docs 
containing at least one query term 
  Because of the way we loop over the query 

terms 
  For each query term 

  For each doc in that terms postings 

  To cut down on this we could short-circuit 
the outer loop or the inner loop or both 
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High-IDF Query Terms Only 

  For a query such as catcher in the rye 
  Only accumulate scores from catcher and 

rye 
  in and the contribute little to the scores and 

don’t alter rank-ordering much 

  Benefit: 
  Postings of low-idf terms have many docs → 

these (many) docs get eliminated from A 
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Docs containing many query terms 

  For multi-term queries, only compute 
scores for docs containing several of the 
query terms 
  Say, at least 3 out of 4 
  Imposes a “soft conjunction” on queries 

seen on web search engines (early Google) 

  Easy to implement in postings traversal 
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3 of 4 query terms 

Brutus 

Caesar 

Calpurnia 

1 2 3 5 8 13 21 34 

2 4 8 16 32 64 128 

13 16 

Antony 3 4 8 16 32 64 128 

32 

Scores only computed for docs8, 16 and 32. 
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Champion Lists 

  Precompute for each dictionary term t, the 
r docs of highest weight in t’s postings 
  Call this the champion list for t 

  AKA fancy list or top docs for t 

  At query time, only compute scores for 
docs in the champion list of some query 
term 
  Pick the K top-scoring docs from among 

these 
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Early Termination 

  When processing query terms look at them 
in order of decreasing idf 
  High idf terms likely to contribute most to 

score 

  As we update the score contribution from 
each query term, stop if doc scores are 
relatively unchanged 
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Next time 

  Start on evaluation 

CSCI 5417 


