# CSCI 5417 Information Retrieval Systems

Jim Martin

Lecture 5 9/6/2011

# Today 9/6

- Vector space model
- New homework

#### Recap

- We've covered a variety of types of indexes
- And a variety of ways to build indexes
- And a variety of ways to process tokens
- And boolean search
- Now what?

9/6/11 3

#### Beyond Boolean

- Thus far, our queries have been Boolean
  - Docs either match or they don't
- Ok for expert users with precise understanding of their needs and the corpus
- Not good for (the majority of) users with poor Boolean formulation of their needs
- Most users don't want to wade through 1000's of results (or get 0 results)
  - Hence the popularity of search engines which provide a ranking.

#### Scoring

- Without some form of ranking, boolean queries usually result in too many or too few results.
- With ranking, the number of returned results is irrelevant.
  - The user can start at the top of a ranked list and stop when their information need is satisfied

9/6/11 5

# Ranked Retrieval

- Given a query, assign a numerical score to each doc in the collection
- Return documents to the user based on the ranking derived from that score
- How?
  - A considerable amount of the research in IR over the last 20 years...
    - Extremely empirical in nature

# Back to Term x Document Matrices

|           | Antony and Cleopatra | Julius Caesar | The Tempest | Hamlet | Othello | Macbeth |
|-----------|----------------------|---------------|-------------|--------|---------|---------|
| Antony    | 1                    | 1             | 0           | 0      | 0       | 1       |
| Brutus    | 1                    | 1             | 0           | 1      | 0       | 0       |
| Caesar    | 1                    | 1             | 0           | 1      | 1       | 1       |
| Calpurnia | 0                    | 1             | 0           | 0      | 0       | 0       |
| Cleopatra | 1                    | 0             | 0           | 0      | 0       | 0       |
| mercy     | 1                    | 0             | 1           | 1      | 1       | 1       |
| worser    | 1                    | 0             | 1           | 1      | 1       | 0       |
|           |                      |               |             |        |         |         |

Documents and terms can be thought of as vectors of 1's a 0's

9/6/11

# Back to Term x Document Matrices

|           | Antony and Cleopatra | Julius Caesar | The Tempest | Hamlet | Othello | Macbeth |
|-----------|----------------------|---------------|-------------|--------|---------|---------|
| Antony    | 157                  | 73            | 0           | 0      | 0       | 0       |
| Brutus    | 4                    | 157           | 0           | 1      | 0       | 0       |
| Caesar    | 232                  | 227           | 0           | 2      | 1       | 1       |
| Calpurnia | 0                    | 10            | 0           | 0      | 0       | 0       |
| Cleopatra | 57                   | 0             | 0           | 0      | 0       | 0       |
| mercy     | 2                    | 0             | 3           | 5      | 5       | 1       |
| worser    | 2                    | 0             | 1           | 1      | 1       | 0       |

Consider *instead* the number of occurrences of a term t in a document d, denoted  $tf_{t,d}$ 

9/6/11

#### Scoring: Beyond Boolean AND

 Given a free-text query q and a document d define

$$Score(q,d) = \Sigma_{t \in q} tf_{t,d}$$

That is, simply add up the term frequencies of all query terms in the document

Holding the query static, this assigns a score to each document in a collection; now rank documents by this score.

9/6/11

#### Term Frequency: Local Weight

- What is the relative importance of
  - 0 vs. 1 occurrence of a term in a doc
  - 1 vs. 2 occurrences
  - 2 vs. 3 occurrences ...
- Unclear, but it does seem like more is better, a lot isn't proportionally better than a few
  - One scheme commonly used:

$$wf_{t,d} = 0$$
 if  $tf_{t,d} = 0$ ,  $1 + \log tf_{t,d}$  otherwise

#### Potential Problem

#### Consider query ides of march

- Julius Caesar has 5 occurrences of ides
- No other play has ides
- *march* occurs in over a dozen
- SO... Julius Caesar should do well since it has counts from both ides and march

BUT all the plays contain **of**, some many times. So by this scoring measure, the top-scoring play is likely to be the one with the most number of **of**'s

9/6/11

#### Term Frequency tf<sub>t,d</sub>

- Of is a frequent word overall. Longer docs will have more ofs. But not necessarily more march or ides
- Hence longer docs are favored because they're more likely to contain frequent query terms
  - Probably not a good thing

#### Global Weight

- Which of these tells you more about a doc?
  - 10 occurrences of hernia?
  - 10 occurrences of the?
- Would like to attenuate the weights of common terms
  - But what does "common" mean?
  - 2 options: Look at
    - Collection frequency
      - The total number of occurrences of a term in the entire collection of documents
    - Document frequency

9/6/11

# Collection vs. Document Frequency

#### Consider...

 Word
 cf
 df

 try
 10422
 8760

 insurance
 10440
 3997

# **Inverse Document Frequency**

- So how can we formalize that?
  - Terms that appear across a large proportion of the collection are less useful. They don't distinguish among the docs.
  - So let's use that proportion as the key.
  - And let's think of boosting useful terms rather than demoting useless ones.

$$idf_t = \log\left(\frac{N}{df_t}\right)$$

9/6/11

15

#### Reuters RCV1 800K docs

Logarithms are base 10

| term      | $df_t$ | idf <sub>t</sub> |
|-----------|--------|------------------|
| car       | 18,165 | 1.65             |
| auto      | 6723   | 2.08             |
| insurance | 19,241 | 1.62             |
| best      | 25,235 | 1.5              |

# tf x idf (or tf.idf or tf-idf)

We still ought to pay attention to the local weight... so

$$w_{t,d} = tf_{t,d} \times \log(N/df_t)$$

 $tf_{t,d}$  = frequency of term t in document d

N = total number of documents

 $df_t$  = the number of documents that contain term t

17

- Increases with the number of occurrences within a doc
- Increases with the rarity of the term *across* the whole corpus 9/6/11

#### Summary: TfxIdf

"TFxIDF is usually used to refer to a family of approaches.

| term frequency                                                         |                                                                      | document frequency |                                                       | normalization         |                                                  |  |
|------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------|-------------------------------------------------------|-----------------------|--------------------------------------------------|--|
| n (natural) $tf_{t,d}$                                                 |                                                                      | n (no)             | 1                                                     | n (none)              | 1                                                |  |
| , , ,                                                                  | $g(tf_{t,d})$                                                        | t (idf)            | $\log \frac{N}{\mathrm{d} \mathrm{f}_t}$              | c (cosine)            | $\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$ |  |
| a (augmented) 0.5+-                                                    | $\frac{0.5 \times \text{tf}_{t,d}}{\text{max}_t(\text{tf}_{t,d})}$   | p (prob idf)       | $\max\{0,\log\frac{N-\mathrm{d}f_t}{\mathrm{d}f_t}\}$ | u (pivoted<br>unique) | 1/u (Section 17.4.4)                             |  |
| b (boolean) $\begin{cases} 1 \text{ if } \\ 0 \text{ ot } \end{cases}$ | $tf_{t,d} > 0$ herwise                                               |                    |                                                       | b (byte size)         | $1/CharLength^{\alpha}$ , $\alpha < 1$           |  |
|                                                                        | $\operatorname{ve}_{t \in d} \left( \operatorname{tf}_{t,d} \right)$ |                    |                                                       |                       |                                                  |  |

# Real-valued term vectors

- Still <u>Bag of words</u> model
- Each is a vector in  $\mathbb{R}^M$ 
  - Here log-scaled *tf.idf*

|           | Antony and Cleopatra | Julius Caesar | The Tempest | Hamlet | Othello | Macbeth |
|-----------|----------------------|---------------|-------------|--------|---------|---------|
| Antony    | 13.1                 | 11.4          | 0.0         | 0.0    | 0.0     | 0.0     |
| Brutus    | 3.0                  | 8.3           | 0.0         | 1.0    | 0.0     | 0.0     |
| Caesar    | 2.3                  | 2.3           | 0.0         | 0.5    | 0.3     | 0.3     |
| Calpurnia | 0.0                  | 11.2          | 0.0         | 0.0    | 0.0     | 0.0     |
| Cleopatra | 17.7                 | 0.0           | 0.0         | 0.0    | 0.0     | 0.0     |
| mercy     | 0.5                  | 0.0           | 0.7         | 0.9    | 0.9     | 0.3     |
| worser    | 1.2                  | 0.0           | 0.6         | 0.6    | 0.6     | 0.0     |

9/6/11 19

#### Assignment 2

- Download and install Lucene
- How does Lucene handle (using standard methods)
  - Case, stemming, stop lists and multiword queries
- Download index the medical.txt collection
  - DocID, abstracts, titles, keywords, and text
  - How big is the resulting index?
    - Terms and size of index
  - Retrieve document IDs (from the lucene hits) from the queries in queries.txt
  - Compare against relevance judgments in qrels.txt

# Assignment 2

- Collection
  - 54,710 medical abstracts
    - All in a single file
  - 63 queries with relevance judgments

9/6/11 21

#### Sample Doc

```
.I 15
.U
87049104
.S
Am J Emerg Med 8703; 4(6):552-3
.M
Adolescence; Atropine/*TU; Baclofen/*PO; Bradycardia/CI/*DT; Case Report; Human; Hypotension/CI/*DT; Male.
.T
Atropine in the treatment of baclofen overdose.
.P
JOURNAL ARTICLE.
.W
A patient suffering baclofen overdose successfully treated with atropine is reported. Three hours after admission for ingestion of at least 300 mg baclofen as a single dose, the patient became comatose and subsequently bradycardic, hypo tensive, and hypothermic. A prompt increase in heart rate and blood pressure followed administration of 1 mg of atropine sulfate. Atropine appears to be useful in treating cases of baclofen overdose complicated by bradycardia and hypotension.
.A
Cohen MB; Gailey RA; McCoy GC.
```

# Sample Query

```
<top>
<num> Number: OHSU4
<title> 58 yo with cancer and
hypercalcemia
<desc> Description:
effectiveness of etidronate in
treating hypercalcemia of malignancy
</top>
9/6/11
                                       23
```

| Qrels  |          |   |    |  |
|--------|----------|---|----|--|
|        |          |   |    |  |
| OHSU1  | 87316326 | 1 |    |  |
| OHSU1  | 87202778 | 1 |    |  |
| OHSU1  | 87157536 | 2 |    |  |
| OHSU1  | 87157537 | 2 |    |  |
| OHSU1  | 87097544 | 2 |    |  |
| OHSU1  | 87316316 | 1 |    |  |
| OHSU2  | 87230756 | 1 |    |  |
| OHSU2  | 87076950 | 1 |    |  |
| OHSU2  | 87254296 | 2 |    |  |
| OHSU2  | 87058538 | 2 |    |  |
| OHSU2  | 87083927 | 2 |    |  |
| OHSU2  | 87309677 | 2 |    |  |
| 9/6/11 |          |   | 24 |  |

#### **Evaluation**

- As we'll see in Chapter 8, there are lots of ways to do evaluation. Which mostly lead to different design decisions.
- For this assignment, we'll use R-precision (see page 148).
  - Basically, if a given query has N relevant docs, then we look at the top N returned results and compute precision within that set.
  - So if we found all and only relevant docs we get a 1.
  - Then we average that over the set of queries we're using.

9/6/11 25

#### Assignment

- Part 1
  - Do a straightforward (not too stupid) lucene search solution for this dataset
  - Measure how well it works with R-Precision
- Part 2
  - Make it better

# Back to Scoring

- Ok, we've change our document representation (the term-document matrix)
- How does that help scoring?

9/6/11 27

#### **Documents as Vectors**

- Each doc j can now be viewed as a vector of tfxidf values, one component for each term
- So we have a vector space
  - terms are axes
  - docs live in this space
  - even with stemming, may have 200,000+ dimensions

# Why turn docs into vectors?

- First application: Query-by-example
  - Given a doc D, find others "like" it.
- Now that D is a vector, find vectors (docs) "near" it.



# The Vector Space Model

#### **Queries are just short documents**

- Take the freetext query as short document
- Return the documents ranked by the closeness of their vectors to the query vector.

9/6/11 31

# Cosine Similarity

Similarity between vectors  $d_1$  and  $d_2$  captured by the cosine of the angle x between them.



# Cosine similarity

$$sim(d_{j}, d_{k}) = \frac{\vec{d}_{j} \cdot \vec{d}_{k}}{\left| \vec{d}_{j} \right| \left| \vec{d}_{k} \right|} = \frac{\sum_{i=1}^{M} w_{i,j} w_{i,k}}{\sqrt{\sum_{i=1}^{M} w_{i,j}^{2}} \sqrt{\sum_{i=1}^{M} w_{i,k}^{2}}}$$

- Cosine of angle between two vectors
  - The denominator involves the lengths of the vectors.

Normalization

# Normalized vectors

For normalized vectors, the cosine is simply the dot product:

$$\cos(\vec{d}_j, \vec{d}_k) = \vec{d}_j \cdot \vec{d}_k$$

9/6/11

34

#### So...

- Basic ranked retrieval scheme is to
  - Treat queries as vectors
  - Compute the dot-product of the query with all the docs
  - Return the ranked list of docs for that query.

CSCI 5417

#### But...

- What do we know about the document vectors?
- What do we know about query vectors?

```
Scoring
                          (1) N documents. Each gets a score.
           CosineScore(q)
                 float Scores[N] = 0
             1
                                           (2) Get the lengths
                 Initialize Length[N]
(3) Iterate 2
                                           for later use
over the
                for each query term t
query terms<sub>4</sub>
                do calculate W_{t,q} and fetch postings list for t
                   for each pair(d, tf_{t,d}) in postings list
(6)
Accumulate 6
                   do Scores[d] += wf_{t,d} \times w_{t,q}
the scores for
                Read the array Length[d]
a doc, a term
                                              (9) Normalize by
at a time
                for each d
                                              doc vector length
                do Scores[d] = Scores[d]/Length[d]
                return Top K components of Scores[]
                                  CSCI 5417
```

#### **Next Time**

Should have read up through Chapter 6.

Move on to 7.