
1

CSCI 5417
Information Retrieval Systems

Jim Martin!

Lecture 5
9/6/2011

9/6/11 2

Today 9/6

  Vector space model
  New homework

2

9/6/11 3

Recap

  We’ve covered a variety of types of indexes
  And a variety of ways to build indexes
  And a variety of ways to process tokens
  And boolean search
  Now what?

9/6/11 4

Beyond Boolean

  Thus far, our queries have been Boolean
  Docs either match or they don’t

  Ok for expert users with precise
understanding of their needs and the corpus

  Not good for (the majority of) users with poor
Boolean formulation of their needs

  Most users don’t want to wade through
1000’s of results (or get 0 results)
  Hence the popularity of search engines which

provide a ranking.

3

9/6/11 5

Scoring

  Without some form of ranking, boolean
queries usually result in too many or too
few results.

  With ranking, the number of returned
results is irrelevant.
  The user can start at the top of a ranked list

and stop when their information need is
satisfied

9/6/11 6

Ranked Retrieval

  Given a query, assign a numerical score
to each doc in the collection

  Return documents to the user based on
the ranking derived from that score

  How?
  A considerable amount of the research in

IR over the last 20 years...
  Extremely empirical in nature

4

9/6/11 7

Back to Term x Document Matrices

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Documents and terms can
be thought of as vectors of
1’s a 0’s

9/6/11 8

Back to Term x Document Matrices

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Consider instead the number of
occurrences of a term t in a
document d, denoted tft,d

5

9/6/11 9

Scoring: Beyond Boolean AND

  Given a free-text query q and a document
d define

That is, simply add up the term frequencies
of all query terms in the document

Holding the query static, this assigns a score
to each document in a collection; now rank
documents by this score.

Score(q,d) = Σt∈q tft,d

9/6/11 10

Term Frequency: Local Weight

  What is the relative importance of
  0 vs. 1 occurrence of a term in a doc
  1 vs. 2 occurrences
  2 vs. 3 occurrences …

  Unclear, but it does seem like more is
better, a lot isn’t proportionally better than
a few
  One scheme commonly used:

€

wft ,d = 0 if tf t,d = 0, 1+ log tf t ,d otherwise

6

9/6/11 11

Potential Problem

Consider query ides of march
  Julius Caesar has 5 occurrences of ides
  No other play has ides
  march occurs in over a dozen
  SO... Julius Caesar should do well since it

has counts from both ides and march

BUT all the plays contain of, some
many times. So by this scoring
measure, the top-scoring play is
likely to be the one with the most
number of of’s

9/6/11 12

Term Frequency tft,d

  Of is a frequent word overall. Longer
docs will have more ofs. But not
necessarily more march or ides

  Hence longer docs are favored because
they’re more likely to contain frequent
query terms
  Probably not a good thing

7

9/6/11 13

Global Weight

  Which of these tells you more about a doc?
  10 occurrences of hernia?
  10 occurrences of the?

  Would like to attenuate the weights of common
terms
  But what does “common” mean?
  2 options: Look at

  Collection frequency
  The total number of occurrences of a term in the entire

collection of documents

  Document frequency

9/6/11 14

Collection vs. Document Frequency

Consider...

Word cf df
try 10422 8760
insurance 10440 3997

8

9/6/11 15

Inverse Document Frequency

  So how can we formalize that?
  Terms that appear across a large proportion

of the collection are less useful. They don’t
distinguish among the docs.

  So let’s use that proportion as the key.
  And let’s think of boosting useful terms

rather than demoting useless ones.

⎟
⎠

⎞
⎜
⎝

⎛= df
Nidf

t
t log

9/6/11 16

Reuters RCV1 800K docs

  Logarithms are base 10

9

9/6/11 17

tf x idf (or tf.idf or tf-idf)

  We still ought to pay attention to the local weight... so

  Increases with the number of occurrences within a doc
  Increases with the rarity of the term across the whole corpus

)/log(,, tdtdt dfNtfw ×=

 termcontain that documents ofnumber the
documents ofnumber total

document in termoffrequency ,

tdf
N

dttf

t

dt

=

=

=

9/6/11 18

Summary: TfxIdf

  “TFxIDF is usually used to refer to a family
of approaches.

10

9/6/11 19

Real-valued term vectors

  Still Bag of words model
  Each is a vector in ℝM

  Here log-scaled tf.idf

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 13.1 11.4 0.0 0.0 0.0 0.0

Brutus 3.0 8.3 0.0 1.0 0.0 0.0

Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0

Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3

worser 1.2 0.0 0.6 0.6 0.6 0.0

9/6/11 20

Assignment 2

  Download and install Lucene
  How does Lucene handle (using standard methods)

  Case, stemming, stop lists and multiword queries

  Download index the medical.txt collection
  DocID, abstracts, titles, keywords, and text
  How big is the resulting index?

  Terms and size of index

  Retrieve document IDs (from the lucene hits) from the
queries in queries.txt

  Compare against relevance judgments in qrels.txt

11

9/6/11 21

Assignment 2

  Collection
  54,710 medical abstracts

  All in a single file

  63 queries with relevance judgments

9/6/11 22

Sample Doc

.I 15

.U

87049104
.S
Am J Emerg Med 8703; 4(6):552-3

.M
Adolescence; Atropine/*TU; Baclofen/*PO; Bradycardia/CI/*DT; Case Report; Human;
Hypotension/CI/*DT; Male.
.T

Atropine in the treatment of baclofen overdose.
.P
JOURNAL ARTICLE.

.W
A patient suffering baclofen overdose successfully treated with atropine is
reported. Three hours after admission for ingestion of at least 300 mg baclofen as
a single dose, the patient became comatose and subsequently bradycardic, hypo
tensive, and hypothermic. A prompt increase in heart rate and blood pressure
followed administration of 1 mg of atropine sulfate. Atropine appears to be useful
in treating cases of baclofen overdose complicated by bradycardia and hypotension.
.A
Cohen MB; Gailey RA; McCoy GC.

12

9/6/11 23

Sample Query

<top>!
<num> Number: OHSU4!
<title> 58 yo with cancer and
hypercalcemia!
<desc> Description:!
effectiveness of etidronate in
treating hypercalcemia of malignancy!
</top>!

9/6/11 24

Qrels

OHSU1 87316326 1
OHSU1 87202778 1
OHSU1 87157536 2
OHSU1 87157537 2
OHSU1 87097544 2
OHSU1 87316316 1
OHSU2 87230756 1
OHSU2 87076950 1
OHSU2 87254296 2
OHSU2 87058538 2
OHSU2 87083927 2
OHSU2 87309677 2

13

9/6/11 25

Evaluation

  As we’ll see in Chapter 8, there are lots of ways to
do evaluation. Which mostly lead to different
design decisions.

  For this assignment, we’ll use R-precision (see
page 148).
  Basically, if a given query has N relevant docs,

then we look at the top N returned results and
compute precision within that set.

  So if we found all and only relevant docs we get
a 1.

  Then we average that over the set of queries
we’re using.

Assignment

  Part 1
  Do a straightforward (not too stupid) lucene

search solution for this dataset
  Measure how well it works with R-Precision

  Part 2
  Make it better

9/6/11 26

14

Back to Scoring

  Ok, we’ve change our document
representation (the term-document
matrix)

  How does that help scoring?

9/6/11 27

9/6/11 28

Documents as Vectors

  Each doc j can now be viewed as a vector
of tf×idf values, one component for each
term

  So we have a vector space
  terms are axes
  docs live in this space
  even with stemming, may have 200,000+

dimensions

15

9/6/11 29

Why turn docs into vectors?

  First application: Query-by-example
  Given a doc D, find others “like” it.

  Now that D is a vector, find vectors (docs)
“near” it.

9/6/11 30

Intuition

Hypothesis: Documents that are “close
together” in the vector space talk about
the same things.

t1

d2

d1

d3

d4

d5

t3

t2

θ
φ

16

9/6/11 31

The Vector Space Model

Queries are just short documents
  Take the freetext query as short document
  Return the documents ranked by the

closeness of their vectors to the query
vector.

9/6/11 32

Cosine Similarity

Similarity between vectors d1 and d2
captured by the cosine of the angle x
between them.

t 1

d 2

d 1

t 3

t 2

θ

Why not Euclidean distance?

17

9/6/11 33

Cosine similarity

  Cosine of angle between two vectors
  The denominator involves the lengths of the

vectors.

∑∑
∑

==

==
⋅

=
M

i ki
M

i ji

M

i kiji

kj

kj
kj

ww

ww

dd
dd

ddsim
1

2
,1

2
,

1 ,,),(



Normalization

9/6/11 34

Normalized vectors

  For normalized vectors, the cosine is
simply the dot product:

kjkj dddd

⋅=),cos(

18

CSCI 5417

So...

  Basic ranked retrieval scheme is to
  Treat queries as vectors
  Compute the dot-product of the query with

all the docs
  Return the ranked list of docs for that

query.

But...

  What do we know about the document
vectors?

  What do we know about query vectors?

9/6/11 36

19

CSCI 5417

Scoring
(1) N documents. Each gets a score.

(2) Get the lengths
for later use (3) Iterate

over the
query terms

(6)
Accumulate
the scores for
a doc, a term
at a time

(9) Normalize by
doc vector length

9/6/11 38

Next Time

Should have read up through Chapter 6.

Move on to 7.

