
1 

CSCI 5417 
Information Retrieval Systems 

Jim Martin!

Lecture 5 
9/6/2011 
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Today 9/6 

  Vector space model 
  New homework 
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Recap 

  We’ve covered a variety of types of indexes 
  And a variety of ways to build indexes 
  And a variety of ways to process tokens 
  And boolean search 
  Now what? 
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Beyond Boolean 

  Thus far, our queries have been Boolean 
  Docs either match or they don’t 

  Ok for expert users with precise 
understanding of their needs and the corpus 

  Not good for (the majority of) users with poor 
Boolean formulation of their needs 

  Most users don’t want to wade through 
1000’s of results (or get 0 results) 
  Hence the popularity of search engines which 

provide a ranking. 
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Scoring 

  Without some form of ranking, boolean 
queries usually result in too many or too 
few results. 

  With ranking, the number of returned 
results is irrelevant. 
  The user can start at the top of a ranked list 

and stop when their information need is 
satisfied 
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Ranked Retrieval 

  Given a query, assign a numerical score 
to each doc in the collection 

  Return documents to the user based on 
the ranking derived from that score 

  How? 
  A considerable amount of the research in 

IR over the last 20 years... 
  Extremely empirical in nature  
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Back to Term x Document Matrices 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Documents and terms can 
be thought of as vectors of 
1’s a 0’s 
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Back to Term x Document Matrices 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Consider instead the number of 
occurrences of a term t in a 
document d, denoted tft,d 
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Scoring: Beyond Boolean AND 

  Given a free-text query q  and a document 
d define 
    

That is, simply add up the term frequencies 
of all query terms in the document 

Holding the query static, this assigns a score 
to each document in a collection; now rank 
documents by this score. 

Score(q,d) = Σt∈q tft,d 
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Term Frequency: Local Weight 

  What is the relative importance of 
  0 vs. 1 occurrence of a term in a doc 
  1 vs. 2 occurrences 
  2 vs. 3 occurrences … 

  Unclear, but it does seem like more is 
better, a lot isn’t proportionally better than 
a few 
  One scheme commonly used: 

€ 

wft ,d = 0 if tf t,d = 0,  1+ log tf t ,d  otherwise
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Potential Problem 

Consider query ides of march 
  Julius Caesar has 5 occurrences of ides 
  No other play has ides 
  march occurs in over a dozen 
  SO... Julius Caesar should do well since it 

has counts from both ides and march 

BUT  all the plays contain of, some 
many times. So by this scoring 
measure, the top-scoring play is 
likely to be the one with the most 
number of of’s 
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Term Frequency tft,d 

  Of is a frequent word overall. Longer 
docs will have more ofs. But not 
necessarily more march or ides 

  Hence longer docs are favored because 
they’re more likely to contain frequent 
query terms 
  Probably not a good thing 
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Global Weight 

  Which of these tells you more about a doc? 
  10 occurrences of hernia? 
  10 occurrences of the? 

  Would like to attenuate the weights of common 
terms 
  But what does “common” mean? 
  2 options: Look at  

  Collection frequency 
  The total number of occurrences of a term in the entire 

collection of documents 

  Document frequency 
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Collection vs. Document Frequency 

Consider...  

Word   cf   df 
try    10422  8760 
insurance   10440  3997 
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Inverse Document Frequency 

  So how can we formalize that?  
  Terms that appear across a large proportion 

of the collection are less useful. They don’t 
distinguish among the docs. 

  So let’s use that proportion as the key. 
  And let’s think of boosting useful terms 

rather than demoting useless ones.  

⎟
⎠

⎞
⎜
⎝

⎛= df
Nidf

t
t log 
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Reuters RCV1 800K docs 

  Logarithms are base 10 
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tf x idf (or tf.idf or tf-idf) 

  We still ought to pay attention to the local weight... so 

  Increases with the number of occurrences within a doc 
  Increases with the rarity of the term across the whole corpus 

)/log(,, tdtdt dfNtfw ×=

    termcontain that documents ofnumber  the
documents ofnumber   total

document  in   termoffrequency ,

tdf
N

dttf

t

dt

=

=

=
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Summary: TfxIdf 

  “TFxIDF is usually used to refer to a family 
of approaches. 
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Real-valued term vectors 

  Still Bag of words model 
  Each is a vector in ℝM 

  Here log-scaled tf.idf 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 13.1 11.4 0.0 0.0 0.0 0.0

Brutus 3.0 8.3 0.0 1.0 0.0 0.0

Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0

Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3

worser 1.2 0.0 0.6 0.6 0.6 0.0
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Assignment 2  

  Download and install Lucene 
  How does Lucene handle (using standard methods) 

  Case, stemming, stop lists and multiword queries 

  Download index the medical.txt collection 
  DocID, abstracts, titles, keywords, and text 
  How big is the resulting index? 

  Terms and size of index 

  Retrieve document IDs (from the lucene hits)  from the 
queries in queries.txt 

  Compare against relevance judgments in qrels.txt 
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Assignment 2 

  Collection 
  54,710 medical abstracts 

  All in a single file 

  63 queries with relevance judgments 

9/6/11 22 

Sample Doc 

.I 15 

.U 

87049104 
.S 
Am J Emerg Med 8703; 4(6):552-3 

.M 
Adolescence; Atropine/*TU; Baclofen/*PO; Bradycardia/CI/*DT; Case Report; Human; 
Hypotension/CI/*DT; Male. 
.T 

Atropine in the treatment of baclofen overdose. 
.P 
JOURNAL ARTICLE. 

.W 
A patient suffering baclofen overdose successfully treated with atropine is 
reported. Three hours after admission for ingestion of at least 300 mg baclofen as 
a single dose, the patient became comatose and subsequently bradycardic, hypo 
tensive, and hypothermic. A prompt increase in heart rate and blood pressure 
followed administration of 1 mg of atropine sulfate. Atropine appears to be useful 
in treating cases of baclofen overdose complicated by bradycardia and hypotension. 
.A 
Cohen MB; Gailey RA; McCoy GC. 
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Sample Query 

<top>!
<num> Number: OHSU4!
<title> 58 yo with cancer and 
hypercalcemia!
<desc> Description:!
effectiveness of etidronate in 
treating hypercalcemia of malignancy!
</top>!
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Qrels 

OHSU1   87316326        1 
OHSU1   87202778        1 
OHSU1   87157536        2 
OHSU1   87157537        2 
OHSU1   87097544        2 
OHSU1   87316316        1 
OHSU2   87230756        1 
OHSU2   87076950        1 
OHSU2   87254296        2 
OHSU2   87058538        2 
OHSU2   87083927        2 
OHSU2   87309677        2 
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Evaluation 

  As we’ll see in Chapter 8, there are lots of ways to 
do evaluation. Which mostly lead to different 
design decisions. 

  For this assignment, we’ll use R-precision (see 
page 148). 
  Basically, if a given query has N relevant docs, 

then we look at the top N returned results and 
compute precision within that set.  

  So if we found all and only relevant docs we get 
a 1. 

  Then we average that over the set of queries 
we’re using. 

Assignment 

  Part 1 
  Do a straightforward (not too stupid) lucene 

search solution for this dataset 
  Measure how well it works with R-Precision 

  Part 2 
  Make it better 

9/6/11 26 
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Back to Scoring 

  Ok, we’ve change our document 
representation (the term-document 
matrix) 

  How does that help scoring? 
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Documents as Vectors 

  Each doc j can now be viewed as a vector 
of tf×idf values, one component for each 
term 

  So we have a vector space 
  terms are axes 
  docs live in this space 
  even with stemming, may have 200,000+ 

dimensions 
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Why turn docs into vectors? 

  First application: Query-by-example 
  Given a doc D, find others “like” it. 

  Now that D is a vector, find vectors (docs) 
“near” it. 
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Intuition 

Hypothesis: Documents that are “close 
together”  in the vector space talk about 
the same things. 

t1 

d2 

d1 

d3 

d4 

d5 

t3 

t2 

θ
φ
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The Vector Space Model 

Queries are just short documents 
  Take the freetext query as short document 
  Return the documents ranked by the 

closeness of their vectors to the query 
vector. 
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Cosine Similarity 

Similarity between vectors d1 and d2 
captured by the cosine of the angle x 
between them. 

t 1 

d 2 

d 1 

t 3 

t 2 

θ

Why not Euclidean distance? 
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Cosine similarity 

  Cosine of angle between two vectors 
  The denominator involves the lengths of the 

vectors. 
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Normalized vectors 

  For normalized vectors, the cosine is 
simply the dot product: 

kjkj dddd

⋅=),cos(
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So... 

  Basic ranked retrieval scheme is to  
  Treat queries as vectors 
  Compute the dot-product of the query with 

all the docs 
  Return the ranked list of docs for that 

query. 

But... 

  What do we know about the document 
vectors? 

  What do we know about query vectors? 

9/6/11 36 
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Scoring 
(1) N documents. Each gets a score. 

(2) Get the lengths 
for later use (3) Iterate 

over the 
query terms 

(6) 
Accumulate 
the scores for 
a doc, a term 
at a time 

(9) Normalize by 
doc vector length 
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Next Time 

Should have read up through Chapter 6. 

Move on to 7. 


